Ground penetrating radar(GPR),as a fast,efficient,and non-destructive detection device,holds great potential for the detection of shallow subsurface environments,such as urban road subsurface monitoring.However,the in...Ground penetrating radar(GPR),as a fast,efficient,and non-destructive detection device,holds great potential for the detection of shallow subsurface environments,such as urban road subsurface monitoring.However,the interpretation of GPR echo images often relies on manual recognition by experienced engineers.In order to address the automatic interpretation of cavity targets in GPR echo images,a recognition-algorithm based on Gaussian mixed model-hidden Markov model(GMM-HMM)is proposed,which can recognize three dimensional(3D)underground voids automatically.First,energy detection on the echo images is performed,whereby the data is preprocessed and pre-filtered.Then,edge histogram descriptor(EHD),histogram of oriented gradient(HOG),and Log-Gabor filters are used to extract features from the images.The traditional method can only be applied to 2D images and pre-processing is required for C-scan images.Finally,the aggregated features are fed into the GMM-HMM for classification and compared with two other methods,long short-term memory(LSTM)and gate recurrent unit(GRU).By testing on a simulated dataset,an accuracy rate of 90%is obtained,demonstrating the effectiveness and efficiency of our proposed method.展开更多
提出了一种结合KPCA(Kernel Principal Component Analysis)和稀疏表示的合成孔径雷达(Synthetic Aperture Rader,SAR)目标识别方法。该方法首先利用KPCA方法提取样本特征,然后在特征空间内构造稀疏表示模型,通过梯度投影法(Gradient Pr...提出了一种结合KPCA(Kernel Principal Component Analysis)和稀疏表示的合成孔径雷达(Synthetic Aperture Rader,SAR)目标识别方法。该方法首先利用KPCA方法提取样本特征,然后在特征空间内构造稀疏表示模型,通过梯度投影法(Gradient Projection for Sparse Reconstruction,GPSR)求得测试样本的稀疏系数,最后根据稀疏系数的能量特征实现分类识别。利用美国运动和静止目标获取与识别(Moving and Stationary Target Acquisition and Recognition,MSTAR)实测SAR数据进行实验,实验结果表明该方法在方位角未知的情况下平均识别率达到96.78%,能够明显地提高目标的识别结果,是一种有效的SAR目标识别方法。展开更多
基金National Natural Science Foundation of China(62071147)。
文摘Ground penetrating radar(GPR),as a fast,efficient,and non-destructive detection device,holds great potential for the detection of shallow subsurface environments,such as urban road subsurface monitoring.However,the interpretation of GPR echo images often relies on manual recognition by experienced engineers.In order to address the automatic interpretation of cavity targets in GPR echo images,a recognition-algorithm based on Gaussian mixed model-hidden Markov model(GMM-HMM)is proposed,which can recognize three dimensional(3D)underground voids automatically.First,energy detection on the echo images is performed,whereby the data is preprocessed and pre-filtered.Then,edge histogram descriptor(EHD),histogram of oriented gradient(HOG),and Log-Gabor filters are used to extract features from the images.The traditional method can only be applied to 2D images and pre-processing is required for C-scan images.Finally,the aggregated features are fed into the GMM-HMM for classification and compared with two other methods,long short-term memory(LSTM)and gate recurrent unit(GRU).By testing on a simulated dataset,an accuracy rate of 90%is obtained,demonstrating the effectiveness and efficiency of our proposed method.
文摘提出了一种结合KPCA(Kernel Principal Component Analysis)和稀疏表示的合成孔径雷达(Synthetic Aperture Rader,SAR)目标识别方法。该方法首先利用KPCA方法提取样本特征,然后在特征空间内构造稀疏表示模型,通过梯度投影法(Gradient Projection for Sparse Reconstruction,GPSR)求得测试样本的稀疏系数,最后根据稀疏系数的能量特征实现分类识别。利用美国运动和静止目标获取与识别(Moving and Stationary Target Acquisition and Recognition,MSTAR)实测SAR数据进行实验,实验结果表明该方法在方位角未知的情况下平均识别率达到96.78%,能够明显地提高目标的识别结果,是一种有效的SAR目标识别方法。