Purely organic room-temperature phosphorescence(RTP)is current hotspot in the research fields of chemistry,biology,materials etc.Herein,we report that photo-thermal double response reversible ultralong RTP flexible el...Purely organic room-temperature phosphorescence(RTP)is current hotspot in the research fields of chemistry,biology,materials etc.Herein,we report that photo-thermal double response reversible ultralong RTP flexible elastic material with multicolor delayed fluorescence,which is constructed by 4-biphenylboronic acid(BOH),polyethylene glycol,2,2-bis(hydroxymethyl)propionic acid,isophorone diamine and isophorone diisocyanate copolymer.Importantly,the supramolecular phosphorescent elastomer not only exhibits extending RTP emission with a lifetime up to 1.21 s,but also gives a visible afterglow of 20 s via encapsulation of BOH unities by the deep cavities of hydroxypropyl-β-cyclodextrin(β-CD-HP)and in situ polymerization.Especially,after doping organic dyes(Fluorescein isothiocyanate,Sulforhodamine 101,Rhodamine B),supramolecular phosphorescent elastomer achieves multicolor delayed fluorescence realized by RTP energy transfer from phosphorescent donor to dye acceptors,which possesses reversible photo-thermal responsiveness and maintains high efficiency in delayed emission even after dozens of cycles.Present research provides a new approach for constructing multicolor delayed fluorescent supramolecular elastomers.展开更多
Pure organic materials with ultralong room-temperature phosphorescence(RTP)and persistent luminescence in broad color gamut exhibit tremendous potential and broad application prospects due to their unique optical prop...Pure organic materials with ultralong room-temperature phosphorescence(RTP)and persistent luminescence in broad color gamut exhibit tremendous potential and broad application prospects due to their unique optical properties.This article proposes a simple strategy,polyatomic synergistic effect,to endow persistent luminescent materials with ultralong lifetime and broad color-tunability through polyatomic synergistic effect and non-traditional phosphorescence resonance energy transfer(PRET).By leveraging the polyatomic synergistic effect to enhance the intersystem crossing(ISC)in bibenzimidazole(BBI)derivatives and suppress the non-radiative transition process,ultralong persistent room-temperature phosphorescence has been successfully achieved after incorporating BBI-Cl-M into poly(methyl methacrylate)(PMMA)to form a rigid matrix(BBI-Cl-M@PMMA).Specifically,the ester functionalized bibenzimidazole with modified chlorine on molecular skeleton(BBI-Cl-M)demonstrates a remarkable phosphorescent lifetime(τp)of up to 256.4 ms.In addition,the behaviors and mechanism of RTP via polyatomic synergistic effect have been further understood by theoretical calculation and single crystal analysis.Subsequently,utilizing BBI-Cl-M as the energy donor and Rhodamine B(RB)as the energy acceptor,persistent and multicolor organic afterglow covering from green to red has been realized successfully by simply regulating the doping composition and concentration of PRET systems.These RTP materials have also been applied in underwater afterglow emission and multilevel anti-counterfeiting technology successfully.展开更多
Herein,a ternary supramolecular assembly(BPP-BQ?CB[8]-SCD)is successfully constructed by a bromophenylpyridine-tethered-bromoisoquinoline(BPP-BQ),cucurbit[8]uril(CB[8])and sulfonatedβ-cyclodextrin(SCD)via successive ...Herein,a ternary supramolecular assembly(BPP-BQ?CB[8]-SCD)is successfully constructed by a bromophenylpyridine-tethered-bromoisoquinoline(BPP-BQ),cucurbit[8]uril(CB[8])and sulfonatedβ-cyclodextrin(SCD)via successive assembling way,exhibiting progressively enhanced green roomtemperature phosphorescence(RTP).The self-aggregates of BPP-BQ?CB[8]-SCD accommodate an energy acceptor rhodamine B(Rh B)to form a light-harvesting system(BPP-BQ?CB[8]-SCD@Rh B)with further enhanced yellow long-lifetime luminescence with large Stokes shift based on triplet-singlet F?rster resonance energy transfer(TS-FRET).Crucially,the introduction of a photoactive diarylethene achieves the long-lived photoluminescence of BPP-BQ?CB[8]-SCD@Rh B to be switched with the efficiency of up to98%through logically ordered lowering/enhancing RTP performance of the energy donor and intercepting/restoring TS-FRET pathway,when stimulated by host-vip competition and light illumination in sequence.Moreover,BPP-BQ?CB[8]-SCD@Rh B is evenly doped into polyvinyl alcohol or polyacrylamide to obtain high-performance luminescent films with long afterglow.The abovementioned logically ordered stimulus-switched long-lived emission enables the light-harvesting system in both solution and solid state to be applied in high-security-level information encryption and transformation,and anticounterfeiting.展开更多
Room-temperature phosphorescence(RTP)materials exhibiting long emission lifetimes have gained increasing attention owing to their potential applications in encryption,anti-counterfeiting,and sensing.However,most polym...Room-temperature phosphorescence(RTP)materials exhibiting long emission lifetimes have gained increasing attention owing to their potential applications in encryption,anti-counterfeiting,and sensing.However,most polymers exhibit a short RTP lifetime(<1 s)because of their unstable triplet excitons.Herein,a new strategy of polymer chain stabilized phosphorescence(PCSP),which yields a new kind of RTP polymers with an ultralong lifetime and a sensitive oxygen response,has been reported.The rigid polymer chains of poly(methyl mathacrylate)(PMMA)immobilize the emitter molecules through multiple interactions between them,giving rise to efficient RTP.Meanwhile,the loosely-packed amorphous polymer chains allow oxygen to diffuse inside,endowing the doped polymers with oxygen sensitivity.Flexible and transparent polymer films exhibited an impressive ultralong RTP lifetime of 2.57 s at room temperature in vacuum,which was among the best performance of PMMA.Intriguingly,their RTP was rapidly quenched in the presence of oxygen.Furthermore,RTP microparticles with a diameter of 1.63μm were synthesized using in situ dispersion polymerization technique.Finally,oxygen sensors for quick,visual,and quantitative oxygen detection were developed based on the RTP microparticles through phosphorescence lifetime and image analysis.With distinctive advantages such as an ultralong lifetime,oxygen sensitivity,ease of fabrication,and cost-effectiveness,PCSP opens a new avenue to sensitive materials for oxygen detection.展开更多
Stimulus-responsive organic room temperature phosphorescent(RTP)materials have received significant attention in bioimaging,sensing,and data storage because of their controllable dynamic variability and rapid response...Stimulus-responsive organic room temperature phosphorescent(RTP)materials have received significant attention in bioimaging,sensing,and data storage because of their controllable dynamic variability and rapid response.Organic cocrystals,with tailor-designed optical properties through manipulation of their aggregate structures,have proven to be very effective in elucidating the structureproperty relationship of organic RTP materials at the molecular level.Therefore,enhancing RTP through rigid frameworks that promote intersystem crossing is a valid approach.Notably,the realization of organic RTP co-crystal performance by altering the components or adjusting the crystal lattices is highly appealing;however,this has not been fully addressed.In this study,an organic RTP cocrystal,4,40-bipyridine(44BD),was employed as the host,and 1,4-diiodotetrafluorobenzene(DITF)and 4-bromo-2,3,5,6-tetrafluorobenzoic acid(TFBA)were employed as vips.The 44BD-DITF co-crystal exhibited an orange RTP,whereas 44BD-TFBA displayed a bright yellow RTP.Crystal analysis and theoretical calculations revealed that dense molecular packing and abundant intermolecular interactions within these co-crystals are crucial for the emergence of RTP.Notably,both co-crystals show a reversible acid/base stimulus response,that is,exposure to hydrochloric acid(HCl)fumes results in quenching of their RTP,which can be subsequently restored by triethylamine(TEA)fumigation.This study presents an effective approach towards reversible RTP switching in organic co-crystals,thus offering opportunities for the development of acid/base stimulus-responsive materials for next-generation applications.展开更多
本文以IP网络中网络层与传输层的检错和纠错机制为切入点,比较了各类纠错机制的特点。通过阐述前向纠错的基本原理,介绍了SMPTE ST 2022-5标准中前向纠错的具体实现方式和由此给用户带来的延迟问题,列举了前向纠错机制的局限以及克服这...本文以IP网络中网络层与传输层的检错和纠错机制为切入点,比较了各类纠错机制的特点。通过阐述前向纠错的基本原理,介绍了SMPTE ST 2022-5标准中前向纠错的具体实现方式和由此给用户带来的延迟问题,列举了前向纠错机制的局限以及克服这些问题的方法。展开更多
基金financially supported by the National Natural Science Foundation of China(No.22131008)。
文摘Purely organic room-temperature phosphorescence(RTP)is current hotspot in the research fields of chemistry,biology,materials etc.Herein,we report that photo-thermal double response reversible ultralong RTP flexible elastic material with multicolor delayed fluorescence,which is constructed by 4-biphenylboronic acid(BOH),polyethylene glycol,2,2-bis(hydroxymethyl)propionic acid,isophorone diamine and isophorone diisocyanate copolymer.Importantly,the supramolecular phosphorescent elastomer not only exhibits extending RTP emission with a lifetime up to 1.21 s,but also gives a visible afterglow of 20 s via encapsulation of BOH unities by the deep cavities of hydroxypropyl-β-cyclodextrin(β-CD-HP)and in situ polymerization.Especially,after doping organic dyes(Fluorescein isothiocyanate,Sulforhodamine 101,Rhodamine B),supramolecular phosphorescent elastomer achieves multicolor delayed fluorescence realized by RTP energy transfer from phosphorescent donor to dye acceptors,which possesses reversible photo-thermal responsiveness and maintains high efficiency in delayed emission even after dozens of cycles.Present research provides a new approach for constructing multicolor delayed fluorescent supramolecular elastomers.
基金supported by the National Natural Science Foundation of China(NSFC,Nos.22061039,22165027)the Top Leading Talents Project of Gansu Province,the Key R&D program of Gansu Province(No.21YF5GA066)+1 种基金Gansu Province College Industry Support Plan Project(No.2022CYZC-18)Northwest Normal University 2023 graduate research funding project(No.2023KYZZS154)。
文摘Pure organic materials with ultralong room-temperature phosphorescence(RTP)and persistent luminescence in broad color gamut exhibit tremendous potential and broad application prospects due to their unique optical properties.This article proposes a simple strategy,polyatomic synergistic effect,to endow persistent luminescent materials with ultralong lifetime and broad color-tunability through polyatomic synergistic effect and non-traditional phosphorescence resonance energy transfer(PRET).By leveraging the polyatomic synergistic effect to enhance the intersystem crossing(ISC)in bibenzimidazole(BBI)derivatives and suppress the non-radiative transition process,ultralong persistent room-temperature phosphorescence has been successfully achieved after incorporating BBI-Cl-M into poly(methyl methacrylate)(PMMA)to form a rigid matrix(BBI-Cl-M@PMMA).Specifically,the ester functionalized bibenzimidazole with modified chlorine on molecular skeleton(BBI-Cl-M)demonstrates a remarkable phosphorescent lifetime(τp)of up to 256.4 ms.In addition,the behaviors and mechanism of RTP via polyatomic synergistic effect have been further understood by theoretical calculation and single crystal analysis.Subsequently,utilizing BBI-Cl-M as the energy donor and Rhodamine B(RB)as the energy acceptor,persistent and multicolor organic afterglow covering from green to red has been realized successfully by simply regulating the doping composition and concentration of PRET systems.These RTP materials have also been applied in underwater afterglow emission and multilevel anti-counterfeiting technology successfully.
基金the National Natural Science Foundation of China(Nos.21801063,22305070 and U20041101)the Top-Notch Talents Program of Henan Agricultural University(Nos.30501049 and 30501032)for financial support。
文摘Herein,a ternary supramolecular assembly(BPP-BQ?CB[8]-SCD)is successfully constructed by a bromophenylpyridine-tethered-bromoisoquinoline(BPP-BQ),cucurbit[8]uril(CB[8])and sulfonatedβ-cyclodextrin(SCD)via successive assembling way,exhibiting progressively enhanced green roomtemperature phosphorescence(RTP).The self-aggregates of BPP-BQ?CB[8]-SCD accommodate an energy acceptor rhodamine B(Rh B)to form a light-harvesting system(BPP-BQ?CB[8]-SCD@Rh B)with further enhanced yellow long-lifetime luminescence with large Stokes shift based on triplet-singlet F?rster resonance energy transfer(TS-FRET).Crucially,the introduction of a photoactive diarylethene achieves the long-lived photoluminescence of BPP-BQ?CB[8]-SCD@Rh B to be switched with the efficiency of up to98%through logically ordered lowering/enhancing RTP performance of the energy donor and intercepting/restoring TS-FRET pathway,when stimulated by host-vip competition and light illumination in sequence.Moreover,BPP-BQ?CB[8]-SCD@Rh B is evenly doped into polyvinyl alcohol or polyacrylamide to obtain high-performance luminescent films with long afterglow.The abovementioned logically ordered stimulus-switched long-lived emission enables the light-harvesting system in both solution and solid state to be applied in high-security-level information encryption and transformation,and anticounterfeiting.
基金National Natural Science Foundation of China(No.22475241)Guangdong Basic and Applied Basic Research Foundation(Nos.2022A1515010826 and 2023A1515012696)the Fundamental Research Funds for the Central Universities(Nos.17lgjc03 and 18lgpy04).
文摘Room-temperature phosphorescence(RTP)materials exhibiting long emission lifetimes have gained increasing attention owing to their potential applications in encryption,anti-counterfeiting,and sensing.However,most polymers exhibit a short RTP lifetime(<1 s)because of their unstable triplet excitons.Herein,a new strategy of polymer chain stabilized phosphorescence(PCSP),which yields a new kind of RTP polymers with an ultralong lifetime and a sensitive oxygen response,has been reported.The rigid polymer chains of poly(methyl mathacrylate)(PMMA)immobilize the emitter molecules through multiple interactions between them,giving rise to efficient RTP.Meanwhile,the loosely-packed amorphous polymer chains allow oxygen to diffuse inside,endowing the doped polymers with oxygen sensitivity.Flexible and transparent polymer films exhibited an impressive ultralong RTP lifetime of 2.57 s at room temperature in vacuum,which was among the best performance of PMMA.Intriguingly,their RTP was rapidly quenched in the presence of oxygen.Furthermore,RTP microparticles with a diameter of 1.63μm were synthesized using in situ dispersion polymerization technique.Finally,oxygen sensors for quick,visual,and quantitative oxygen detection were developed based on the RTP microparticles through phosphorescence lifetime and image analysis.With distinctive advantages such as an ultralong lifetime,oxygen sensitivity,ease of fabrication,and cost-effectiveness,PCSP opens a new avenue to sensitive materials for oxygen detection.
基金supported by the Natural Science Foundation of Jilin Province(20240101003JC)the Department of Science and Technology of Jilin Province(20230508176RC and 20240602063RC)+1 种基金the China Postdoctoral Science Foundation(2024M751080 and 2024T170337)the National Natural Science Foundation of China(52073116,22275065,22302073).
文摘Stimulus-responsive organic room temperature phosphorescent(RTP)materials have received significant attention in bioimaging,sensing,and data storage because of their controllable dynamic variability and rapid response.Organic cocrystals,with tailor-designed optical properties through manipulation of their aggregate structures,have proven to be very effective in elucidating the structureproperty relationship of organic RTP materials at the molecular level.Therefore,enhancing RTP through rigid frameworks that promote intersystem crossing is a valid approach.Notably,the realization of organic RTP co-crystal performance by altering the components or adjusting the crystal lattices is highly appealing;however,this has not been fully addressed.In this study,an organic RTP cocrystal,4,40-bipyridine(44BD),was employed as the host,and 1,4-diiodotetrafluorobenzene(DITF)and 4-bromo-2,3,5,6-tetrafluorobenzoic acid(TFBA)were employed as vips.The 44BD-DITF co-crystal exhibited an orange RTP,whereas 44BD-TFBA displayed a bright yellow RTP.Crystal analysis and theoretical calculations revealed that dense molecular packing and abundant intermolecular interactions within these co-crystals are crucial for the emergence of RTP.Notably,both co-crystals show a reversible acid/base stimulus response,that is,exposure to hydrochloric acid(HCl)fumes results in quenching of their RTP,which can be subsequently restored by triethylamine(TEA)fumigation.This study presents an effective approach towards reversible RTP switching in organic co-crystals,thus offering opportunities for the development of acid/base stimulus-responsive materials for next-generation applications.