A new steganographic approach for 24 bit color images that can resist the RQP(raw quick pairs) steganalysis is described. The technique is based on modification of color triplets such that the existing color palett...A new steganographic approach for 24 bit color images that can resist the RQP(raw quick pairs) steganalysis is described. The technique is based on modification of color triplets such that the existing color palette is not excessively expanded or even reduced. In this way, numbers of unique colors and pairs of close colors in the image do not rise significantly. This invalidates the RQP analysis. Experimental results are presented to support the argument.展开更多
After a straightforward general relativistic calculation on a modified flat-spacetime metric (developed from the fluctuating vacuum energy interacting with a graviton field), a pair of n-valued covariant and contravar...After a straightforward general relativistic calculation on a modified flat-spacetime metric (developed from the fluctuating vacuum energy interacting with a graviton field), a pair of n-valued covariant and contravariant energy momentum tensors emerged analogous to quantized raising and lower operators. Detaching these operators from the general relativistic field equations, and then transporting them to act on extreme spacetimes, these operators were able to generate fundamental particle boson masses. In particular, the operators precisely generated Higgs mass. Then by applying a consistency approach to the gravitational field equations—similar to how Maxwell applied to the electromagnetic ones—it allowed for the coupling of spin-to-mass, further restricting the particle mass to be in precise agreement with CODATA experimental values. Since this is a massless field approach integrated discretely with a massive one, it overcomes various renormalizing difficulties;moreover it solves the mass hierarchal problem of the Standard Model of particle physics, and generates its spin and therefore shows quantum physics to be a subset of General Relativity, just as Einstein had first imagined.展开更多
Whereas the human body requires a vast numbers of atoms to maintain its intricate anatomical functions, we assert that the human brain requires “something extra” to carry out its higher mental and emotional function...Whereas the human body requires a vast numbers of atoms to maintain its intricate anatomical functions, we assert that the human brain requires “something extra” to carry out its higher mental and emotional functions. Recently, neuroscientists are beginning to suspect brain cells are not fast enough, or intricate enough, to correlate complex spatiotemporal information into cognitive understanding. They conclude that spacetime fields may be necessary to assist the brain during neurological processing—in much the same way magnetic and electric fields are essential for the propagation of light. This “something extra,” we argue, is spacetime itself—where structures in the brain, called facilitators (somewhat like Descartes pineal gland), have evolved biologically in such a way, so as to be able to store and retrieve spacetime quanta for the formation and generation of consciousness and memory. In this way, cognition is not a thing complete. Rather it is emergent, and accumulates as discretized spacetime quanta in the brain so rapidly, we perceive our own awareness to be continuous, events spontaneous. In this paper, we consider spacetime to be a field (like all quantum fields), which can be excited into quanta particles called gravitons. We then apply this quanta excitation to help explain the brain’s cognitive processes. If the brain has indeed evolved to interact with discretized spacetime, then with the advent of improved functional imaging equipment, we might be able to map detailed correlations between neural processes, conscious experience and spacetime. In so doing, it might be possible to learn more about the fundamental workings of spacetime itself.展开更多
During an interview at the Niels Bohr Institute David Bohm stated, “according to Einstein, particles should eventually emerge … as singularities, or very strong regions of stable pulses of (the gravitational) field...During an interview at the Niels Bohr Institute David Bohm stated, “according to Einstein, particles should eventually emerge … as singularities, or very strong regions of stable pulses of (the gravitational) field” [1]. Starting from this premise, we show spacetime, indeed, manifests stable pulses (n-valued gravitons) that decay into the vacuum energy to generate all three boson masses (including Higgs), as well as heavy-quark mass;and all in precise agreement with the 2010 CODATA report on fundamental constants. Furthermore, our relativized quantum physics approach (RQP) answers to the mystery surrounding dark energy, dark matter, accelerated spacetime, and why ordinary matter dominates over antimatter.展开更多
文摘A new steganographic approach for 24 bit color images that can resist the RQP(raw quick pairs) steganalysis is described. The technique is based on modification of color triplets such that the existing color palette is not excessively expanded or even reduced. In this way, numbers of unique colors and pairs of close colors in the image do not rise significantly. This invalidates the RQP analysis. Experimental results are presented to support the argument.
文摘After a straightforward general relativistic calculation on a modified flat-spacetime metric (developed from the fluctuating vacuum energy interacting with a graviton field), a pair of n-valued covariant and contravariant energy momentum tensors emerged analogous to quantized raising and lower operators. Detaching these operators from the general relativistic field equations, and then transporting them to act on extreme spacetimes, these operators were able to generate fundamental particle boson masses. In particular, the operators precisely generated Higgs mass. Then by applying a consistency approach to the gravitational field equations—similar to how Maxwell applied to the electromagnetic ones—it allowed for the coupling of spin-to-mass, further restricting the particle mass to be in precise agreement with CODATA experimental values. Since this is a massless field approach integrated discretely with a massive one, it overcomes various renormalizing difficulties;moreover it solves the mass hierarchal problem of the Standard Model of particle physics, and generates its spin and therefore shows quantum physics to be a subset of General Relativity, just as Einstein had first imagined.
文摘Whereas the human body requires a vast numbers of atoms to maintain its intricate anatomical functions, we assert that the human brain requires “something extra” to carry out its higher mental and emotional functions. Recently, neuroscientists are beginning to suspect brain cells are not fast enough, or intricate enough, to correlate complex spatiotemporal information into cognitive understanding. They conclude that spacetime fields may be necessary to assist the brain during neurological processing—in much the same way magnetic and electric fields are essential for the propagation of light. This “something extra,” we argue, is spacetime itself—where structures in the brain, called facilitators (somewhat like Descartes pineal gland), have evolved biologically in such a way, so as to be able to store and retrieve spacetime quanta for the formation and generation of consciousness and memory. In this way, cognition is not a thing complete. Rather it is emergent, and accumulates as discretized spacetime quanta in the brain so rapidly, we perceive our own awareness to be continuous, events spontaneous. In this paper, we consider spacetime to be a field (like all quantum fields), which can be excited into quanta particles called gravitons. We then apply this quanta excitation to help explain the brain’s cognitive processes. If the brain has indeed evolved to interact with discretized spacetime, then with the advent of improved functional imaging equipment, we might be able to map detailed correlations between neural processes, conscious experience and spacetime. In so doing, it might be possible to learn more about the fundamental workings of spacetime itself.
文摘During an interview at the Niels Bohr Institute David Bohm stated, “according to Einstein, particles should eventually emerge … as singularities, or very strong regions of stable pulses of (the gravitational) field” [1]. Starting from this premise, we show spacetime, indeed, manifests stable pulses (n-valued gravitons) that decay into the vacuum energy to generate all three boson masses (including Higgs), as well as heavy-quark mass;and all in precise agreement with the 2010 CODATA report on fundamental constants. Furthermore, our relativized quantum physics approach (RQP) answers to the mystery surrounding dark energy, dark matter, accelerated spacetime, and why ordinary matter dominates over antimatter.