The reactive materials filled structure(RMFS)is a structural penetrator that replaces high explosive(HE)with reactive materials,presenting a novel self-distributed initiation,multiple deflagrations behavior during pen...The reactive materials filled structure(RMFS)is a structural penetrator that replaces high explosive(HE)with reactive materials,presenting a novel self-distributed initiation,multiple deflagrations behavior during penetrating multi-layered plates,and generating a multipeak overpressure behind the plates.Here analytical models of RMFS self-distributed energy release and equivalent deflagration are developed.The multipeak overpressure formation model based on the single deflagration overpressure expression was promoted.The impact tests of RMFS on multi-layered plates at 584 m/s,616 m/s,and819 m/s were performed to validate the analytical model.Further,the influence of a single overpressure peak and time intervals versus impact velocity is discussed.The analysis results indicate that the deflagration happened within 20.68 mm behind the plate,the initial impact velocity and plate thickness are the crucial factors that dominate the self-distributed multipeak overpressure effect.Three formation patterns of multipeak overpressure are proposed.展开更多
Astrocytes are the most abundant type of glial cell in the central nervous system.Upon injury and inflammation,astrocytes become reactive and undergo morphological and functional changes.Depending on their phenotypic ...Astrocytes are the most abundant type of glial cell in the central nervous system.Upon injury and inflammation,astrocytes become reactive and undergo morphological and functional changes.Depending on their phenotypic classification as A1 or A2,reactive astrocytes contribute to both neurotoxic and neuroprotective responses,respectively.However,this binary classification does not fully capture the diversity of astrocyte responses observed across different diseases and injuries.Transcriptomic analysis has revealed that reactive astrocytes have a complex landscape of gene expression profiles,which emphasizes the heterogeneous nature of their reactivity.Astrocytes actively participate in regulating central nervous system inflammation by interacting with microglia and other cell types,releasing cytokines,and influencing the immune response.The phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)signaling pathway is a central player in astrocyte reactivity and impacts various aspects of astrocyte behavior,as evidenced by in silico,in vitro,and in vivo results.In astrocytes,inflammatory cues trigger a cascade of molecular events,where nuclear factor-κB serves as a central mediator of the pro-inflammatory responses.Here,we review the heterogeneity of reactive astrocytes and the molecular mechanisms underlying their activation.We highlight the involvement of various signaling pathways that regulate astrocyte reactivity,including the PI3K/AKT/mammalian target of rapamycin(mTOR),αvβ3 integrin/PI3K/AKT/connexin 43,and Notch/PI3K/AKT pathways.While targeting the inactivation of the PI3K/AKT cellular signaling pathway to control reactive astrocytes and prevent central nervous system damage,evidence suggests that activating this pathway could also yield beneficial outcomes.This dual function of the PI3K/AKT pathway underscores its complexity in astrocyte reactivity and brain function modulation.The review emphasizes the importance of employing astrocyte-exclusive models to understand their functions accurately and these models are essential for clarifying astrocyte behavior.The findings should then be validated using in vivo models to ensure real-life relevance.The review also highlights the significance of PI3K/AKT pathway modulation in preventing central nervous system damage,although further studies are required to fully comprehend its role due to varying factors such as different cell types,astrocyte responses to inflammation,and disease contexts.Specific strategies are clearly necessary to address these variables effectively.展开更多
The penetration-deflagration coupling damage performance of rod-like reactive shaped charge pene-trator(RRSCP)impacting thick steel plates is investigated by theoretical analysis and experiments.A penetration-deflagra...The penetration-deflagration coupling damage performance of rod-like reactive shaped charge pene-trator(RRSCP)impacting thick steel plates is investigated by theoretical analysis and experiments.A penetration-deflagration coupling damage model is developed to predict the penetration depth and cratering diameter.Four type of aluminum-polytetrafluoroethylene-copper(Al-PTFE-Cu)reactive liners with densities of 2.3,2.7,3.5,and 4.5 g·cm^(-3) are selected to conduct the penetration experiments.The comparison results show that model predictions are in good agreement with the experimental data.By comparing the penetration depth and cratering diameter in the inert penetration mode and the penetration-deflagration coupling mode,the influence mechanism that the penetration-induced chemical response is unfavorable to penetration but has an enhanced cratering effect is revealed.From the formation characteristics,penetration effect and penetration-induced chemical reaction be-haviors,the influence of reactive liner density on the penetration-deflagration performance is further analyzed.The results show that increasing the density of reactive liner significantly increases both the kinetic energy and length of the reactive penetrator,meanwhile effectively reduces the weakened effect of penetration-induced chemical response,resulting in an enhanced penetration capability.However,due to the decreased diameter and potential energy content of reactive penetrator,the cratering capa-bility is weakened significantly.展开更多
Honglian type-cytoplasmic male sterility(HL-CMS)is caused by the inter-communication between the nucleus and mitochondria.However,the mechanisms by which sterility genes regulate metabolic alterations and changes in m...Honglian type-cytoplasmic male sterility(HL-CMS)is caused by the inter-communication between the nucleus and mitochondria.However,the mechanisms by which sterility genes regulate metabolic alterations and changes in mitochondrial morphology in the pollen of HL-CMS remain unclear.In this study,we compared the morphological differences between the pollen of the male sterile line YA and the near-isogenic line NIL-Rf6 using hematoxylin-eosin staining and 4ʹ,6-diamidino-2-phenylindole(DAPI)staining.HL-CMS is characterized by gametophytic sterility,where the aborted pollen grains are empty,and the tapetal layer remains intact.Transmission electron microscopy was employed to observe mitochondrial morphological changes at the microspore stage,revealing significant mitochondrial alterations,characterized by the formation of'large spherical mitochondria',occurred at the binucleate stage in the YA line.Additionally,metabolomics analysis revealed decreased levels of metabolites associated with the carbohydrate and flavonoid pathways.Notably,the decrease in flavonoids was found to contribute to an elevation in reactive oxygen species(ROS)levels.Therefore,we propose a model in which rice fertility is modulated by the levels of pollen carbohydrates and flavonoid metabolites,with impaired mitochondrial energy production and reduced flavonoid biosynthesis as the main causes of ROS accumulation and pollen abortion in rice.展开更多
The presence of heavy metals in soil negatively impacts its mechanical properties.Reactive MgO carbonation presents a promising approach to enhance the solidification of Pb-contaminated sandy soils.However,the mechani...The presence of heavy metals in soil negatively impacts its mechanical properties.Reactive MgO carbonation presents a promising approach to enhance the solidification of Pb-contaminated sandy soils.However,the mechanical properties and structural behavior of contaminated soils during carbonation can vary significantly due to differences in soil composition.This study examines the potential application and underlying mechanisms of reactive MgO carbonation in improving the mechanical properties of Pb-contaminated red clay.The findings demonstrate that Pb-contaminated red clay transitions from a plastic to a brittle state following reactive MgO carbonation.After 1 h of treatment,the strength of the red clay exceeded 3 MPa,even at high Pb^(2+)concentrations.The deformation modulus to unconfined compressive strength(UCS)ratio was calculated to be 37.761,with the failure strain primarily ranging from 1.5%to 4.0%.A strength prediction model for the reactive MgO-stabilized Pb-contaminated red clay was proposed,which showed good predictive accuracy.Furthermore,reactive MgO carbonation significantly reduced the Pb leaching concentration in the high-level Pb-contaminated soil to below 0.1 mg/L.Microscopic analysis revealed that an optimal amount of hydrated magnesium carbonates(HMCs)formed a stable and compact structure with the soil particles.However,long-term carbonation causes red clay particles to become sandy,and excessive HMCs can harm the soil structure.Therefore,to maximize the strength improvement while avoiding structural damage,the carbonation time should be controlled to 1 h.展开更多
Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power o...Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.展开更多
Alzheimer'sdisease(AD)isaprogressive neurodegenerative disorder characterized by cognitive impairment and distinct neuropathological features,including amyloid-βplaques,neurofibrillary tangles,and reactive astrog...Alzheimer'sdisease(AD)isaprogressive neurodegenerative disorder characterized by cognitive impairment and distinct neuropathological features,including amyloid-βplaques,neurofibrillary tangles,and reactive astrogliosis.Developing effective diagnostic,preventative,and therapeutic strategies for AD necessitates the establishment of animal models that accurately recapitulate the pathophysiological processes of the disease.Existing transgenic mouse models have significantly contributed to understanding AD pathology but often fail to replicate the complexity of human AD.Additionally,these models are limited in their ability to elucidate the interplay among amyloid-βplaques,neurofibrillary tangles,and reactive astrogliosis due to the absence of spatially and temporally specific genetic manipulation.In this study,we introduce a novel AD mouse model(APP/PS1-TauP301L-Adeno mice)designed to rapidly induce pathological symptoms and enhance understanding of AD mechanisms.Neurofibrillary tangles and severe reactive astrogliosis were induced by injecting AAVDJ-EF1a-hTauP301L-EGFP and Adeno-GFAP-GFP viruses into the hippocampi of 5-month-old APP/PS1 mice.Three months post-injection,these mice exhibited pronounced astrogliosis,substantial amyloid-βplaque accumulation,extensiveneurofibrillarytangles,accelerated neuronal loss,elevated astrocytic GABA levels,and significant spatial memory deficits.Notably,these pathological features were less severe in AAVTauP301L-expressing APP/PS1 mice without augmented reactive astrogliosis.These findings indicate an exacerbating role of severe reactive astrogliosis in amyloid-βplaque and neurofibrillary tangle-associated pathology.The APP/PS1-TauP301L-Adeno mouse model provides a valuable tool for advancing therapeutic research aimed at mitigating the progression of AD.展开更多
A high-density tungsten-zirconium-titanium(W-Zr-Ti)reactive alloy was prepared by powder metallurgy.This alloy exhibits high density,high strength,and violent energy release characteristics,resulting in outstanding pe...A high-density tungsten-zirconium-titanium(W-Zr-Ti)reactive alloy was prepared by powder metallurgy.This alloy exhibits high density,high strength,and violent energy release characteristics,resulting in outstanding penetration and ignition abilities.Dynamic impact experiment demonstrated its strain rate hardening effect,and the energetic characteristics were investigated by digital image processing technique and thermal analysis experiment.The results show that W-Zr-Ti reactive alloy performs compressive strength of 2.25 GPa at 5784 s^(-1)strain rate,and its exothermic reaction occurs at about 961 K.Based on the explosion test and shock wave theory,thresholds of enhanced damage effect are less than 35.77 GPa and 5.18×10^(4)kJ/m^(2)for shock pressure and energy,respectively.Furthermore,the transformation of fracture behavior and failure mechanism is revealed,which causes the increase in compressive strength and reaction intensity under dynamic loading.展开更多
基金the support received from the National Natural Science Foundation of China(Grant No.12302460)the State Key Laboratory of Explosion Science and Safety Protection(Grant No.YBKT24-02)。
文摘The reactive materials filled structure(RMFS)is a structural penetrator that replaces high explosive(HE)with reactive materials,presenting a novel self-distributed initiation,multiple deflagrations behavior during penetrating multi-layered plates,and generating a multipeak overpressure behind the plates.Here analytical models of RMFS self-distributed energy release and equivalent deflagration are developed.The multipeak overpressure formation model based on the single deflagration overpressure expression was promoted.The impact tests of RMFS on multi-layered plates at 584 m/s,616 m/s,and819 m/s were performed to validate the analytical model.Further,the influence of a single overpressure peak and time intervals versus impact velocity is discussed.The analysis results indicate that the deflagration happened within 20.68 mm behind the plate,the initial impact velocity and plate thickness are the crucial factors that dominate the self-distributed multipeak overpressure effect.Three formation patterns of multipeak overpressure are proposed.
基金supported by Fondo Nacional de Desarrollo Científico y Tecnológico(FONDECYT)#1200836,#1210644,and#1240888,and Agencia Nacional de Investigación y Desarrollo(ANID)-FONDAP#15130011(to LL)FONDECYT#3230227(to MFG).
文摘Astrocytes are the most abundant type of glial cell in the central nervous system.Upon injury and inflammation,astrocytes become reactive and undergo morphological and functional changes.Depending on their phenotypic classification as A1 or A2,reactive astrocytes contribute to both neurotoxic and neuroprotective responses,respectively.However,this binary classification does not fully capture the diversity of astrocyte responses observed across different diseases and injuries.Transcriptomic analysis has revealed that reactive astrocytes have a complex landscape of gene expression profiles,which emphasizes the heterogeneous nature of their reactivity.Astrocytes actively participate in regulating central nervous system inflammation by interacting with microglia and other cell types,releasing cytokines,and influencing the immune response.The phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)signaling pathway is a central player in astrocyte reactivity and impacts various aspects of astrocyte behavior,as evidenced by in silico,in vitro,and in vivo results.In astrocytes,inflammatory cues trigger a cascade of molecular events,where nuclear factor-κB serves as a central mediator of the pro-inflammatory responses.Here,we review the heterogeneity of reactive astrocytes and the molecular mechanisms underlying their activation.We highlight the involvement of various signaling pathways that regulate astrocyte reactivity,including the PI3K/AKT/mammalian target of rapamycin(mTOR),αvβ3 integrin/PI3K/AKT/connexin 43,and Notch/PI3K/AKT pathways.While targeting the inactivation of the PI3K/AKT cellular signaling pathway to control reactive astrocytes and prevent central nervous system damage,evidence suggests that activating this pathway could also yield beneficial outcomes.This dual function of the PI3K/AKT pathway underscores its complexity in astrocyte reactivity and brain function modulation.The review emphasizes the importance of employing astrocyte-exclusive models to understand their functions accurately and these models are essential for clarifying astrocyte behavior.The findings should then be validated using in vivo models to ensure real-life relevance.The review also highlights the significance of PI3K/AKT pathway modulation in preventing central nervous system damage,although further studies are required to fully comprehend its role due to varying factors such as different cell types,astrocyte responses to inflammation,and disease contexts.Specific strategies are clearly necessary to address these variables effectively.
基金supported by the National Natural Science Foundation of China(Grant No.12172052)the Foundation of State Key Laboratory of Explosion Science and Safety Protection(Grant No.QKKT24-02).
文摘The penetration-deflagration coupling damage performance of rod-like reactive shaped charge pene-trator(RRSCP)impacting thick steel plates is investigated by theoretical analysis and experiments.A penetration-deflagration coupling damage model is developed to predict the penetration depth and cratering diameter.Four type of aluminum-polytetrafluoroethylene-copper(Al-PTFE-Cu)reactive liners with densities of 2.3,2.7,3.5,and 4.5 g·cm^(-3) are selected to conduct the penetration experiments.The comparison results show that model predictions are in good agreement with the experimental data.By comparing the penetration depth and cratering diameter in the inert penetration mode and the penetration-deflagration coupling mode,the influence mechanism that the penetration-induced chemical response is unfavorable to penetration but has an enhanced cratering effect is revealed.From the formation characteristics,penetration effect and penetration-induced chemical reaction be-haviors,the influence of reactive liner density on the penetration-deflagration performance is further analyzed.The results show that increasing the density of reactive liner significantly increases both the kinetic energy and length of the reactive penetrator,meanwhile effectively reduces the weakened effect of penetration-induced chemical response,resulting in an enhanced penetration capability.However,due to the decreased diameter and potential energy content of reactive penetrator,the cratering capa-bility is weakened significantly.
基金supported by the National Natural Science Foundation of China(Grant No.32472185)the Key Research and Development Program of Hubei Province,China(Grant No.2022BFE003)the Hubei Agriculture Science and Technology Innovation Center program,and the National Rice Industry Technology System,China(Grant No.CARS-01-07).
文摘Honglian type-cytoplasmic male sterility(HL-CMS)is caused by the inter-communication between the nucleus and mitochondria.However,the mechanisms by which sterility genes regulate metabolic alterations and changes in mitochondrial morphology in the pollen of HL-CMS remain unclear.In this study,we compared the morphological differences between the pollen of the male sterile line YA and the near-isogenic line NIL-Rf6 using hematoxylin-eosin staining and 4ʹ,6-diamidino-2-phenylindole(DAPI)staining.HL-CMS is characterized by gametophytic sterility,where the aborted pollen grains are empty,and the tapetal layer remains intact.Transmission electron microscopy was employed to observe mitochondrial morphological changes at the microspore stage,revealing significant mitochondrial alterations,characterized by the formation of'large spherical mitochondria',occurred at the binucleate stage in the YA line.Additionally,metabolomics analysis revealed decreased levels of metabolites associated with the carbohydrate and flavonoid pathways.Notably,the decrease in flavonoids was found to contribute to an elevation in reactive oxygen species(ROS)levels.Therefore,we propose a model in which rice fertility is modulated by the levels of pollen carbohydrates and flavonoid metabolites,with impaired mitochondrial energy production and reduced flavonoid biosynthesis as the main causes of ROS accumulation and pollen abortion in rice.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFC3707900)the National Natural Science Foundation of China(Grant Nos.42030710 and 42472337).
文摘The presence of heavy metals in soil negatively impacts its mechanical properties.Reactive MgO carbonation presents a promising approach to enhance the solidification of Pb-contaminated sandy soils.However,the mechanical properties and structural behavior of contaminated soils during carbonation can vary significantly due to differences in soil composition.This study examines the potential application and underlying mechanisms of reactive MgO carbonation in improving the mechanical properties of Pb-contaminated red clay.The findings demonstrate that Pb-contaminated red clay transitions from a plastic to a brittle state following reactive MgO carbonation.After 1 h of treatment,the strength of the red clay exceeded 3 MPa,even at high Pb^(2+)concentrations.The deformation modulus to unconfined compressive strength(UCS)ratio was calculated to be 37.761,with the failure strain primarily ranging from 1.5%to 4.0%.A strength prediction model for the reactive MgO-stabilized Pb-contaminated red clay was proposed,which showed good predictive accuracy.Furthermore,reactive MgO carbonation significantly reduced the Pb leaching concentration in the high-level Pb-contaminated soil to below 0.1 mg/L.Microscopic analysis revealed that an optimal amount of hydrated magnesium carbonates(HMCs)formed a stable and compact structure with the soil particles.However,long-term carbonation causes red clay particles to become sandy,and excessive HMCs can harm the soil structure.Therefore,to maximize the strength improvement while avoiding structural damage,the carbonation time should be controlled to 1 h.
基金funded by the“Research and Application Project of Collaborative Optimization Control Technology for Distribution Station Area for High Proportion Distributed PV Consumption(4000-202318079A-1-1-ZN)”of the Headquarters of the State Grid Corporation.
文摘Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.
基金supported by the National Research Foundation of Korea (NRF)funded by the Ministry of Science,ICT&Future Planning (2022R1A2C2006229,2022R1A6A3A01086868)Korea Dementia Research Project through the Korea Dementia Research Center (KDRC)funded by the Ministry of Health&Welfare and Ministry of Science and ICT,Republic of Korea (RS-2024-00345328)KIST Institutional Grant (2E32851)。
文摘Alzheimer'sdisease(AD)isaprogressive neurodegenerative disorder characterized by cognitive impairment and distinct neuropathological features,including amyloid-βplaques,neurofibrillary tangles,and reactive astrogliosis.Developing effective diagnostic,preventative,and therapeutic strategies for AD necessitates the establishment of animal models that accurately recapitulate the pathophysiological processes of the disease.Existing transgenic mouse models have significantly contributed to understanding AD pathology but often fail to replicate the complexity of human AD.Additionally,these models are limited in their ability to elucidate the interplay among amyloid-βplaques,neurofibrillary tangles,and reactive astrogliosis due to the absence of spatially and temporally specific genetic manipulation.In this study,we introduce a novel AD mouse model(APP/PS1-TauP301L-Adeno mice)designed to rapidly induce pathological symptoms and enhance understanding of AD mechanisms.Neurofibrillary tangles and severe reactive astrogliosis were induced by injecting AAVDJ-EF1a-hTauP301L-EGFP and Adeno-GFAP-GFP viruses into the hippocampi of 5-month-old APP/PS1 mice.Three months post-injection,these mice exhibited pronounced astrogliosis,substantial amyloid-βplaque accumulation,extensiveneurofibrillarytangles,accelerated neuronal loss,elevated astrocytic GABA levels,and significant spatial memory deficits.Notably,these pathological features were less severe in AAVTauP301L-expressing APP/PS1 mice without augmented reactive astrogliosis.These findings indicate an exacerbating role of severe reactive astrogliosis in amyloid-βplaque and neurofibrillary tangle-associated pathology.The APP/PS1-TauP301L-Adeno mouse model provides a valuable tool for advancing therapeutic research aimed at mitigating the progression of AD.
基金National Natural Science Foundation of China(12002045)Supported by State Key Laboratory of Explosion Science and Safety Protection,Beijing Institute of Technology(QNKT22-09)。
文摘A high-density tungsten-zirconium-titanium(W-Zr-Ti)reactive alloy was prepared by powder metallurgy.This alloy exhibits high density,high strength,and violent energy release characteristics,resulting in outstanding penetration and ignition abilities.Dynamic impact experiment demonstrated its strain rate hardening effect,and the energetic characteristics were investigated by digital image processing technique and thermal analysis experiment.The results show that W-Zr-Ti reactive alloy performs compressive strength of 2.25 GPa at 5784 s^(-1)strain rate,and its exothermic reaction occurs at about 961 K.Based on the explosion test and shock wave theory,thresholds of enhanced damage effect are less than 35.77 GPa and 5.18×10^(4)kJ/m^(2)for shock pressure and energy,respectively.Furthermore,the transformation of fracture behavior and failure mechanism is revealed,which causes the increase in compressive strength and reaction intensity under dynamic loading.