RSA public key crypto system is a relatively safe technology, which is widely used in today’s secure electronic communication. In this paper, a new implementation method to optimize a 1 024 bit RSA processor was pres...RSA public key crypto system is a relatively safe technology, which is widely used in today’s secure electronic communication. In this paper, a new implementation method to optimize a 1 024 bit RSA processor was presented. Basically, a fast modular multiplication architecture based on Montgomery’s algorithm was proposed. Modular exponentiation algorithm scans encryption from right to left, so two modular multiplications can be processed parallel. The new architecture is also fit for an effective I/O interface. The time to calculate a modular exponentiation is about n 2 clock cycles. The proposed architecture has a data rate of 93.7 kb/s for 1 024 bit work with a 100 MHz clock.展开更多
Numerous cryptographic algorithms (ElGamal, Rabin, RSA, NTRU etc) require multiple computations of modulo multiplicative inverses. This paper describes and validates a new algorithm, called the Enhanced Euclid Algorit...Numerous cryptographic algorithms (ElGamal, Rabin, RSA, NTRU etc) require multiple computations of modulo multiplicative inverses. This paper describes and validates a new algorithm, called the Enhanced Euclid Algorithm, for modular multiplicative inverse (MMI). Analysis of the proposed algorithm shows that it is more efficient than the Extended Euclid algorithm (XEA). In addition, if a MMI does not exist, then it is not necessary to use the Backtracking procedure in the proposed algorithm;this case requires fewer operations on every step (divisions, multiplications, additions, assignments and push operations on stack), than the XEA. Overall, XEA uses more multiplications, additions, assignments and twice as many variables than the proposed algorithm.展开更多
基金NSF of U nited States under Contract 5 978East Asia and Pacific Program(960 2 485 )
文摘RSA public key crypto system is a relatively safe technology, which is widely used in today’s secure electronic communication. In this paper, a new implementation method to optimize a 1 024 bit RSA processor was presented. Basically, a fast modular multiplication architecture based on Montgomery’s algorithm was proposed. Modular exponentiation algorithm scans encryption from right to left, so two modular multiplications can be processed parallel. The new architecture is also fit for an effective I/O interface. The time to calculate a modular exponentiation is about n 2 clock cycles. The proposed architecture has a data rate of 93.7 kb/s for 1 024 bit work with a 100 MHz clock.
文摘Numerous cryptographic algorithms (ElGamal, Rabin, RSA, NTRU etc) require multiple computations of modulo multiplicative inverses. This paper describes and validates a new algorithm, called the Enhanced Euclid Algorithm, for modular multiplicative inverse (MMI). Analysis of the proposed algorithm shows that it is more efficient than the Extended Euclid algorithm (XEA). In addition, if a MMI does not exist, then it is not necessary to use the Backtracking procedure in the proposed algorithm;this case requires fewer operations on every step (divisions, multiplications, additions, assignments and push operations on stack), than the XEA. Overall, XEA uses more multiplications, additions, assignments and twice as many variables than the proposed algorithm.