针对实际纸病检测应用中采集到的图像分辨率越来越高,在图像处理过程中出现数据维数过大的问题,提出一种基于鲁棒主成分分析法(Robust Principal component Analysis,RPcA)的纸病图像分割算法,该算法将纸病图像对应的矩阵分解成稀疏矩...针对实际纸病检测应用中采集到的图像分辨率越来越高,在图像处理过程中出现数据维数过大的问题,提出一种基于鲁棒主成分分析法(Robust Principal component Analysis,RPcA)的纸病图像分割算法,该算法将纸病图像对应的矩阵分解成稀疏矩阵和低秩矩阵。在后续检测中只需选取稀疏矩阵对应的图像进行检测就可以满足纸病检测的要求,有效减少了计算量,最终节省了整个纸病检测环节的检测时间。仿真结果表明,该方法可用于纸病图像的分割,并且具有良好的分割效果。展开更多
针对图像修复过程中,颜色纹理光学属性分离不彻底,以及在稀疏表示图像修复时字典设计单一,导致壁画图像修复结果易出现结构不连贯和模糊效应等问题,提出了一种基于块核范数的鲁棒主成分分析(robust principal component analysis,RPCA)...针对图像修复过程中,颜色纹理光学属性分离不彻底,以及在稀疏表示图像修复时字典设计单一,导致壁画图像修复结果易出现结构不连贯和模糊效应等问题,提出了一种基于块核范数的鲁棒主成分分析(robust principal component analysis,RPCA)分解与熵权类稀疏的壁画修复方法。首先,采用提出的基于块核范数的RPCA图像分解算法,将壁画图像分解为结构层和纹理层,利用块核范数进行纹理矫正操作,克服了RPCA结构纹理分离不完全的问题。然后,提出熵加权k-means方法对结构层图像进行聚类,构建得到稀疏子类字典,并通过奇异值分解和分裂Bregman迭代优化的类稀疏修复方法,完成结构层图像的重构。最后,利用双三次插值算法实现对纹理层图像的修复,将修复后的结构层和纹理层进行融合,完成破损壁画的修复。通过对真实敦煌壁画数字化修复,实验结果表明,该算法能够有效地保护壁画图像的边缘和纹理等重要特征信息,无论从视觉效果还是从峰值信噪比等定量评价方面,提出的方法修复效果均优于比较算法,且修复执行效率更高。展开更多
针对冲击噪声下传统子空间类算法因接收信号二阶矩不存在而性能下降甚至失效问题,提出一种基于改进的鲁棒性主成分分析法(robust principal component analysis,RPCA)的双基地MIMO雷达参数估计方法。首先将复数信号转化为实数,以便RPCA...针对冲击噪声下传统子空间类算法因接收信号二阶矩不存在而性能下降甚至失效问题,提出一种基于改进的鲁棒性主成分分析法(robust principal component analysis,RPCA)的双基地MIMO雷达参数估计方法。首先将复数信号转化为实数,以便RPCA算法进行处理;然后利用改进RPCA算法将低秩的信号矩阵和稀疏的冲击噪声矩阵分离,得到信号子空间;最后利用ESPRIT算法估计目标位置。仿真结果表明:改进RPCA算法避免了大规模的奇异值分解,复杂度较求解RPCA的传统算法有所降低,在噪声特征指数较低时较其它抑制冲击噪声的算法估计性能更好,且特征指数越低,效果越好,实现参数自动配对且无需噪声特征指数先验信息。展开更多
经典的鲁棒主成分分析(Robust Principal Component Analysis,RPCA)目标检测算法使用l1范数逐一判别每一像素点是否属于运动目标,未能考虑到运动目标在空间分布的连续性,不利于提升运动目标检测的鲁棒性.本文提出了一种基于l0群稀疏RPC...经典的鲁棒主成分分析(Robust Principal Component Analysis,RPCA)目标检测算法使用l1范数逐一判别每一像素点是否属于运动目标,未能考虑到运动目标在空间分布的连续性,不利于提升运动目标检测的鲁棒性.本文提出了一种基于l0群稀疏RPCA模型的运动目标检测方法.首先运用Ncuts算法进行区域过分割,生成多个同性区域,将其作为群稀疏约束的分组信息;第二步构造基于l0群稀疏RPCA模型,运用群稀疏准则判别过分割后的各同性区域是否为运动目标,采用交替方向乘子算法对模型进行快速求解,约束过分割形成的同性区域具有相同检测结果,进而将背景环境和运动前景分离,能够更加准确地度量运动目标的区域边界,且对复杂的背景扰动更加鲁棒,达到了运动目标鲁棒检测的目的.展开更多
针对传统的人脸识别中的特征提取会受光照、姿态、遮挡等影响,提出了基于RPCA和卷积神经网络的人脸识别算法。该算法将鲁棒主成分分析(Robust Principal Component Analysis,RPCA)与卷积神经网络相结合,来增强人脸的识别效果。首先对人...针对传统的人脸识别中的特征提取会受光照、姿态、遮挡等影响,提出了基于RPCA和卷积神经网络的人脸识别算法。该算法将鲁棒主成分分析(Robust Principal Component Analysis,RPCA)与卷积神经网络相结合,来增强人脸的识别效果。首先对人脸样本YaleB进行划分,并利用鲁棒主成分分析提取出训练样本和测试样本的低秩矩阵和稀疏矩阵,最后利用卷积神经网络(Convolutional Neural Network,CNN)对训练样本的低秩矩阵进行识别分类。该算法在YaleB人脸库中进行测试,实验表明:提出的基于RPCA和卷积神经网络的光照人脸识别算法较RPCA和CNN具有更好的鲁棒性。展开更多
近年来,鲁棒主成分分析法(Robust Principal Component Analysis,RPCA)被广泛应用到运动目标检测中,但该类方法未能有效利用运动目标的时空连续性先验,容易将动态背景误判为运动目标,且背景恢复精度不高.为此提出一种基于全变分-核回归...近年来,鲁棒主成分分析法(Robust Principal Component Analysis,RPCA)被广泛应用到运动目标检测中,但该类方法未能有效利用运动目标的时空连续性先验,容易将动态背景误判为运动目标,且背景恢复精度不高.为此提出一种基于全变分-核回归的RPCA运动目标检测方法.该方法以RPCA为基础,利用3维全变分模型增强前景的时空连续性,去除动态背景干扰,得到清晰完整的前景.同时,利用基于扩散张量的核回归对背景的时空相关性建模,去除噪声干扰,从而精确恢复背景.在多组公开数据集上的实验结果表明,该方法在动态背景、光照变化等复杂场景中能够较为精确地检测出运动目标和恢复背景.展开更多
文摘针对实际纸病检测应用中采集到的图像分辨率越来越高,在图像处理过程中出现数据维数过大的问题,提出一种基于鲁棒主成分分析法(Robust Principal component Analysis,RPcA)的纸病图像分割算法,该算法将纸病图像对应的矩阵分解成稀疏矩阵和低秩矩阵。在后续检测中只需选取稀疏矩阵对应的图像进行检测就可以满足纸病检测的要求,有效减少了计算量,最终节省了整个纸病检测环节的检测时间。仿真结果表明,该方法可用于纸病图像的分割,并且具有良好的分割效果。
文摘针对图像修复过程中,颜色纹理光学属性分离不彻底,以及在稀疏表示图像修复时字典设计单一,导致壁画图像修复结果易出现结构不连贯和模糊效应等问题,提出了一种基于块核范数的鲁棒主成分分析(robust principal component analysis,RPCA)分解与熵权类稀疏的壁画修复方法。首先,采用提出的基于块核范数的RPCA图像分解算法,将壁画图像分解为结构层和纹理层,利用块核范数进行纹理矫正操作,克服了RPCA结构纹理分离不完全的问题。然后,提出熵加权k-means方法对结构层图像进行聚类,构建得到稀疏子类字典,并通过奇异值分解和分裂Bregman迭代优化的类稀疏修复方法,完成结构层图像的重构。最后,利用双三次插值算法实现对纹理层图像的修复,将修复后的结构层和纹理层进行融合,完成破损壁画的修复。通过对真实敦煌壁画数字化修复,实验结果表明,该算法能够有效地保护壁画图像的边缘和纹理等重要特征信息,无论从视觉效果还是从峰值信噪比等定量评价方面,提出的方法修复效果均优于比较算法,且修复执行效率更高。
文摘针对冲击噪声下传统子空间类算法因接收信号二阶矩不存在而性能下降甚至失效问题,提出一种基于改进的鲁棒性主成分分析法(robust principal component analysis,RPCA)的双基地MIMO雷达参数估计方法。首先将复数信号转化为实数,以便RPCA算法进行处理;然后利用改进RPCA算法将低秩的信号矩阵和稀疏的冲击噪声矩阵分离,得到信号子空间;最后利用ESPRIT算法估计目标位置。仿真结果表明:改进RPCA算法避免了大规模的奇异值分解,复杂度较求解RPCA的传统算法有所降低,在噪声特征指数较低时较其它抑制冲击噪声的算法估计性能更好,且特征指数越低,效果越好,实现参数自动配对且无需噪声特征指数先验信息。
文摘经典的鲁棒主成分分析(Robust Principal Component Analysis,RPCA)目标检测算法使用l1范数逐一判别每一像素点是否属于运动目标,未能考虑到运动目标在空间分布的连续性,不利于提升运动目标检测的鲁棒性.本文提出了一种基于l0群稀疏RPCA模型的运动目标检测方法.首先运用Ncuts算法进行区域过分割,生成多个同性区域,将其作为群稀疏约束的分组信息;第二步构造基于l0群稀疏RPCA模型,运用群稀疏准则判别过分割后的各同性区域是否为运动目标,采用交替方向乘子算法对模型进行快速求解,约束过分割形成的同性区域具有相同检测结果,进而将背景环境和运动前景分离,能够更加准确地度量运动目标的区域边界,且对复杂的背景扰动更加鲁棒,达到了运动目标鲁棒检测的目的.
文摘近年来,鲁棒主成分分析法(Robust Principal Component Analysis,RPCA)被广泛应用到运动目标检测中,但该类方法未能有效利用运动目标的时空连续性先验,容易将动态背景误判为运动目标,且背景恢复精度不高.为此提出一种基于全变分-核回归的RPCA运动目标检测方法.该方法以RPCA为基础,利用3维全变分模型增强前景的时空连续性,去除动态背景干扰,得到清晰完整的前景.同时,利用基于扩散张量的核回归对背景的时空相关性建模,去除噪声干扰,从而精确恢复背景.在多组公开数据集上的实验结果表明,该方法在动态背景、光照变化等复杂场景中能够较为精确地检测出运动目标和恢复背景.