Increasing research has focused on semantic communication,the goal of which is to convey accurately the meaning instead of transmitting symbols from the sender to the receiver.In this paper,we design a novel encoding ...Increasing research has focused on semantic communication,the goal of which is to convey accurately the meaning instead of transmitting symbols from the sender to the receiver.In this paper,we design a novel encoding and decoding semantic communication framework,which adopts the semantic information and the contextual correlations between items to optimize the performance of a communication system over various channels.On the sender side,the average semantic loss caused by the wrong detection is defined,and a semantic source encoding strategy is developed to minimize the average semantic loss.To further improve communication reliability,a decoding strategy that utilizes the semantic and the context information to recover messages is proposed in the receiver.Extensive simulation results validate the superior performance of our strategies over state-of-the-art semantic coding and decoding policies on different communication channels.展开更多
Rail surface damage is a critical component of high-speed railway infrastructure,directly affecting train operational stability and safety.Existing methods face limitations in accuracy and speed for small-sample,multi...Rail surface damage is a critical component of high-speed railway infrastructure,directly affecting train operational stability and safety.Existing methods face limitations in accuracy and speed for small-sample,multi-category,and multi-scale target segmentation tasks.To address these challenges,this paper proposes Pyramid-MixNet,an intelligent segmentation model for high-speed rail surface damage,leveraging dataset construction and expansion alongside a feature pyramid-based encoder-decoder network with multi-attention mechanisms.The encoding net-work integrates Spatial Reduction Masked Multi-Head Attention(SRMMHA)to enhance global feature extraction while reducing trainable parameters.The decoding network incorporates Mix-Attention(MA),enabling multi-scale structural understanding and cross-scale token group correlation learning.Experimental results demonstrate that the proposed method achieves 62.17%average segmentation accuracy,80.28%Damage Dice Coefficient,and 56.83 FPS,meeting real-time detection requirements.The model’s high accuracy and scene adaptability significantly improve the detection of small-scale and complex multi-scale rail damage,offering practical value for real-time monitoring in high-speed railway maintenance systems.展开更多
The translation activity is a process of the interlinguistic transmission of information realized by the information encoding and decoding.Encoding and decoding,cognitive practices operated in objective contexts,are i...The translation activity is a process of the interlinguistic transmission of information realized by the information encoding and decoding.Encoding and decoding,cognitive practices operated in objective contexts,are inevitably of selectivity ascribing to the restriction of contextual reasons.The translator as the intermediary agent connects the original author(encoder)and the target readers(decoder),shouldering the dual duties of the decoder and the encoder,for which his subjectivity is irrevocably manipulated by the selectivity of encoding and decoding.展开更多
Brain encoding and decoding via functional magnetic resonance imaging(fMRI)are two important aspects of visual perception neuroscience.Although previous researchers have made significant advances in brain encoding and...Brain encoding and decoding via functional magnetic resonance imaging(fMRI)are two important aspects of visual perception neuroscience.Although previous researchers have made significant advances in brain encoding and decoding models,existing methods still require improvement using advanced machine learning techniques.For example,traditional methods usually build the encoding and decoding models separately,and are prone to overfitting on a small dataset.In fact,effectively unifying the encoding and decoding procedures may allow for more accurate predictions.In this paper,we first review the existing encoding and decoding methods and discuss the potential advantages of a“bidirectional”modeling strategy.Next,we show that there are correspondences between deep neural networks and human visual streams in terms of the architecture and computational rules.Furthermore,deep generative models(e.g.,variational autoencoders(VAEs)and generative adversarial networks(GANs))have produced promising results in studies on brain encoding and decoding.Finally,we propose that the dual learning method,which was originally designed for machine translation tasks,could help to improve the performance of encoding and decoding models by leveraging large-scale unpaired data.展开更多
In order to make the information transmission more efficient and reliable in a digital communication channel with limited capacity, various encoding-decoding techniques have been proposed and widely applied in many br...In order to make the information transmission more efficient and reliable in a digital communication channel with limited capacity, various encoding-decoding techniques have been proposed and widely applied in many branches of the signal processing including digital communications, data compression,information encryption, etc. Recently, due to its promising application potentials in the networked systems(NSs), the analysis and synthesis issues of the NSs under various encoding-decoding schemes have stirred some research attention. However, because of the network-enhanced complexity caused by the limited network resources, it poses new challenges to the design of suitable encoding-decoding procedures to meet certain control or filtering performance for the NSs. In this survey paper, our aim is to present a comprehensive review of the encoding-decodingbased control and filtering problems for different types of NSs.First, some basic introduction with respect to the coding-decoding mechanism is presented in terms of its engineering insights,specific properties and theoretical formulations. Then, the recent representative research progress in the design of the encodingdecoding protocols for various control and filtering problems is discussed. Some possible further research topics are finally outlined for the encoding-decoding-based NSs.展开更多
Ocean underwater exploration is a part of oceanography that investigates the physical and biological conditions for scientific and commercial purposes. And video technology plays an important role and is extensively a...Ocean underwater exploration is a part of oceanography that investigates the physical and biological conditions for scientific and commercial purposes. And video technology plays an important role and is extensively applied for underwater environment observation. Different from the conventional methods, video technology explores the underwater ecosystem continuously and non-invasively. However, due to the scattering and attenuation of light transport in the water, complex noise distribution and lowlight condition cause challenges for underwater video applications including object detection and recognition. In this paper, we propose a new deep encoding-decoding convolutional architecture for underwater object recognition. It uses the deep encoding-decoding network for extracting the discriminative features from the noisy low-light underwater images. To create the deconvolutional layers for classification, we apply the deconvolution kernel with a matched feature map, instead of full connection, to solve the problem of dimension disaster and low accuracy. Moreover, we introduce data augmentation and transfer learning technologies to solve the problem of data starvation. For experiments, we investigated the public datasets with our proposed method and the state-of-the-art methods. The results show that our work achieves significant accuracy. This work provides new underwater technologies applied for ocean exploration.展开更多
Fountain codes are considered to be a promising coding technique in underwater acoustic communication(UAC) which is challenged with the unique propagation features of the underwater acoustic channel and the harsh ma...Fountain codes are considered to be a promising coding technique in underwater acoustic communication(UAC) which is challenged with the unique propagation features of the underwater acoustic channel and the harsh marine environment. And Luby transform(LT) codes are the first codes fully realizing the digital fountain concept. However, in conventional LT encoding/decoding algorithms, due to the imperfect coverage(IC) of input symbols and short cycles in the generator matrix, stopping sets would occur and terminate the decoding. Thus, the recovery probability is reduced,high coding overhead is required and decoding delay is increased.These issues would be disadvantages while applying LT codes in underwater acoustic communication. Aimed at solving those issues, novel encoding/decoding algorithms are proposed. First,a doping and non-uniform selecting(DNS) encoding algorithm is proposed to solve the IC and the generation of short cycles problems. And this can reduce the probability of stopping sets occur during decoding. Second, a hybrid on the fly Gaussian elimination and belief propagation(OFG-BP) decoding algorithm is designed to reduce the decoding delay and efficiently utilize the information of stopping sets. Comparisons via Monte Carlo simulation confirm that the proposed schemes could achieve better overall decoding performances in comparison with conventional schemes.展开更多
In this paper, based on an adaptive chaos synchronization scheme, two methods of encoding-decoding message for secure communication are proposed. With the first method, message is directly added to the chaotic signal ...In this paper, based on an adaptive chaos synchronization scheme, two methods of encoding-decoding message for secure communication are proposed. With the first method, message is directly added to the chaotic signal with parameter uncertainty. In the second method, multi-parameter modulation is used to simultaneously transmit more than one digital message (i.e., the multichannel digital communication) through just a single signal, which switches among various chaotic attractors that differ only subtly. In theory, such a treatment increases the difficulty for the intruder to directly intercept the information, and meanwhile the implementation cost decreases significantly. In addition, numerical results show the methods are robust against weak noise, which implies their practicability.展开更多
To improve the error correction performance, an innovative encoding structure with tail-biting for spinal codes is designed. Furthermore, an adaptive forward stack decoding(A-FSD) algorithm with lower complexity for s...To improve the error correction performance, an innovative encoding structure with tail-biting for spinal codes is designed. Furthermore, an adaptive forward stack decoding(A-FSD) algorithm with lower complexity for spinal codes is proposed. In the A-FSD algorithm, a flexible threshold parameter is set by a variable channel state to narrow the scale of nodes accessed. On this basis, a new decoding method of AFSD with early termination(AFSD-ET) is further proposed. The AFSD-ET decoder not only has the ability of dynamically modifying the number of stored nodes, but also adopts the early termination criterion to curtail complexity. The complexity and related parameters are verified through a series of simulations. The simulation results show that the proposed spinal codes with tail-biting and the AFSD-ET decoding algorithms can reduce the complexity and improve the decoding rate without sacrificing correct decoding performance.展开更多
Many monographs point out that differential encoding and decoding is necessary for ef- fectual information transmission against phase ambiguity while seldom discuss the reason why phase ambiguity will emerge inevitabl...Many monographs point out that differential encoding and decoding is necessary for ef- fectual information transmission against phase ambiguity while seldom discuss the reason why phase ambiguity will emerge inevitably.Available algorithms are specially designed for certain modulation scheme;these algorithms cannot satisfy the requirement of soft-defined radio,which perhaps demands a uniform algorithm for different modulations.This paper proposes a new opinion on phase ambiguity from the view of probability.This opinion believes that modulating symbol sequence can affect,at optimum sampling epoch,the modulated waveform as oscillating carrier has done,and so the stochastic sequence leads to phase ambiguity.Based on a general signal model,this paper also puts forward a novel universal algorithm,which is suitable for different signals,even some new ones,by configuring several parameters.展开更多
Tea has a history of thousands of years in China and it plays an important role in the working-life and daily life of people.Tea culture rich in connotation is an important part of Chinese traditional culture,and its ...Tea has a history of thousands of years in China and it plays an important role in the working-life and daily life of people.Tea culture rich in connotation is an important part of Chinese traditional culture,and its existence and development are also of great significance to the diversified development of world culture.Based on Stuart Hall’s encoding/decoding theory,this paper analyzes the problems in the spreading of Chinese tea in and out of the country and provides solutions from the perspective of encoding,communication,and decoding.It is expected to provide a reference for the domestic and international dissemination of Chinese tea culture.展开更多
The Beijing-Hangzhou Grand Canal carries a wealth of Chinese cultural symbols,showing the lifestyle and wisdom of working people through ages.The preservation and inheritance of its intangible cultural heritage can he...The Beijing-Hangzhou Grand Canal carries a wealth of Chinese cultural symbols,showing the lifestyle and wisdom of working people through ages.The preservation and inheritance of its intangible cultural heritage can help to evoke cultural memories and cultural identification of the Canal and build cultural confidence.This paper applies Stuart Hall’s encoding/decoding theory to analyze the dissemination of intangible heritage tourism culture.On the basis of a practical study of the villages along the Beijing-Hangzhou Grand Canal,this paper analyses the problems in the transmission of its intangible cultural heritage and proposes specific methods to solve them in four processes,encoding,decoding,communication,and secondary encoding,in order to propose references for the transmission of intangible heritage culture at home and abroad.展开更多
The QR Code is a 2 dimensional matrix code with high error correction capability. It employs RS codes to generate error correction codewords in encoding and recover errors and damages in decoding. This paper presents ...The QR Code is a 2 dimensional matrix code with high error correction capability. It employs RS codes to generate error correction codewords in encoding and recover errors and damages in decoding. This paper presents several QR Code’s virtues, analyzes RS decoding algorithm and gives a software flow chart of decoding the QR Code with RS decoding algorithm.展开更多
Computational optics introduces computation into optics and consequently helps overcome traditional optical limitations such as low sensing dimension,low light throughput,low resolution,and so on.The combination of op...Computational optics introduces computation into optics and consequently helps overcome traditional optical limitations such as low sensing dimension,low light throughput,low resolution,and so on.The combination of optical encoding and computational decoding offers enhanced imaging and sensing capabilities with diverse applications in biomedicine,astronomy,agriculture,etc.With the great advance of artificial intelligence in the last decade,deep learning has further boosted computational optics with higher precision and efficiency.Recently,there developed an end-to-end joint optimization technique that digitally twins optical encoding to neural network layers,and then facilitates simultaneous optimization with the decoding process.This framework offers effective performance enhancement over conventional techniques.However,the reverse physical twinning from optimized encoding parameters to practical modulation elements faces a serious challenge,due to the discrepant gap in such as bit depth,numerical range,and stability.In this regard,this review explores various optical modulation elements across spatial,phase,and spectral dimensions in the digital twin model for joint encoding-decoding optimization.Our analysis offers constructive guidance for finding the most appropriate modulation element in diverse imaging and sensing tasks concerning various requirements of precision,speed,and robustness.The review may help tackle the above twinning challenge and pave the way for next-generation computational optics.展开更多
In this paper,a novel dual-metric,the maximum and minimum Squared Euclidean Distance Increment (SEDI) brought by changing the hard decision symbol,is introduced to measure the reli-ability of the received M-ary Phase ...In this paper,a novel dual-metric,the maximum and minimum Squared Euclidean Distance Increment (SEDI) brought by changing the hard decision symbol,is introduced to measure the reli-ability of the received M-ary Phase Shift Keying (MPSK) symbols over a Rayleigh fading channel. Based on the dual-metric,a Chase-type soft decoding algorithm,which is called erased-Chase algorithm,is developed for Reed-Solomon (RS) coded MPSK schemes. The proposed algorithm treats the unre-liable symbols with small maximum SEDI as erasures,and tests the non-erased unreliable symbols with small minimum SEDI as the Chase-2 algorithm does. By introducing optimality test into the decoding procedure,much more reduction in the decoding complexity can be achieved. Simulation results of the RS(63,42,22)-coded 8-PSK scheme over a Rayleigh fading channel show that the proposed algorithm provides a very efficient tradeoff between the decoding complexity and the error performance. Finally,an adaptive scheme for the number of erasures is introduced into the decoding algorithm.展开更多
Despite its remarkable performance on natural images,the segment anything model(SAM)lacks domain-specific information in medical imaging.and faces the challenge of losing local multi-scale information in the encoding ...Despite its remarkable performance on natural images,the segment anything model(SAM)lacks domain-specific information in medical imaging.and faces the challenge of losing local multi-scale information in the encoding phase.This paper presents a medical image segmentation model based on SAM with a local multi-scale feature encoder(LMSFE-SAM)to address the issues above.Firstly,based on the SAM,a local multi-scale feature encoder is introduced to improve the representation of features within local receptive field,thereby supplying the Vision Transformer(ViT)branch in SAM with enriched local multi-scale contextual information.At the same time,a multiaxial Hadamard product module(MHPM)is incorporated into the local multi-scale feature encoder in a lightweight manner to reduce the quadratic complexity and noise interference.Subsequently,a cross-branch balancing adapter is designed to balance the local and global information between the local multi-scale feature encoder and the ViT encoder in SAM.Finally,to obtain smaller input image size and to mitigate overlapping in patch embeddings,the size of the input image is reduced from 1024×1024 pixels to 256×256 pixels,and a multidimensional information adaptation component is developed,which includes feature adapters,position adapters,and channel-spatial adapters.This component effectively integrates the information from small-sized medical images into SAM,enhancing its suitability for clinical deployment.The proposed model demonstrates an average enhancement ranging from 0.0387 to 0.3191 across six objective evaluation metrics on BUSI,DDTI,and TN3K datasets compared to eight other representative image segmentation models.This significantly enhances the performance of the SAM on medical images,providing clinicians with a powerful tool in clinical diagnosis.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant No.61931020,U19B2024,62171449,62001483in part by the science and technology innovation Program of Hunan Province under Grant No.2021JJ40690。
文摘Increasing research has focused on semantic communication,the goal of which is to convey accurately the meaning instead of transmitting symbols from the sender to the receiver.In this paper,we design a novel encoding and decoding semantic communication framework,which adopts the semantic information and the contextual correlations between items to optimize the performance of a communication system over various channels.On the sender side,the average semantic loss caused by the wrong detection is defined,and a semantic source encoding strategy is developed to minimize the average semantic loss.To further improve communication reliability,a decoding strategy that utilizes the semantic and the context information to recover messages is proposed in the receiver.Extensive simulation results validate the superior performance of our strategies over state-of-the-art semantic coding and decoding policies on different communication channels.
基金supported in part by the National Natural Science Foundation of China under Grant 6226070954Jiangxi Provincial Key R&D Programme under Grant 20244BBG73002.
文摘Rail surface damage is a critical component of high-speed railway infrastructure,directly affecting train operational stability and safety.Existing methods face limitations in accuracy and speed for small-sample,multi-category,and multi-scale target segmentation tasks.To address these challenges,this paper proposes Pyramid-MixNet,an intelligent segmentation model for high-speed rail surface damage,leveraging dataset construction and expansion alongside a feature pyramid-based encoder-decoder network with multi-attention mechanisms.The encoding net-work integrates Spatial Reduction Masked Multi-Head Attention(SRMMHA)to enhance global feature extraction while reducing trainable parameters.The decoding network incorporates Mix-Attention(MA),enabling multi-scale structural understanding and cross-scale token group correlation learning.Experimental results demonstrate that the proposed method achieves 62.17%average segmentation accuracy,80.28%Damage Dice Coefficient,and 56.83 FPS,meeting real-time detection requirements.The model’s high accuracy and scene adaptability significantly improve the detection of small-scale and complex multi-scale rail damage,offering practical value for real-time monitoring in high-speed railway maintenance systems.
文摘The translation activity is a process of the interlinguistic transmission of information realized by the information encoding and decoding.Encoding and decoding,cognitive practices operated in objective contexts,are inevitably of selectivity ascribing to the restriction of contextual reasons.The translator as the intermediary agent connects the original author(encoder)and the target readers(decoder),shouldering the dual duties of the decoder and the encoder,for which his subjectivity is irrevocably manipulated by the selectivity of encoding and decoding.
基金This work was supported by the National Key Research and Development Program of China(2018YFC2001302)National Natural Science Foundation of China(91520202)+2 种基金Chinese Academy of Sciences Scientific Equipment Development Project(YJKYYQ20170050)Beijing Municipal Science and Technology Commission(Z181100008918010)Youth Innovation Promotion Association of Chinese Academy of Sciences,and Strategic Priority Research Program of Chinese Academy of Sciences(XDB32040200).
文摘Brain encoding and decoding via functional magnetic resonance imaging(fMRI)are two important aspects of visual perception neuroscience.Although previous researchers have made significant advances in brain encoding and decoding models,existing methods still require improvement using advanced machine learning techniques.For example,traditional methods usually build the encoding and decoding models separately,and are prone to overfitting on a small dataset.In fact,effectively unifying the encoding and decoding procedures may allow for more accurate predictions.In this paper,we first review the existing encoding and decoding methods and discuss the potential advantages of a“bidirectional”modeling strategy.Next,we show that there are correspondences between deep neural networks and human visual streams in terms of the architecture and computational rules.Furthermore,deep generative models(e.g.,variational autoencoders(VAEs)and generative adversarial networks(GANs))have produced promising results in studies on brain encoding and decoding.Finally,we propose that the dual learning method,which was originally designed for machine translation tasks,could help to improve the performance of encoding and decoding models by leveraging large-scale unpaired data.
基金supported in part by the Royal Society of the UK,the Nationa Natural Science,Foundation of China(61329301,61374039)the Program for Capability Construction of Shanghai Provincial Universities(15550502500)the Alexander von Humboldt Foundation of Germany
文摘In order to make the information transmission more efficient and reliable in a digital communication channel with limited capacity, various encoding-decoding techniques have been proposed and widely applied in many branches of the signal processing including digital communications, data compression,information encryption, etc. Recently, due to its promising application potentials in the networked systems(NSs), the analysis and synthesis issues of the NSs under various encoding-decoding schemes have stirred some research attention. However, because of the network-enhanced complexity caused by the limited network resources, it poses new challenges to the design of suitable encoding-decoding procedures to meet certain control or filtering performance for the NSs. In this survey paper, our aim is to present a comprehensive review of the encoding-decodingbased control and filtering problems for different types of NSs.First, some basic introduction with respect to the coding-decoding mechanism is presented in terms of its engineering insights,specific properties and theoretical formulations. Then, the recent representative research progress in the design of the encodingdecoding protocols for various control and filtering problems is discussed. Some possible further research topics are finally outlined for the encoding-decoding-based NSs.
基金supported by the Jilin Science and Technology Development Plan Project (Nos. 20160209006GX, 20170309001GX and 20180201043GX)
文摘Ocean underwater exploration is a part of oceanography that investigates the physical and biological conditions for scientific and commercial purposes. And video technology plays an important role and is extensively applied for underwater environment observation. Different from the conventional methods, video technology explores the underwater ecosystem continuously and non-invasively. However, due to the scattering and attenuation of light transport in the water, complex noise distribution and lowlight condition cause challenges for underwater video applications including object detection and recognition. In this paper, we propose a new deep encoding-decoding convolutional architecture for underwater object recognition. It uses the deep encoding-decoding network for extracting the discriminative features from the noisy low-light underwater images. To create the deconvolutional layers for classification, we apply the deconvolution kernel with a matched feature map, instead of full connection, to solve the problem of dimension disaster and low accuracy. Moreover, we introduce data augmentation and transfer learning technologies to solve the problem of data starvation. For experiments, we investigated the public datasets with our proposed method and the state-of-the-art methods. The results show that our work achieves significant accuracy. This work provides new underwater technologies applied for ocean exploration.
基金supported by the National Natural Science Foundation of China(61371099)the Fundamental Research Funds for the Central Universities of China(HEUCF150812/150810)
文摘Fountain codes are considered to be a promising coding technique in underwater acoustic communication(UAC) which is challenged with the unique propagation features of the underwater acoustic channel and the harsh marine environment. And Luby transform(LT) codes are the first codes fully realizing the digital fountain concept. However, in conventional LT encoding/decoding algorithms, due to the imperfect coverage(IC) of input symbols and short cycles in the generator matrix, stopping sets would occur and terminate the decoding. Thus, the recovery probability is reduced,high coding overhead is required and decoding delay is increased.These issues would be disadvantages while applying LT codes in underwater acoustic communication. Aimed at solving those issues, novel encoding/decoding algorithms are proposed. First,a doping and non-uniform selecting(DNS) encoding algorithm is proposed to solve the IC and the generation of short cycles problems. And this can reduce the probability of stopping sets occur during decoding. Second, a hybrid on the fly Gaussian elimination and belief propagation(OFG-BP) decoding algorithm is designed to reduce the decoding delay and efficiently utilize the information of stopping sets. Comparisons via Monte Carlo simulation confirm that the proposed schemes could achieve better overall decoding performances in comparison with conventional schemes.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10572080), Shanghai Rising-Star Program (Grant No.05QMX1422), and Dawn Project of the Science Foundation of Shanghai Municipal Commission of Education (Grant No.05SG41 04YQHB089)
文摘In this paper, based on an adaptive chaos synchronization scheme, two methods of encoding-decoding message for secure communication are proposed. With the first method, message is directly added to the chaotic signal with parameter uncertainty. In the second method, multi-parameter modulation is used to simultaneously transmit more than one digital message (i.e., the multichannel digital communication) through just a single signal, which switches among various chaotic attractors that differ only subtly. In theory, such a treatment increases the difficulty for the intruder to directly intercept the information, and meanwhile the implementation cost decreases significantly. In addition, numerical results show the methods are robust against weak noise, which implies their practicability.
基金supported by the National Natural Science Foundation of China (61701020)the Scientific and Technological Innovation Foundation of Shunde Graduate School,USTB (BK19BF009)。
文摘To improve the error correction performance, an innovative encoding structure with tail-biting for spinal codes is designed. Furthermore, an adaptive forward stack decoding(A-FSD) algorithm with lower complexity for spinal codes is proposed. In the A-FSD algorithm, a flexible threshold parameter is set by a variable channel state to narrow the scale of nodes accessed. On this basis, a new decoding method of AFSD with early termination(AFSD-ET) is further proposed. The AFSD-ET decoder not only has the ability of dynamically modifying the number of stored nodes, but also adopts the early termination criterion to curtail complexity. The complexity and related parameters are verified through a series of simulations. The simulation results show that the proposed spinal codes with tail-biting and the AFSD-ET decoding algorithms can reduce the complexity and improve the decoding rate without sacrificing correct decoding performance.
基金Supported by Henan Prominent Talents Innovation Foundation (No.0421000100).
文摘Many monographs point out that differential encoding and decoding is necessary for ef- fectual information transmission against phase ambiguity while seldom discuss the reason why phase ambiguity will emerge inevitably.Available algorithms are specially designed for certain modulation scheme;these algorithms cannot satisfy the requirement of soft-defined radio,which perhaps demands a uniform algorithm for different modulations.This paper proposes a new opinion on phase ambiguity from the view of probability.This opinion believes that modulating symbol sequence can affect,at optimum sampling epoch,the modulated waveform as oscillating carrier has done,and so the stochastic sequence leads to phase ambiguity.Based on a general signal model,this paper also puts forward a novel universal algorithm,which is suitable for different signals,even some new ones,by configuring several parameters.
文摘Tea has a history of thousands of years in China and it plays an important role in the working-life and daily life of people.Tea culture rich in connotation is an important part of Chinese traditional culture,and its existence and development are also of great significance to the diversified development of world culture.Based on Stuart Hall’s encoding/decoding theory,this paper analyzes the problems in the spreading of Chinese tea in and out of the country and provides solutions from the perspective of encoding,communication,and decoding.It is expected to provide a reference for the domestic and international dissemination of Chinese tea culture.
基金supported by the National Social Science Fund Project (No.20BH151).
文摘The Beijing-Hangzhou Grand Canal carries a wealth of Chinese cultural symbols,showing the lifestyle and wisdom of working people through ages.The preservation and inheritance of its intangible cultural heritage can help to evoke cultural memories and cultural identification of the Canal and build cultural confidence.This paper applies Stuart Hall’s encoding/decoding theory to analyze the dissemination of intangible heritage tourism culture.On the basis of a practical study of the villages along the Beijing-Hangzhou Grand Canal,this paper analyses the problems in the transmission of its intangible cultural heritage and proposes specific methods to solve them in four processes,encoding,decoding,communication,and secondary encoding,in order to propose references for the transmission of intangible heritage culture at home and abroad.
文摘The QR Code is a 2 dimensional matrix code with high error correction capability. It employs RS codes to generate error correction codewords in encoding and recover errors and damages in decoding. This paper presents several QR Code’s virtues, analyzes RS decoding algorithm and gives a software flow chart of decoding the QR Code with RS decoding algorithm.
基金supported by the National Natural Science Foundation of China(Nos.62131003,62322502,62088101)the Guangdong Province Key Laboratory of Intelligent Detection in Complex Environment of Aerospace,Land and Sea(No.2022KSYS016).
文摘Computational optics introduces computation into optics and consequently helps overcome traditional optical limitations such as low sensing dimension,low light throughput,low resolution,and so on.The combination of optical encoding and computational decoding offers enhanced imaging and sensing capabilities with diverse applications in biomedicine,astronomy,agriculture,etc.With the great advance of artificial intelligence in the last decade,deep learning has further boosted computational optics with higher precision and efficiency.Recently,there developed an end-to-end joint optimization technique that digitally twins optical encoding to neural network layers,and then facilitates simultaneous optimization with the decoding process.This framework offers effective performance enhancement over conventional techniques.However,the reverse physical twinning from optimized encoding parameters to practical modulation elements faces a serious challenge,due to the discrepant gap in such as bit depth,numerical range,and stability.In this regard,this review explores various optical modulation elements across spatial,phase,and spectral dimensions in the digital twin model for joint encoding-decoding optimization.Our analysis offers constructive guidance for finding the most appropriate modulation element in diverse imaging and sensing tasks concerning various requirements of precision,speed,and robustness.The review may help tackle the above twinning challenge and pave the way for next-generation computational optics.
基金the National Natural Science Foundation of China (No.60272057).
文摘In this paper,a novel dual-metric,the maximum and minimum Squared Euclidean Distance Increment (SEDI) brought by changing the hard decision symbol,is introduced to measure the reli-ability of the received M-ary Phase Shift Keying (MPSK) symbols over a Rayleigh fading channel. Based on the dual-metric,a Chase-type soft decoding algorithm,which is called erased-Chase algorithm,is developed for Reed-Solomon (RS) coded MPSK schemes. The proposed algorithm treats the unre-liable symbols with small maximum SEDI as erasures,and tests the non-erased unreliable symbols with small minimum SEDI as the Chase-2 algorithm does. By introducing optimality test into the decoding procedure,much more reduction in the decoding complexity can be achieved. Simulation results of the RS(63,42,22)-coded 8-PSK scheme over a Rayleigh fading channel show that the proposed algorithm provides a very efficient tradeoff between the decoding complexity and the error performance. Finally,an adaptive scheme for the number of erasures is introduced into the decoding algorithm.
基金supported by Natural Science Foundation Programme of Gansu Province(No.24JRRA231)National Natural Science Foundation of China(No.62061023)Gansu Provincial Science and Technology Plan Key Research and Development Program Project(No.24YFFA024).
文摘Despite its remarkable performance on natural images,the segment anything model(SAM)lacks domain-specific information in medical imaging.and faces the challenge of losing local multi-scale information in the encoding phase.This paper presents a medical image segmentation model based on SAM with a local multi-scale feature encoder(LMSFE-SAM)to address the issues above.Firstly,based on the SAM,a local multi-scale feature encoder is introduced to improve the representation of features within local receptive field,thereby supplying the Vision Transformer(ViT)branch in SAM with enriched local multi-scale contextual information.At the same time,a multiaxial Hadamard product module(MHPM)is incorporated into the local multi-scale feature encoder in a lightweight manner to reduce the quadratic complexity and noise interference.Subsequently,a cross-branch balancing adapter is designed to balance the local and global information between the local multi-scale feature encoder and the ViT encoder in SAM.Finally,to obtain smaller input image size and to mitigate overlapping in patch embeddings,the size of the input image is reduced from 1024×1024 pixels to 256×256 pixels,and a multidimensional information adaptation component is developed,which includes feature adapters,position adapters,and channel-spatial adapters.This component effectively integrates the information from small-sized medical images into SAM,enhancing its suitability for clinical deployment.The proposed model demonstrates an average enhancement ranging from 0.0387 to 0.3191 across six objective evaluation metrics on BUSI,DDTI,and TN3K datasets compared to eight other representative image segmentation models.This significantly enhances the performance of the SAM on medical images,providing clinicians with a powerful tool in clinical diagnosis.