Small-scale rotorcraft unmanned robotic systems(SRURSs) are a kind of unmanned rotorcraft with manipulating devices. This review aims to provide an overview on aerial manipulation of SRURSs nowadays and promote relati...Small-scale rotorcraft unmanned robotic systems(SRURSs) are a kind of unmanned rotorcraft with manipulating devices. This review aims to provide an overview on aerial manipulation of SRURSs nowadays and promote relative research in the future. In the past decade, aerial manipulation of SRURSs has attracted the interest of researchers globally. This paper provides a literature review of the last 10 years(2008–2017) on SRURSs, and details achievements and challenges. Firstly, the definition, current state, development, classification, and challenges of SRURSs are introduced. Then, related papers are organized into two topical categories: mechanical structure design, and modeling and control. Following this, research groups involved in SRURS research and their major achievements are summarized and classified in the form of tables. The research groups are introduced in detail from seven parts. Finally, trends and challenges are compiled and presented to serve as a resource for researchers interested in aerial manipulation of SRURSs. The problem,trends, and challenges are described from three aspects. Conclusions of the paper are presented,and the future of SRURSs is discussed to enable further research interests.展开更多
This paper proposes a new adaptive linear domain system identification method for small unmanned aerial rotorcraft.Byusing the flash memory integrated into the micro guide navigation control module, system records the...This paper proposes a new adaptive linear domain system identification method for small unmanned aerial rotorcraft.Byusing the flash memory integrated into the micro guide navigation control module, system records the data sequences of flighttests as inputs (control signals for servos) and outputs (aircraft’s attitude and velocity information).After data preprocessing, thesystem constructs the horizontal and vertical dynamic model for the small unmanned aerial rotorcraft using adaptive geneticalgorithm.The identified model is verified by a series of simulations and tests.Comparison between flight data and the one-stepprediction data obtained from the identification model shows that the dynamic model has a good estimation for real unmannedaerial rotorcraft system.Based on the proposed dynamic model, the small unmanned aerial rotorcraft can perform hovering,turning, and straight flight tasks in real flight tests.展开更多
A high-resolution simulation tool for rotorcraft aerodynamics is developed by coupling CFD with a Vorticity Transport Model(VTM). An Eulerian-based CFD module is used to model the blade near body flowfield, and a La...A high-resolution simulation tool for rotorcraft aerodynamics is developed by coupling CFD with a Vorticity Transport Model(VTM). An Eulerian-based CFD module is used to model the blade near body flowfield, and a Lagrangian-based VTM module is employed for vortex tracking in the far wake. The coupling procedure is implemented by transmitting vortex sources to the VTM module and feeding boundary conditions back to the CFD module. The presented CFD/VTM hybrid solver is firstly validated by hover cases of three different rotor configurations. Simulation results, including the blade surface pressure distribution, rotor downwash, and hover figure of merit, exhibit favorable correlations with available experimental data. Then, a rotor operated in vertical descending flight with a fixed collective pitch is investigated. It is shown that the CFD/VTM coupling method is suitable for rotor wake simulation. Wake instabilities(far wake breakdown in hover and toroidal wake pattern in the vortex ring state) are successfully demonstrated with a moderate computational cost.展开更多
This paper presents a nonlinear robust control design method for a generic rotorcraft unmanned aerial vehicle(RUAV). The control objective is to let the RUAV track some pre-defined time-varying position and heading tr...This paper presents a nonlinear robust control design method for a generic rotorcraft unmanned aerial vehicle(RUAV). The control objective is to let the RUAV track some pre-defined time-varying position and heading trajectories. The proposed controller employs feedback linearization process to realize the dynamic decoupling control and applies adaptive sliding mode control to compensate for the parametric uncertainties and external disturbances. The global asymptotical stability is proved via stability analysis. Compared with the cascaded controller, the proposed controller demonstrates a superior tracking performance and robustness through numerical simulation in the presence of parametric uncertainties and unknown disturbances.展开更多
In this paper, a nonlinear dynamic MIMO model of a 6-DOF underactuated quad rotor rotorcraft is derived based on Newton-Euler formalism. The derivation comprises determining equations of motion of the quad rotor in th...In this paper, a nonlinear dynamic MIMO model of a 6-DOF underactuated quad rotor rotorcraft is derived based on Newton-Euler formalism. The derivation comprises determining equations of motion of the quad rotor in three dimensions and seeking to approximate the actuation forces through modeling of the aerodynamic coefficients and electric motor dynamics. The derived model is dynamically unstable, so a sequential nonlinear control strategy is implemented for the quad rotor. The control strategy includes exact feedback linearization technique, using the geometric methods of nonlinear control. The performance of the nonlinear control algorithm is evaluated using simulation and the results show the effectiveness of the proposed control strategy for the quad rotor rotorcraft near quasi-stationary flight.展开更多
To avoid the numerical complexities of the battery discharge law of electric-powered rotorcrafts,this study uses the Kriging method to model the discharge characteristics of Li-Po batteries under standard conditions.A...To avoid the numerical complexities of the battery discharge law of electric-powered rotorcrafts,this study uses the Kriging method to model the discharge characteristics of Li-Po batteries under standard conditions.A linear current compensation term and an ambient temperature compensation term based on radial basis functions are then applied to the trained Kriging model,leading to the complete discharged capacity-terminal voltage model.Using an orthogonal experimental design and a sequential method,the coefficients of the current and ambient temperature compensation terms are determined through robust optimization.An endurance calculation model for electric-powered rotorcrafts is then established,based on the battery discharge model,through numerical integration.Laboratory tests show that the maximum relative error of the proposed discharged capacity-terminal voltage model at detection points is 0.0086,and that of the rotorcraft endurance calculation model is 0.0195,thus verifying their accuracy.A flight test further demonstrates the applicability of the proposed endurance model to general electric-powered rotorcrafts.展开更多
In order to improve the efficiency of field operations, such as pesticide spraying and pest control, the development of new agricultural machinery has become the main goal of agricultural modernization. At present, sm...In order to improve the efficiency of field operations, such as pesticide spraying and pest control, the development of new agricultural machinery has become the main goal of agricultural modernization. At present, small unmanned aerial vehicles(UAVs) have achieved good results in small area pesticide spraying, but they still do not meet the requirements of the big field operations. The rotation rotorcraft has the characteristics of low speed, good safety, super stol, strong endurance, strong wind resistance and simple mechanism, so it is very suitable for farmland operation. But at present, there are relatively few researches on the unmanned rotation rotorcraft at domestic and abroad, and there is no mature control theory system of unmanned rotation rotorcraft. Therefore, in order to solve the problem of navigation control system of unmanned rotation rotorcraft, the navigation control strategy of the rotation rotorcraft was studied in this paper, and the flight control strategy of the rotation rotorcraft was divided into two parts, the linear control and the turn control. The lateral correction strategy was used to control the rotorcraft, so as to complete the track guidance of the rotation rotorcraft. Using the matrix laboratory(MATLAB) modeling to simulate the circular trajectory and the serpentine trajectory, the maximum deviation of circular path offset was 1.1 m. The variance between the path angle and the given path angle was 6°. The maximum deviation of serpentine path offset was 0.6 m. The variance between the path angle and the given path angle was 8°. The simulation results showed that the rotorcraft could accomplish the scheduled trajectory task based on this control strategy.展开更多
The increasing presence of drones seen on the battlefields in modern conflicts poses new threats to manned military aircraft or rotorcraft.In order to assess this potential threat,this manuscript first summarizes all ...The increasing presence of drones seen on the battlefields in modern conflicts poses new threats to manned military aircraft or rotorcraft.In order to assess this potential threat,this manuscript first summarizes all confirmed and suspected collisions between drones and aerostructures and the damage resulting from these collisions.Furthermore,this manuscript reviews experimental and numerical investigations on collision of drones with aerostructures.Additionally,some light is shed onto current regulation for drone operations intended to avoid collisions between drones and aircraft.Whilst these regulatory measures can prevent commercial aircraft to collide with drones,the authors believe that there is an inherent threat for civil and military rotorcraft due to their structural design and the fact that it is not possible to completely separate the airspace between drone operations and rotorcraft operations,in particular in the context of rescue missions in an urban or hostile environment.Furthermore,the stealth capability of 5th generation fighters may be compromised by damage suffered from collision with drones.展开更多
With the widespread application of Staggered Counter-rotating Rotor(SCR)systems in eVTOL and UAV configurations,a comprehensive understanding of SCR performance under Outof-Ground Effect(OGE)and In-Ground Effect(IGE)c...With the widespread application of Staggered Counter-rotating Rotor(SCR)systems in eVTOL and UAV configurations,a comprehensive understanding of SCR performance under Outof-Ground Effect(OGE)and In-Ground Effect(IGE)conditions is crucial for aircraft design and landing safety.This study experimentally measured the changes in thrust and torque of the upper and lower rotors in an SCR system under varying axial and radial distances.It focuses on the interaction mechanisms between the upper and lower rotors and conducts specific IGE state experiments for certain SCR configurations.The findings reveal that changes in the lower rotor predominantly influence the overall performance of the SCR system,regardless of OGE or IGE conditions.Under OGE conditions,radial distance has a more significant impact than axial distance.Conversely,under IGE conditions,the axial distance plays a critical role in improving SCR system performance.These results provide a broad parameter range to assess SCR system performance variations,offering guidance for the design of new concept rotorcraft configurations and the development of aerodynamic prediction models under IGE conditions.展开更多
1. Introduction Research on the ground effect of rotor can be traced back to the 1930s1.However, few studies have been conducted on the aerodynamic characteristics of rotors and ducted fans when hovering near a water ...1. Introduction Research on the ground effect of rotor can be traced back to the 1930s1.However, few studies have been conducted on the aerodynamic characteristics of rotors and ducted fans when hovering near a water surface for an extended period.With the emergence of cross-media rotorcraft, rotor wakes interact violently with the water surface to generate large-scale,air–water droplet mixed flows (hereafter referred to as mixed air–water flows). Rotors operating in mixed air–water flows always have aerodynamic performances that are different from those owing to the In-Ground Effect (IGE) and Out-of Ground Effect (OGE). Accordingly, this effect is called the Near-Water Effect (NWE) of the rotor2,and it usually causes thrust loss and torque increase.展开更多
In this article,we attempt to document a technical overview on modern miniature unmanned rotorcraft systems.We first give a brief review on the historical development of the rotorcraft unmanned aerial vehicles(UAVs),a...In this article,we attempt to document a technical overview on modern miniature unmanned rotorcraft systems.We first give a brief review on the historical development of the rotorcraft unmanned aerial vehicles(UAVs),and then move on to present a fairly detailed and general overview on the hardware configuration,software integration,aerodynamic modeling and automatic flight control system involved in constructing the unmanned system.The applications of the emerging technology in the military and civilian domains are also highlighted.展开更多
We present in this paper a novel framework and distributed control laws for the formation of multiple unmanned rotorcraft systems,be it single-rotor helicopters or multi-copters,with physical constraints and with inte...We present in this paper a novel framework and distributed control laws for the formation of multiple unmanned rotorcraft systems,be it single-rotor helicopters or multi-copters,with physical constraints and with inter-agent collision avoidance,in cluttered environments.The proposed technique is composed of an analytical distributed consensus control solution in the free space and an optimization based motion planning algorithm for inter-agent and obstacle collision avoidance.More specifically,we design a distributed consensus control law to tackle a series of state constraints that include but not limited to the physical limitations of velocity,acceleration and jerk,and an optimization-based motion planning technique is utilized to generate numerical solutions when the consensus control fails to provide a collision-free trajectory.Besides,a sufficiency condition is given to guarantee the stability of the switching process between the consensus control and motion planning.Finally,both simulation and real flight experiments successfully demonstrate the effectiveness of the proposed technique.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 91748201 and 51505014)
文摘Small-scale rotorcraft unmanned robotic systems(SRURSs) are a kind of unmanned rotorcraft with manipulating devices. This review aims to provide an overview on aerial manipulation of SRURSs nowadays and promote relative research in the future. In the past decade, aerial manipulation of SRURSs has attracted the interest of researchers globally. This paper provides a literature review of the last 10 years(2008–2017) on SRURSs, and details achievements and challenges. Firstly, the definition, current state, development, classification, and challenges of SRURSs are introduced. Then, related papers are organized into two topical categories: mechanical structure design, and modeling and control. Following this, research groups involved in SRURS research and their major achievements are summarized and classified in the form of tables. The research groups are introduced in detail from seven parts. Finally, trends and challenges are compiled and presented to serve as a resource for researchers interested in aerial manipulation of SRURSs. The problem,trends, and challenges are described from three aspects. Conclusions of the paper are presented,and the future of SRURSs is discussed to enable further research interests.
基金supported by the State Key Program of National Natural Science of China(Grant No.60736025)the National Natural Science Foundation of China(Grant No.60905056)the National Basic Research Program of China(973 Program)(Grant No.2009CB72400102)
文摘This paper proposes a new adaptive linear domain system identification method for small unmanned aerial rotorcraft.Byusing the flash memory integrated into the micro guide navigation control module, system records the data sequences of flighttests as inputs (control signals for servos) and outputs (aircraft’s attitude and velocity information).After data preprocessing, thesystem constructs the horizontal and vertical dynamic model for the small unmanned aerial rotorcraft using adaptive geneticalgorithm.The identified model is verified by a series of simulations and tests.Comparison between flight data and the one-stepprediction data obtained from the identification model shows that the dynamic model has a good estimation for real unmannedaerial rotorcraft system.Based on the proposed dynamic model, the small unmanned aerial rotorcraft can perform hovering,turning, and straight flight tasks in real flight tests.
基金co-supported by the Funding of Jiangsu Innovation Program for Graduate Education of China(No.KYLX16_0389)the Fundamental Research Funds for the Central Universities of China
文摘A high-resolution simulation tool for rotorcraft aerodynamics is developed by coupling CFD with a Vorticity Transport Model(VTM). An Eulerian-based CFD module is used to model the blade near body flowfield, and a Lagrangian-based VTM module is employed for vortex tracking in the far wake. The coupling procedure is implemented by transmitting vortex sources to the VTM module and feeding boundary conditions back to the CFD module. The presented CFD/VTM hybrid solver is firstly validated by hover cases of three different rotor configurations. Simulation results, including the blade surface pressure distribution, rotor downwash, and hover figure of merit, exhibit favorable correlations with available experimental data. Then, a rotor operated in vertical descending flight with a fixed collective pitch is investigated. It is shown that the CFD/VTM coupling method is suitable for rotor wake simulation. Wake instabilities(far wake breakdown in hover and toroidal wake pattern in the vortex ring state) are successfully demonstrated with a moderate computational cost.
基金Supported by the Natural Science Foundation of Tianjin(14JCZDJC31900)
文摘This paper presents a nonlinear robust control design method for a generic rotorcraft unmanned aerial vehicle(RUAV). The control objective is to let the RUAV track some pre-defined time-varying position and heading trajectories. The proposed controller employs feedback linearization process to realize the dynamic decoupling control and applies adaptive sliding mode control to compensate for the parametric uncertainties and external disturbances. The global asymptotical stability is proved via stability analysis. Compared with the cascaded controller, the proposed controller demonstrates a superior tracking performance and robustness through numerical simulation in the presence of parametric uncertainties and unknown disturbances.
文摘In this paper, a nonlinear dynamic MIMO model of a 6-DOF underactuated quad rotor rotorcraft is derived based on Newton-Euler formalism. The derivation comprises determining equations of motion of the quad rotor in three dimensions and seeking to approximate the actuation forces through modeling of the aerodynamic coefficients and electric motor dynamics. The derived model is dynamically unstable, so a sequential nonlinear control strategy is implemented for the quad rotor. The control strategy includes exact feedback linearization technique, using the geometric methods of nonlinear control. The performance of the nonlinear control algorithm is evaluated using simulation and the results show the effectiveness of the proposed control strategy for the quad rotor rotorcraft near quasi-stationary flight.
文摘To avoid the numerical complexities of the battery discharge law of electric-powered rotorcrafts,this study uses the Kriging method to model the discharge characteristics of Li-Po batteries under standard conditions.A linear current compensation term and an ambient temperature compensation term based on radial basis functions are then applied to the trained Kriging model,leading to the complete discharged capacity-terminal voltage model.Using an orthogonal experimental design and a sequential method,the coefficients of the current and ambient temperature compensation terms are determined through robust optimization.An endurance calculation model for electric-powered rotorcrafts is then established,based on the battery discharge model,through numerical integration.Laboratory tests show that the maximum relative error of the proposed discharged capacity-terminal voltage model at detection points is 0.0086,and that of the rotorcraft endurance calculation model is 0.0195,thus verifying their accuracy.A flight test further demonstrates the applicability of the proposed endurance model to general electric-powered rotorcrafts.
基金Supported by the National Key R&D Program of China(2016YFD0300610)
文摘In order to improve the efficiency of field operations, such as pesticide spraying and pest control, the development of new agricultural machinery has become the main goal of agricultural modernization. At present, small unmanned aerial vehicles(UAVs) have achieved good results in small area pesticide spraying, but they still do not meet the requirements of the big field operations. The rotation rotorcraft has the characteristics of low speed, good safety, super stol, strong endurance, strong wind resistance and simple mechanism, so it is very suitable for farmland operation. But at present, there are relatively few researches on the unmanned rotation rotorcraft at domestic and abroad, and there is no mature control theory system of unmanned rotation rotorcraft. Therefore, in order to solve the problem of navigation control system of unmanned rotation rotorcraft, the navigation control strategy of the rotation rotorcraft was studied in this paper, and the flight control strategy of the rotation rotorcraft was divided into two parts, the linear control and the turn control. The lateral correction strategy was used to control the rotorcraft, so as to complete the track guidance of the rotation rotorcraft. Using the matrix laboratory(MATLAB) modeling to simulate the circular trajectory and the serpentine trajectory, the maximum deviation of circular path offset was 1.1 m. The variance between the path angle and the given path angle was 6°. The maximum deviation of serpentine path offset was 0.6 m. The variance between the path angle and the given path angle was 8°. The simulation results showed that the rotorcraft could accomplish the scheduled trajectory task based on this control strategy.
文摘The increasing presence of drones seen on the battlefields in modern conflicts poses new threats to manned military aircraft or rotorcraft.In order to assess this potential threat,this manuscript first summarizes all confirmed and suspected collisions between drones and aerostructures and the damage resulting from these collisions.Furthermore,this manuscript reviews experimental and numerical investigations on collision of drones with aerostructures.Additionally,some light is shed onto current regulation for drone operations intended to avoid collisions between drones and aircraft.Whilst these regulatory measures can prevent commercial aircraft to collide with drones,the authors believe that there is an inherent threat for civil and military rotorcraft due to their structural design and the fact that it is not possible to completely separate the airspace between drone operations and rotorcraft operations,in particular in the context of rescue missions in an urban or hostile environment.Furthermore,the stealth capability of 5th generation fighters may be compromised by damage suffered from collision with drones.
基金funded by the National Natural Science Foundation of China(Nos.52202443,52275114)the China Postdoctoral Science Foundation(No.2023M731656)+3 种基金the National Key Laboratory of Helicopter Aeromechanics Foundation,China(No.2023-HA-LB-067-05e)the Natural Science Foundation of Jiangsu Province,China(No.BK20220898)the Jiangsu Funding Program for Excellent Postdoctoral Talent,China(No.JB0202003)the Aeronautical Science Foundation of China(No.20232010052002)。
文摘With the widespread application of Staggered Counter-rotating Rotor(SCR)systems in eVTOL and UAV configurations,a comprehensive understanding of SCR performance under Outof-Ground Effect(OGE)and In-Ground Effect(IGE)conditions is crucial for aircraft design and landing safety.This study experimentally measured the changes in thrust and torque of the upper and lower rotors in an SCR system under varying axial and radial distances.It focuses on the interaction mechanisms between the upper and lower rotors and conducts specific IGE state experiments for certain SCR configurations.The findings reveal that changes in the lower rotor predominantly influence the overall performance of the SCR system,regardless of OGE or IGE conditions.Under OGE conditions,radial distance has a more significant impact than axial distance.Conversely,under IGE conditions,the axial distance plays a critical role in improving SCR system performance.These results provide a broad parameter range to assess SCR system performance variations,offering guidance for the design of new concept rotorcraft configurations and the development of aerodynamic prediction models under IGE conditions.
文摘1. Introduction Research on the ground effect of rotor can be traced back to the 1930s1.However, few studies have been conducted on the aerodynamic characteristics of rotors and ducted fans when hovering near a water surface for an extended period.With the emergence of cross-media rotorcraft, rotor wakes interact violently with the water surface to generate large-scale,air–water droplet mixed flows (hereafter referred to as mixed air–water flows). Rotors operating in mixed air–water flows always have aerodynamic performances that are different from those owing to the In-Ground Effect (IGE) and Out-of Ground Effect (OGE). Accordingly, this effect is called the Near-Water Effect (NWE) of the rotor2,and it usually causes thrust loss and torque increase.
文摘In this article,we attempt to document a technical overview on modern miniature unmanned rotorcraft systems.We first give a brief review on the historical development of the rotorcraft unmanned aerial vehicles(UAVs),and then move on to present a fairly detailed and general overview on the hardware configuration,software integration,aerodynamic modeling and automatic flight control system involved in constructing the unmanned system.The applications of the emerging technology in the military and civilian domains are also highlighted.
基金the Research Grants Council of Hong Kong SAR(Grant No:14206821 and Grant No:14217922)the Hong Kong Centre for Logistics Robotics(HKCLR).
文摘We present in this paper a novel framework and distributed control laws for the formation of multiple unmanned rotorcraft systems,be it single-rotor helicopters or multi-copters,with physical constraints and with inter-agent collision avoidance,in cluttered environments.The proposed technique is composed of an analytical distributed consensus control solution in the free space and an optimization based motion planning algorithm for inter-agent and obstacle collision avoidance.More specifically,we design a distributed consensus control law to tackle a series of state constraints that include but not limited to the physical limitations of velocity,acceleration and jerk,and an optimization-based motion planning technique is utilized to generate numerical solutions when the consensus control fails to provide a collision-free trajectory.Besides,a sufficiency condition is given to guarantee the stability of the switching process between the consensus control and motion planning.Finally,both simulation and real flight experiments successfully demonstrate the effectiveness of the proposed technique.