The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.Thi...The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.This paper presents a novel sparrow search algorithm(SSA)-tuned proportional-integral(PI)controller for grid-connected photovoltaic(PV)systems,designed to optimize dynamic perfor-mance,energy extraction,and power quality.Key contributions include the development of a systematic SSA-based optimization frame-work for real-time PI parameter tuning,ensuring precise voltage and current regulation,improved maximum power point tracking(MPPT)efficiency,and minimized total harmonic distortion(THD).The proposed approach is evaluated against conventional PSO-based and P&O controllers through comprehensive simulations,demonstrating its superior performance across key metrics:a 39.47%faster response time compared to PSO,a 12.06%increase in peak active power relative to P&O,and a 52.38%reduction in THD,ensuring compliance with IEEE grid standards.Moreover,the SSA-tuned PI controller exhibits enhanced adaptability to dynamic irradiancefluc-tuations,rapid response time,and robust grid integration under varying conditions,making it highly suitable for real-time smart grid applications.This work establishes the SSA-tuned PI controller as a reliable and efficient solution for improving PV system performance in grid-connected scenarios,while also setting the foundation for future research into multi-objective optimization,experimental valida-tion,and hybrid renewable energy systems.展开更多
By comparing price plans offered by several retail energy firms,end users with smart meters and controllers may optimize their energy use cost portfolios,due to the growth of deregulated retail power markets.To help s...By comparing price plans offered by several retail energy firms,end users with smart meters and controllers may optimize their energy use cost portfolios,due to the growth of deregulated retail power markets.To help smart grid end-users decrease power payment and usage unhappiness,this article suggests a decision system based on reinforcement learning to aid with electricity price plan selection.An enhanced state-based Markov decision process(MDP)without transition probabilities simulates the decision issue.A Kernel approximate-integrated batch Q-learning approach is used to tackle the given issue.Several adjustments to the sampling and data representation are made to increase the computational and prediction performance.Using a continuous high-dimensional state space,the suggested approach can uncover the underlying characteristics of time-varying pricing schemes.Without knowing anything regarding the market environment in advance,the best decision-making policy may be learned via case studies that use data from actual historical price plans.Experiments show that the suggested decision approach may reduce cost and energy usage dissatisfaction by using user data to build an accurate prediction strategy.In this research,we look at how smart city energy planners rely on precise load forecasts.It presents a hybrid method that extracts associated characteristics to improve accuracy in residential power consumption forecasts using machine learning(ML).It is possible to measure the precision of forecasts with the use of loss functions with the RMSE.This research presents a methodology for estimating smart home energy usage in response to the growing interest in explainable artificial intelligence(XAI).Using Shapley Additive explanations(SHAP)approaches,this strategy makes it easy for consumers to comprehend their energy use trends.To predict future energy use,the study employs gradient boosting in conjunction with long short-term memory neural networks.展开更多
A smart medical service system architecture is proposed in this paper to increase medical resource utilization and improve the efficiency of the medical diagnosis process for complex business scenarios in the Medical ...A smart medical service system architecture is proposed in this paper to increase medical resource utilization and improve the efficiency of the medical diagnosis process for complex business scenarios in the Medical Internet of Things(MIoT)environment.The resource representation model theory,multi-terminal aggregation algorithm,and the resource discovery algorithm based on latent factor model are also studied.A smart medical service system within the IoT environment is then developed,based on the open source project.Experimental results using real-world datasets illustrate that the proposed smart medical service system architecture can promote the intelligent and efficient management of medical resources to an extent,and assists in the develop towards digitization,intelligence,and precision in the field of medicine.展开更多
针对传统RRT(rapidly exploring random tree)算法在复杂环境下收敛速度慢、存在重复采样、缺乏目标导向性和规划的路径质量不高的问题,提出一种贪婪搜索和目标导向的RRT算法(RRT-D算法),在传统RRT算法的基础上,改进节点的采样方式和父...针对传统RRT(rapidly exploring random tree)算法在复杂环境下收敛速度慢、存在重复采样、缺乏目标导向性和规划的路径质量不高的问题,提出一种贪婪搜索和目标导向的RRT算法(RRT-D算法),在传统RRT算法的基础上,改进节点的采样方式和父节点的选取策略,取消步长限制,通过贪婪式的搜索方式一次生长10个候选节点,选取符合条件的且距离目标点最近的候选点作为子节点生长到树中,提高了算法的搜索能力,降低了路径代价;用动态减少重复搜索区域的方式减少了无效搜索;每次采样后判断采样点能否与目标点直接相连,增加了采样的目标导向性,提高了搜索效率,遍历全树构成无向图时,可根据总采样点数量,通过限制无向图边的长度来减少边的数量,由Dijkstra算法搜索代价最小的路径;最后由分段三次Hermite插值函数对路径进行平滑处理。试验结果表明,与传统RRT算法相比,RRT-D算法不仅大幅缩短了规划时间,而且得到的路径代价更小、更加平滑,节点的利用率更高,验证了RRT-D算法在路径规划中的优势。展开更多
This paper proposes a redundancy optimization method for smart grid Advanced Metering Infrastructure(AMI) to realize economy and reliability targets.AMI is a crucial part of the smart grid to measure,collect,and analy...This paper proposes a redundancy optimization method for smart grid Advanced Metering Infrastructure(AMI) to realize economy and reliability targets.AMI is a crucial part of the smart grid to measure,collect,and analyze data about energy usage and power quality from customer premises.From the communication perspective,the AMI consists of smart meters,Home Area Network(HAN) gateways and data concentrators;in particular,the redundancy optimization problem focus on deciding which data concentrator needs redundancy.In order to solve the problem,we first develop a quantitative analysis model for the network economic loss caused by the data concentrator failures.Then,we establish a complete redundancy optimization model,which comprehensively consider the factors of reliability and economy.Finally,an advanced redundancy deployment method based on genetic algorithm(GA) is developed to solve the proposed problem.The simulation results testify that the proposed redundancy optimization method is capable to build a reliable and economic smart grid communication network.展开更多
A Matrix Inversion Normalized Least Mean Square (MI-NLMS) adaptive beamforming algorithm was developed for smart antenna application. The MI-NLMS which combined the individual good aspects of Sample Matrix Inversion (...A Matrix Inversion Normalized Least Mean Square (MI-NLMS) adaptive beamforming algorithm was developed for smart antenna application. The MI-NLMS which combined the individual good aspects of Sample Matrix Inversion (SMI) and the Normalized Least Mean Square (NLMS) algorithms is described. Simulation results showed that the less complexity MI-NLMS yields 15 dB improvements in interference suppression and 5 dB gain enhancement over LMS algorithm, converges from the initial iteration and achieves 24% BER improvements at cochannel interference equal to 5. For the case of 4-element uniform linear array antenna, MI-NLMS achieved 76% BER reduction over LMS algorithm.展开更多
In the design and planning of next-generation Internet of Things(IoT),telecommunication,and satellite communication systems,controller placement is crucial in software-defined networking(SDN).The programmability of th...In the design and planning of next-generation Internet of Things(IoT),telecommunication,and satellite communication systems,controller placement is crucial in software-defined networking(SDN).The programmability of the SDN controller is sophisticated for the centralized control system of the entire network.Nevertheless,it creates a significant loophole for the manifestation of a distributed denial of service(DDoS)attack straightforwardly.Furthermore,recently a Distributed Reflected Denial of Service(DRDoS)attack,an unusual DDoS attack,has been detected.However,minimal deliberation has given to this forthcoming single point of SDN infrastructure failure problem.Moreover,recently the high frequencies of DDoS attacks have increased dramatically.In this paper,a smart algorithm for planning SDN smart backup controllers under DDoS attack scenarios has proposed.Our proposed smart algorithm can recommend single or multiple smart backup controllers in the event of DDoS occurrence.The obtained simulated results demonstrate that the validation of the proposed algorithm and the performance analysis achieved 99.99%accuracy in placing the smart backup controller under DDoS attacks within 0.125 to 46508.7 s in SDN.展开更多
The huge increase in the communication network rate has made the application fields and scenarios for vehicular ad hoc networks more abundant and diversified and proposed more requirements for the efficiency and quali...The huge increase in the communication network rate has made the application fields and scenarios for vehicular ad hoc networks more abundant and diversified and proposed more requirements for the efficiency and quality of data transmission.To improve the limited communication distance and poor communication quality of the Internet of Vehicles(IoV),an optimal intelligent routing algorithm is proposed in this paper.Combined multiweight decision algorithm with the greedy perimeter stateless routing protocol,designed and evaluated standardized function for link stability.Linear additive weighting is used to optimize link stability and distance to improve the packet delivery rate of the IoV.The blockchain system is used as the storage structure for relay data,and the smart contract incentive algorithm based on machine learning is used to encourage relay vehicles to provide more communication bandwidth for data packet transmission.The proposed scheme is simulated and analyzed under different scenarios and different parameters.The experimental results demonstrate that the proposed scheme can effectively reduce the packet loss rate and improve system performance.展开更多
针对RRT(rapidly exploring random tree)路径规划算法搜索范围大、目标导向差、容易陷入局部最小值以及路径曲折等问题,提出了一种限制自适应采样区域的改进RRT路径规划算法。将整个搜索空间划分成均匀的等级,根据新节点所在等级和该...针对RRT(rapidly exploring random tree)路径规划算法搜索范围大、目标导向差、容易陷入局部最小值以及路径曲折等问题,提出了一种限制自适应采样区域的改进RRT路径规划算法。将整个搜索空间划分成均匀的等级,根据新节点所在等级和该等级内采样点数量动态调整采样区域,减小搜索范围;利用新节点改进策略使随机树根据环境信息自适应地向目标点调整,并改变扩展步长生成新节点;利用障碍物躲避策略提高算法的目标导向性和躲避障碍物的性能;利用改进的逆向寻优和插入节点并减小转向角的三次B样条曲线对路径进行优化处理。该算法在不同的路径环境中相较于RRT算法的搜索时间和迭代次数均减少了70%以上,且经过优化的路径更短、更平滑。展开更多
文摘The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.This paper presents a novel sparrow search algorithm(SSA)-tuned proportional-integral(PI)controller for grid-connected photovoltaic(PV)systems,designed to optimize dynamic perfor-mance,energy extraction,and power quality.Key contributions include the development of a systematic SSA-based optimization frame-work for real-time PI parameter tuning,ensuring precise voltage and current regulation,improved maximum power point tracking(MPPT)efficiency,and minimized total harmonic distortion(THD).The proposed approach is evaluated against conventional PSO-based and P&O controllers through comprehensive simulations,demonstrating its superior performance across key metrics:a 39.47%faster response time compared to PSO,a 12.06%increase in peak active power relative to P&O,and a 52.38%reduction in THD,ensuring compliance with IEEE grid standards.Moreover,the SSA-tuned PI controller exhibits enhanced adaptability to dynamic irradiancefluc-tuations,rapid response time,and robust grid integration under varying conditions,making it highly suitable for real-time smart grid applications.This work establishes the SSA-tuned PI controller as a reliable and efficient solution for improving PV system performance in grid-connected scenarios,while also setting the foundation for future research into multi-objective optimization,experimental valida-tion,and hybrid renewable energy systems.
文摘By comparing price plans offered by several retail energy firms,end users with smart meters and controllers may optimize their energy use cost portfolios,due to the growth of deregulated retail power markets.To help smart grid end-users decrease power payment and usage unhappiness,this article suggests a decision system based on reinforcement learning to aid with electricity price plan selection.An enhanced state-based Markov decision process(MDP)without transition probabilities simulates the decision issue.A Kernel approximate-integrated batch Q-learning approach is used to tackle the given issue.Several adjustments to the sampling and data representation are made to increase the computational and prediction performance.Using a continuous high-dimensional state space,the suggested approach can uncover the underlying characteristics of time-varying pricing schemes.Without knowing anything regarding the market environment in advance,the best decision-making policy may be learned via case studies that use data from actual historical price plans.Experiments show that the suggested decision approach may reduce cost and energy usage dissatisfaction by using user data to build an accurate prediction strategy.In this research,we look at how smart city energy planners rely on precise load forecasts.It presents a hybrid method that extracts associated characteristics to improve accuracy in residential power consumption forecasts using machine learning(ML).It is possible to measure the precision of forecasts with the use of loss functions with the RMSE.This research presents a methodology for estimating smart home energy usage in response to the growing interest in explainable artificial intelligence(XAI).Using Shapley Additive explanations(SHAP)approaches,this strategy makes it easy for consumers to comprehend their energy use trends.To predict future energy use,the study employs gradient boosting in conjunction with long short-term memory neural networks.
基金supported by the National Key R&D Program of China(2018YFC1314901)the Natural Science Foundation of China (61871446)the Scientific Research Starting Foundation for New Teachers of Nanjing University of Posts and Telecommunications (NY217033)
文摘A smart medical service system architecture is proposed in this paper to increase medical resource utilization and improve the efficiency of the medical diagnosis process for complex business scenarios in the Medical Internet of Things(MIoT)environment.The resource representation model theory,multi-terminal aggregation algorithm,and the resource discovery algorithm based on latent factor model are also studied.A smart medical service system within the IoT environment is then developed,based on the open source project.Experimental results using real-world datasets illustrate that the proposed smart medical service system architecture can promote the intelligent and efficient management of medical resources to an extent,and assists in the develop towards digitization,intelligence,and precision in the field of medicine.
文摘针对传统RRT(rapidly exploring random tree)算法在复杂环境下收敛速度慢、存在重复采样、缺乏目标导向性和规划的路径质量不高的问题,提出一种贪婪搜索和目标导向的RRT算法(RRT-D算法),在传统RRT算法的基础上,改进节点的采样方式和父节点的选取策略,取消步长限制,通过贪婪式的搜索方式一次生长10个候选节点,选取符合条件的且距离目标点最近的候选点作为子节点生长到树中,提高了算法的搜索能力,降低了路径代价;用动态减少重复搜索区域的方式减少了无效搜索;每次采样后判断采样点能否与目标点直接相连,增加了采样的目标导向性,提高了搜索效率,遍历全树构成无向图时,可根据总采样点数量,通过限制无向图边的长度来减少边的数量,由Dijkstra算法搜索代价最小的路径;最后由分段三次Hermite插值函数对路径进行平滑处理。试验结果表明,与传统RRT算法相比,RRT-D算法不仅大幅缩短了规划时间,而且得到的路径代价更小、更加平滑,节点的利用率更高,验证了RRT-D算法在路径规划中的优势。
基金supported by the National HighTech ResearchDevelopment Program of China (863) under Grant No.2012AA050801
文摘This paper proposes a redundancy optimization method for smart grid Advanced Metering Infrastructure(AMI) to realize economy and reliability targets.AMI is a crucial part of the smart grid to measure,collect,and analyze data about energy usage and power quality from customer premises.From the communication perspective,the AMI consists of smart meters,Home Area Network(HAN) gateways and data concentrators;in particular,the redundancy optimization problem focus on deciding which data concentrator needs redundancy.In order to solve the problem,we first develop a quantitative analysis model for the network economic loss caused by the data concentrator failures.Then,we establish a complete redundancy optimization model,which comprehensively consider the factors of reliability and economy.Finally,an advanced redundancy deployment method based on genetic algorithm(GA) is developed to solve the proposed problem.The simulation results testify that the proposed redundancy optimization method is capable to build a reliable and economic smart grid communication network.
基金Project supported by the IRPA Secretariat, Ministry of Science,Technology and Environment of Malaysia (No. 04-02-02-0029) andthe Zamalah Scheme
文摘A Matrix Inversion Normalized Least Mean Square (MI-NLMS) adaptive beamforming algorithm was developed for smart antenna application. The MI-NLMS which combined the individual good aspects of Sample Matrix Inversion (SMI) and the Normalized Least Mean Square (NLMS) algorithms is described. Simulation results showed that the less complexity MI-NLMS yields 15 dB improvements in interference suppression and 5 dB gain enhancement over LMS algorithm, converges from the initial iteration and achieves 24% BER improvements at cochannel interference equal to 5. For the case of 4-element uniform linear array antenna, MI-NLMS achieved 76% BER reduction over LMS algorithm.
基金TM R&D Sdn Bhd fully supports this research work under Project RDTC160902.S.C.Tan and Z.Yusoff received the fund.Sponsors’Website:https://www.tmrnd.com.my.
文摘In the design and planning of next-generation Internet of Things(IoT),telecommunication,and satellite communication systems,controller placement is crucial in software-defined networking(SDN).The programmability of the SDN controller is sophisticated for the centralized control system of the entire network.Nevertheless,it creates a significant loophole for the manifestation of a distributed denial of service(DDoS)attack straightforwardly.Furthermore,recently a Distributed Reflected Denial of Service(DRDoS)attack,an unusual DDoS attack,has been detected.However,minimal deliberation has given to this forthcoming single point of SDN infrastructure failure problem.Moreover,recently the high frequencies of DDoS attacks have increased dramatically.In this paper,a smart algorithm for planning SDN smart backup controllers under DDoS attack scenarios has proposed.Our proposed smart algorithm can recommend single or multiple smart backup controllers in the event of DDoS occurrence.The obtained simulated results demonstrate that the validation of the proposed algorithm and the performance analysis achieved 99.99%accuracy in placing the smart backup controller under DDoS attacks within 0.125 to 46508.7 s in SDN.
基金supported by the National Key R&D Program of China (2020YFB2008400)LAGEO of Chinese Academy of Sciences (LAGEO-2019-2)+11 种基金Program for Science&Technology Innovation Talents in the University of Henan Province (20HASTIT022)21th Project of the Xizang Cultural Inheritance and Development Collaborative Innovation Center in 2018 (21IRTSTHN015)Natural Science Foundation of Xizang Named“Research of Key Technology of Millimeter Wave MIMO Secure Transmission with Relay Enhancement”in 2018Xizang Autonomous Region Education Science“13th Five-year Plan”Major Project for 2018 (XZJKY201803)Natural Science Foundation of Henan under Grant 202300410126Young Backbone Teachers in Henan Province (2018GGJS049)Henan Province Young Talent Lift Project (2020HYTP009)Program for Innovative Research Team in University of Henan Province (21IRTSTHNO15)Equipment Pre-research Joint Research Program of Ministry of Education (8091B032129)Training Program for Young Scholar of Henan Province for Colleges and Universities under Grand (2020GGJS172)Program for Science&Technology Innovation Talents in Universities of Henan Province under Grand (22HASTIT020)Henan Province Science Fund for Distinguished Young Scholars (222300420006).
文摘The huge increase in the communication network rate has made the application fields and scenarios for vehicular ad hoc networks more abundant and diversified and proposed more requirements for the efficiency and quality of data transmission.To improve the limited communication distance and poor communication quality of the Internet of Vehicles(IoV),an optimal intelligent routing algorithm is proposed in this paper.Combined multiweight decision algorithm with the greedy perimeter stateless routing protocol,designed and evaluated standardized function for link stability.Linear additive weighting is used to optimize link stability and distance to improve the packet delivery rate of the IoV.The blockchain system is used as the storage structure for relay data,and the smart contract incentive algorithm based on machine learning is used to encourage relay vehicles to provide more communication bandwidth for data packet transmission.The proposed scheme is simulated and analyzed under different scenarios and different parameters.The experimental results demonstrate that the proposed scheme can effectively reduce the packet loss rate and improve system performance.
文摘针对RRT(rapidly exploring random tree)路径规划算法搜索范围大、目标导向差、容易陷入局部最小值以及路径曲折等问题,提出了一种限制自适应采样区域的改进RRT路径规划算法。将整个搜索空间划分成均匀的等级,根据新节点所在等级和该等级内采样点数量动态调整采样区域,减小搜索范围;利用新节点改进策略使随机树根据环境信息自适应地向目标点调整,并改变扩展步长生成新节点;利用障碍物躲避策略提高算法的目标导向性和躲避障碍物的性能;利用改进的逆向寻优和插入节点并减小转向角的三次B样条曲线对路径进行优化处理。该算法在不同的路径环境中相较于RRT算法的搜索时间和迭代次数均减少了70%以上,且经过优化的路径更短、更平滑。