期刊文献+
共找到411篇文章
< 1 2 21 >
每页显示 20 50 100
Effects of data smoothing and recurrent neural network(RNN)algorithms for real-time forecasting of tunnel boring machine(TBM)performance 被引量:1
1
作者 Feng Shan Xuzhen He +1 位作者 Danial Jahed Armaghani Daichao Sheng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1538-1551,共14页
Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk... Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk management.This study aims to use deep learning to develop real-time models for predicting the penetration rate(PR).The models are built using data from the Changsha metro project,and their performances are evaluated using unseen data from the Zhengzhou Metro project.In one-step forecast,the predicted penetration rate follows the trend of the measured penetration rate in both training and testing.The autoregressive integrated moving average(ARIMA)model is compared with the recurrent neural network(RNN)model.The results show that univariate models,which only consider historical penetration rate itself,perform better than multivariate models that take into account multiple geological and operational parameters(GEO and OP).Next,an RNN variant combining time series of penetration rate with the last-step geological and operational parameters is developed,and it performs better than other models.A sensitivity analysis shows that the penetration rate is the most important parameter,while other parameters have a smaller impact on time series forecasting.It is also found that smoothed data are easier to predict with high accuracy.Nevertheless,over-simplified data can lose real characteristics in time series.In conclusion,the RNN variant can accurately predict the next-step penetration rate,and data smoothing is crucial in time series forecasting.This study provides practical guidance for TBM performance forecasting in practical engineering. 展开更多
关键词 Tunnel boring machine(TBM) Penetration rate(PR) Time series forecasting Recurrent neural network(rnn)
在线阅读 下载PDF
融合RNN与稀疏自注意力的文本摘要方法 被引量:2
2
作者 刘钟 唐宏 +1 位作者 王宁喆 朱传润 《计算机工程》 北大核心 2025年第1期312-320,共9页
随着深度学习的高速发展,基于序列到序列(Seq2Seq)架构的文本摘要方法成为研究焦点,但现有大多数文本摘要模型受限于长期依赖,忽略了注意力机制复杂度以及词序信息对文本摘要生成的影响,生成的摘要丢失关键信息,偏离原文内容与意图,影... 随着深度学习的高速发展,基于序列到序列(Seq2Seq)架构的文本摘要方法成为研究焦点,但现有大多数文本摘要模型受限于长期依赖,忽略了注意力机制复杂度以及词序信息对文本摘要生成的影响,生成的摘要丢失关键信息,偏离原文内容与意图,影响用户体验。为了解决上述问题,提出一种基于Transformer改进的融合递归神经网络(RNN)与稀疏自注意力的文本摘要方法。首先采用窗口RNN模块,将输入文本按窗口划分,每个RNN对窗口内词序信息进行压缩,并通过窗口级别的表示整合为整个文本的表示,进而增强模型捕获局部依赖的能力;其次采用基于递归循环机制的缓存模块,循环缓存上一文本片段的信息到当前片段,允许模型更好地捕获长期依赖和全局信息;最后采用稀疏自注意力模块,通过块稀疏矩阵对注意力矩阵按块划分,关注并筛选出重要令牌对,而不是在所有令牌对上平均分配注意力,从而降低注意力的时间复杂度,提高长文本摘要任务的效率。实验结果表明,该方法在数据集text8、enwik8上的BPC分数相比于LoBART模型降低了0.02,在数据集wikitext-103以及ptb上的PPL分数相比于LoBART模型分别降低了1.0以上,验证了该方法的可行性与有效性。 展开更多
关键词 序列到序列架构 文本摘要 Transformer模型 递归神经网络 递归循环机制 稀疏自注意力机制
在线阅读 下载PDF
Research of Energy-saving Control of Oil-well Power Heater Based on RNN Neural Network
3
作者 SUN Jingen YANG Yang 《沈阳理工大学学报》 CAS 2014年第4期87-94,共8页
For the beam pumping unit,the power consumption of oil-well power heater accounts for a large part of the pumping unit.Decreasing the energy consumption of the power heater is an important approach to reduce that of t... For the beam pumping unit,the power consumption of oil-well power heater accounts for a large part of the pumping unit.Decreasing the energy consumption of the power heater is an important approach to reduce that of the pumping unit.To decrease the energy consumption of oil-well power heater,the proper control method is needed.Based on summarizing the existing control method of power heater,a control method of oil-well power heater of beam pumping unit based on RNN neural network is proposed.The method is forecasting the polished rod load of the beam pumping unit through RNN neural network and using the polished rod load for real-time closed-loop control of the power heater,which adjusts average output power,so as to decrease the power consumption.The experimental data show that the control method is entirely feasible.It not only ensures the oil production,but also improves the energy-saving effect of the pumping unit. 展开更多
关键词 rnn neural network oil-wells power heating ENERGY-SAVING
在线阅读 下载PDF
Optimizing the Clinical Decision Support System (CDSS) by Using Recurrent Neural Network (RNN) Language Models for Real-Time Medical Query Processing
4
作者 Israa Ibraheem Al Barazanchi Wahidah Hashim +4 位作者 Reema Thabit Mashary Nawwaf Alrasheedy Abeer Aljohan Jongwoon Park Byoungchol Chang 《Computers, Materials & Continua》 SCIE EI 2024年第12期4787-4832,共46页
This research aims to enhance Clinical Decision Support Systems(CDSS)within Wireless Body Area Networks(WBANs)by leveraging advanced machine learning techniques.Specifically,we target the challenges of accurate diagno... This research aims to enhance Clinical Decision Support Systems(CDSS)within Wireless Body Area Networks(WBANs)by leveraging advanced machine learning techniques.Specifically,we target the challenges of accurate diagnosis in medical imaging and sequential data analysis using Recurrent Neural Networks(RNNs)with Long Short-Term Memory(LSTM)layers and echo state cells.These models are tailored to improve diagnostic precision,particularly for conditions like rotator cuff tears in osteoporosis patients and gastrointestinal diseases.Traditional diagnostic methods and existing CDSS frameworks often fall short in managing complex,sequential medical data,struggling with long-term dependencies and data imbalances,resulting in suboptimal accuracy and delayed decisions.Our goal is to develop Artificial Intelligence(AI)models that address these shortcomings,offering robust,real-time diagnostic support.We propose a hybrid RNN model that integrates SimpleRNN,LSTM layers,and echo state cells to manage long-term dependencies effectively.Additionally,we introduce CG-Net,a novel Convolutional Neural Network(CNN)framework for gastrointestinal disease classification,which outperforms traditional CNN models.We further enhance model performance through data augmentation and transfer learning,improving generalization and robustness against data scarcity and imbalance.Comprehensive validation,including 5-fold cross-validation and metrics such as accuracy,precision,recall,F1-score,and Area Under the Curve(AUC),confirms the models’reliability.Moreover,SHapley Additive exPlanations(SHAP)and Local Interpretable Model-agnostic Explanations(LIME)are employed to improve model interpretability.Our findings show that the proposed models significantly enhance diagnostic accuracy and efficiency,offering substantial advancements in WBANs and CDSS. 展开更多
关键词 Computer science clinical decision support system(CDSS) medical queries healthcare deep learning recurrent neural network(rnn) long short-term memory(LSTM)
在线阅读 下载PDF
基于RNN的FMEA核磁共振设备故障检修方法
5
作者 卢志高 朱祺 《中国医疗设备》 2025年第11期187-192,共6页
目的 对核磁共振设备故障进行准确诊断,并提供合理的维修方法。方法 将大数据分析与循环神经网络(Recurrent Neural Network,RNN)和失效模式及影响分析(Failure Mode and Effects Analysis,FMEA)方法进行结合,并基于结合后的方法提出一... 目的 对核磁共振设备故障进行准确诊断,并提供合理的维修方法。方法 将大数据分析与循环神经网络(Recurrent Neural Network,RNN)和失效模式及影响分析(Failure Mode and Effects Analysis,FMEA)方法进行结合,并基于结合后的方法提出一种核磁共振设备故障检修技术。为验证该技术的有效性,利用该技术对医院中的核磁共振设备进行检修。结果 该技术对核磁共振设备进行故障检修时,对设备各个部分的故障检测准确率均可达95%以上,且检测耗时均低于5.0 s。使用该检修技术后,核磁共振设备运行会更加稳定,且利用该检修技术对设备故障进行检修,发现修复率可达99.7%。故障修复后,使用寿命延长了86.8%。结论 本研究提出的基于RNN-FMEA方法的核磁共振故障检修技术能够提高故障检测准确率,从而提高故障检修效率,提高医学诊断水平。 展开更多
关键词 核磁共振设备 故障检修 失效模式和影响分析(FMEA) 设备使用寿命 循环神经网络(rnn)
暂未订购
基于RNN的倾转四旋翼无人机滑模控制
6
作者 李晨 熊晶晶 《控制工程》 北大核心 2025年第5期866-873,共8页
针对倾转四旋翼无人机处于不同倾转角的固定翼模式以及直升机模式下的位姿跟踪控制,提出一种基于循环神经网络(recurrentneuralnetwork,RNN)的自适应滑模控制策略。首先,将四旋翼动力学模型分为全驱动和欠驱动2个子系统。鉴于无人机存... 针对倾转四旋翼无人机处于不同倾转角的固定翼模式以及直升机模式下的位姿跟踪控制,提出一种基于循环神经网络(recurrentneuralnetwork,RNN)的自适应滑模控制策略。首先,将四旋翼动力学模型分为全驱动和欠驱动2个子系统。鉴于无人机存在模型参数的不确定性和外部扰动,通过循环神经网络对等效控制器进行估算,以解决使用滑模控制方法得到的等效控制器不能直接应用于无人机的问题。然后,为保证控制系统的稳定性,并削弱控制器的抖振,设计了新的切换控制器。根据Lyapunov理论,2个子系统均能到达滑模面。最后,通过对比仿真验证了所提方法的有效性。 展开更多
关键词 倾转四旋翼无人机 循环神经网络 自适应控制 滑模控制
原文传递
基于改进RNN元启发式的RRT冗余机械臂路径规划
7
作者 胡江瑜 马珺杰 +1 位作者 李展 黄德青 《现代制造工程》 北大核心 2025年第9期41-52,共12页
为满足铁路接触网腕臂智能检修作业中机械臂自动导航需求,提出一种综合解决路径规划和障碍物避让问题的研究方法。该方法将双重目标转化为单一的约束优化问题。在此基础上,对标准快速搜索随机树(Rapidly exploring Random Tree,RRT)算... 为满足铁路接触网腕臂智能检修作业中机械臂自动导航需求,提出一种综合解决路径规划和障碍物避让问题的研究方法。该方法将双重目标转化为单一的约束优化问题。在此基础上,对标准快速搜索随机树(Rapidly exploring Random Tree,RRT)算法进行改进,引入地图复杂程度评估策略和高斯混合分布采样策略,以约束随机采样点的生成方向。通过加入角度约束策略和临近障碍物的变步长机制,确保随机树始终向目标点方向生长,从而规划出渐进最优的路径。此外,设计一种基于甲虫嗅觉探测的递归神经网络(Recurrent Neural Network based on Beetle Olfactory Detection,RNNBOD)算法,配置最优关节角度,驱动冗余机械臂末端执行器沿规划的参考路径移动,从而降低其计算成本。仿真结果表明,该方法不仅有效提升了标准RRT算法的搜索效率、节点利用率和路径质量,还成功解决了冗余机械臂在运行过程中的跟踪控制难题。 展开更多
关键词 接触网检修 路径规划 避障 递归神经网络算法 跟踪控制
在线阅读 下载PDF
基于改进RNN的配电网台区非线性负荷平衡优化算法
8
作者 齐红涛 唐亮 +2 位作者 张波 吕斌 王品 《微型电脑应用》 2025年第3期269-274,共6页
以避免非线性负荷不平衡影响设备的运行,造成配电网台区经济损失。研究基于改进循环神经网络(RNN)的配电网台区非线性负荷平衡优化算法,采用改进粒子群优化(PSO)算法优化RNN权值,构建改进RNN的配电网台区非线性预测模型,以历史负荷、日... 以避免非线性负荷不平衡影响设备的运行,造成配电网台区经济损失。研究基于改进循环神经网络(RNN)的配电网台区非线性负荷平衡优化算法,采用改进粒子群优化(PSO)算法优化RNN权值,构建改进RNN的配电网台区非线性预测模型,以历史负荷、日期以及温度数据构建矩阵作为模型输入,以输出配电网台区非线性负荷预测结果。将预测的非线性负荷值代入三相负荷平衡度全局优化算法,获取平均非线性负荷值,选择非线性负荷高于平均非线性负荷值20%的用户建立用户相角、非线性负荷关联矩阵。采用非线性负荷动态规划算法求解三相用户最优组合方式,并与原用户相角进行对比,得到户表相角调整建议,实现负荷不平衡度优化。实验结果证明,所得算法可实现非线性负荷精准预测,优化后的台区非线性负荷不平衡度较低,且符合配电网台区要求,调整用户数量少。 展开更多
关键词 rnn 配电网台区 负荷平衡优化 改进PSO算法 优化算法 三相负荷平衡度
在线阅读 下载PDF
BP+RNN变速积分PID算法的汽车底盘测功机控制系统 被引量:13
9
作者 周洲 陈宇轩 程鑫 《机械设计与制造》 北大核心 2021年第2期148-152,共5页
高精度的PID控制算法对汽车底盘测功机运行过程中的实时控制具有重要的作用,为此提出了一种面向汽车底盘测功机的BP+RNN变速积分PID算法控制系统:引入RNN加入时序性因素整定积分项参数,利用BP神经网络整定比例项与微分项参数,使用变速积... 高精度的PID控制算法对汽车底盘测功机运行过程中的实时控制具有重要的作用,为此提出了一种面向汽车底盘测功机的BP+RNN变速积分PID算法控制系统:引入RNN加入时序性因素整定积分项参数,利用BP神经网络整定比例项与微分项参数,使用变速积分PID算法作为其控制方法。实验结果表明该PID控制系统不但能够快速整定PID参数(10个控制周期以内),同时还保证控制超调量在目标值的2%以内。与传统的增量式PID算法控制相比,BP+RNN变速积分PID算法控制系统的参数整定简单快速,消除了静态误差,使汽车底盘测功机的控制性能得到大幅改善。 展开更多
关键词 变速积分PID 控制系统 BP神经网络 rnn网络 汽车底盘测功机
在线阅读 下载PDF
基于多特征融合与双向RNN的细粒度意见分析 被引量:19
10
作者 郝志峰 黄浩 +1 位作者 蔡瑞初 温雯 《计算机工程》 CAS CSCD 北大核心 2018年第7期199-204,211,共7页
文本细粒度意见分析主要有属性抽取和基于属性的情感分类2个任务,现有方法完成上述任务采用条件随机场(CRF)训练属性抽取模型,并运用循环神经网络(RNN)训练基于属性的情感分类模型。但同时完成2个任务则无法找到属性和情感倾向的对应关... 文本细粒度意见分析主要有属性抽取和基于属性的情感分类2个任务,现有方法完成上述任务采用条件随机场(CRF)训练属性抽取模型,并运用循环神经网络(RNN)训练基于属性的情感分类模型。但同时完成2个任务则无法找到属性和情感倾向的对应关系。针对该问题,提出利用双向RNN构建基于序列标注的细粒度意见分析模型。通过融合文本的词向量、词性和依存关系等语言学特征,学习文本的修饰和语义信息,并设计一个时间序列标注模型,同时抽取属性实体判断文本的情感极性。在真实数据集上的实验结果表明,与CRF、TD-LSTM、AELSTM等模型相比,该模型情感分类效果提升明显。 展开更多
关键词 特征融合 词向量 循环神经网络 属性抽取 细粒度意见分析
在线阅读 下载PDF
基于SVM与RNN的文本情感关键句判定与抽取 被引量:8
11
作者 刘铭 昝红英 原慧斌 《山东大学学报(理学版)》 CAS CSCD 北大核心 2014年第11期68-73,共6页
文本的情感倾向在很大程度上依赖于其中情感倾向性较高的关键句,对这些情感关键句正确判定有利于提高整个篇章情感分类的效果。传统的基于规则的情感倾向性分析的优点是情感词表和规则表达准确,缺点是完备性差,而统计的方法则相反。结... 文本的情感倾向在很大程度上依赖于其中情感倾向性较高的关键句,对这些情感关键句正确判定有利于提高整个篇章情感分类的效果。传统的基于规则的情感倾向性分析的优点是情感词表和规则表达准确,缺点是完备性差,而统计的方法则相反。结合使用支持向量机(support vector machine,SVM)与递归神经网络(recursive neural netw ork,RNN)分别构造分类器,然后对整个篇章和单个句子进行情感二元分类,将分类结果进行比较投票后判定出篇章中的情感关键句。句子级情感特征不仅包含情感词、否定词等传统的文法信息,同时加入深度学习领域中词向量的统计信息,而在篇章特征中也抽取出句型、位置等宏观信息。通过参与COAE 2014评测任务1的结果显示,该方法的微平均F1值达到0.388,在同类评测系统中处于最高水平。 展开更多
关键词 情感倾向性 递归神经网络 深度学习 机器学习
原文传递
基于GRU改进RNN神经网络的飞机燃油流量预测 被引量:30
12
作者 陈聪 候磊 +1 位作者 李乐乐 杨鑫涛 《科学技术与工程》 北大核心 2021年第27期11663-11673,共11页
利用从飞机快速存储记录器(quick access recorder,QAR)中获取的大量数据设计研究了一种利用循环神经网络(recurrent neural network,RNN)及其改进网络门控循环单元(gate recurrent unit,GRU)进行飞机燃油流量预测的模型。首先使用基于... 利用从飞机快速存储记录器(quick access recorder,QAR)中获取的大量数据设计研究了一种利用循环神经网络(recurrent neural network,RNN)及其改进网络门控循环单元(gate recurrent unit,GRU)进行飞机燃油流量预测的模型。首先使用基于时间的反向传播算法(back propagation trough time,BPTT)训练网络,Adam优化算法加速迭代更新神经网络权重。在参数调整实验中发现循环神经网络对历史信息利用能力不足,极易发生梯度消失与梯度爆炸,遂提出改进网络结构,引入GRU重构燃油流量预测模型。在最优的超参数条件下,重构模型在训练集和测试集上的损失函数均方误差(mean squared error,MSE)值分别为0.00108、0.00097。通过与朴素RNN的预测曲线和MSE对比可以发现,改进后的GRU网络能够“记忆”更多历史信息而不易出现梯度消失或梯度爆炸的问题,预测精度与曲线拟合能力显著提高。因此,GRU重构模型显著改善了预测能力,并通过实际案例验证该预测模型在故障诊断等领域的应用。 展开更多
关键词 燃油流量预测 rnn神经网络 GRU神经网络 BPTT算法
在线阅读 下载PDF
Text-CRNN+attention架构下的多类别文本信息分类 被引量:13
13
作者 卢健 马成贤 +1 位作者 杨腾飞 周嫣然 《计算机应用研究》 CSCD 北大核心 2020年第6期1693-1696,1701,共5页
迄今为止,传统机器学习方法依赖人工提取特征,复杂度高;深度学习网络本身特征表达能力强,但模型可解释性弱导致关键特征信息丢失。为此,以网络层次结合的方式设计了CRNN并引入attention机制,提出一种Text-CRNN+attention模型用于文本分... 迄今为止,传统机器学习方法依赖人工提取特征,复杂度高;深度学习网络本身特征表达能力强,但模型可解释性弱导致关键特征信息丢失。为此,以网络层次结合的方式设计了CRNN并引入attention机制,提出一种Text-CRNN+attention模型用于文本分类。首先利用CNN处理局部特征的位置不变性,提取高效局部特征信息;然后在RNN进行序列特征建模时引入attention机制对每一时刻输出序列信息进行自动加权,减少关键特征的丢失,最后完成时间和空间上的特征提取。实验结果表明,提出模型较其他模型准确率提升了2%~3%;在提取文本特征时,该模型既保证了数据的局部相关性又起到强化序列特征的有效组合能力。 展开更多
关键词 文本分类 卷积神经网络 循环神经网络 convolutional recurrent neural network 注意力机制
在线阅读 下载PDF
线性合成的双粒度RNN集成系统 被引量:2
14
作者 张亮 黄曙光 胡荣贵 《自动化学报》 EI CSCD 北大核心 2011年第11期1402-1406,共5页
针对脱机文字识别,提出了一种基于线性合成的双粒度递归神经网络(Recurrent neural net work,RNN)集成系统.首先,使用单词RNN对未知图像进行识别;然后,依据识别结果进行字符分割,使用字符RNN对分割后的字符进行识别,并利用查表法计算字... 针对脱机文字识别,提出了一种基于线性合成的双粒度递归神经网络(Recurrent neural net work,RNN)集成系统.首先,使用单词RNN对未知图像进行识别;然后,依据识别结果进行字符分割,使用字符RNN对分割后的字符进行识别,并利用查表法计算字符的后验概率;最后,综合两个RNN的识别结果决定最终单词输出.在CAPTCHA识别和手写识别上的实验结果证明了该系统的有效性. 展开更多
关键词 脱机文字识别 递归神经网络 集成系统 字符分割
在线阅读 下载PDF
基于RNN的中文二分结构句法分析 被引量:17
15
作者 谷波 王瑞波 +1 位作者 李济洪 李国臣 《中文信息学报》 CSCD 北大核心 2019年第1期35-45,共11页
为了构建一个简单易扩展的中文句法分析器,我们依据朱德熙和陆俭明先生的中文二分结构的层次分析句法理论,手工构建了一个3万句的二分结构的中文句法树库,并使用哈夫曼编码方式来简化表示完全二叉树的层次结构。该文将中文句法分析转换... 为了构建一个简单易扩展的中文句法分析器,我们依据朱德熙和陆俭明先生的中文二分结构的层次分析句法理论,手工构建了一个3万句的二分结构的中文句法树库,并使用哈夫曼编码方式来简化表示完全二叉树的层次结构。该文将中文句法分析转换为迭代二分的序列标注问题,并根据该任务的特点,提出了在词的间隔上进行标记的序列标注模型(RNN-Interval,RNN-INT),与常用的循环神经网络模型(RNN,LSTM)和条件随机场模型(CRF)进行对比实验,使用mx2交叉验证序贯t-检验来比较模型。实验结果表明,RNN-INT模型在窗口为1的词特征就可达到最好的性能,并好于其他窗口大小和其他序列标注模型(RNN,LSTM,CRF)。最后,在测试集上,在人工分词下,RNN-INT在短语级别的F1值(块F1)达到71.25%,在句子级别的准确率达到约43%。 展开更多
关键词 层次句法分析 循环神经网络(rnn) m×2CV序贯t-检验
在线阅读 下载PDF
基于RNN集成学习的个人轨迹恢复方法 被引量:2
16
作者 鲁强 刘歆琦 《计算机工程》 CAS CSCD 北大核心 2019年第3期188-196,201,共10页
从多个轨迹数据库中连接并恢复出较为完整的个人轨迹对出行推荐和移动导航具有重要的意义。基于个人轨迹恢复,提出RNN集成学习方法。定义个人轨迹恢复的形式化模型,利用轨迹点数目采样模式将每个训练库划分为多个训练子库,并采用RNN网... 从多个轨迹数据库中连接并恢复出较为完整的个人轨迹对出行推荐和移动导航具有重要的意义。基于个人轨迹恢复,提出RNN集成学习方法。定义个人轨迹恢复的形式化模型,利用轨迹点数目采样模式将每个训练库划分为多个训练子库,并采用RNN网络模型描述个人轨迹的可拼接程度,使用集成学习方法构建多个RNN网络,以达到恢复个人轨迹的目的。实验结果表明,该方法可以较好地捕获轨迹时空连续性特征,实现个人轨迹恢复。 展开更多
关键词 轨迹恢复 轨迹拼接 集成学习 神经网络 rnn网络
在线阅读 下载PDF
基于BLSTM-RNN的船舶轨迹修复方法 被引量:5
17
作者 王贵槐 钟诚 +1 位作者 初秀民 张代勇 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第10期7-12,67,共7页
针对内河干线船舶AIS轨迹数缺失问题,提出一种基于双向长短时记忆网络(BLSTM-RNN)模型的船舶轨迹数据修复方法。通过利用船舶轨迹上下文信息及其他回传特征作为模型输入,构建两层的双向循环神经网络(RNN)模型。在模型输入上,采用相关性... 针对内河干线船舶AIS轨迹数缺失问题,提出一种基于双向长短时记忆网络(BLSTM-RNN)模型的船舶轨迹数据修复方法。通过利用船舶轨迹上下文信息及其他回传特征作为模型输入,构建两层的双向循环神经网络(RNN)模型。在模型输入上,采用相关性分析及序列自相关系数,确定船舶轨迹点相关变量及轨迹序列自相关滞后值;在模型结构上,以ACC率为指标对模型超参数值进行合理设置,以长江干线航道武汉段及重庆段船舶轨迹数据为样本,对模型进行实证验证。实验结果表明:与线性及其他机器学习方法相比BLSTM-RNN方法在精度上有一定提升;在武汉段顺直河段实验中,将修复误差控制在15 m量级内,远低于其他非线性方法的50 m量级;在重庆复杂河段内,可将修复误差控制在10 m量级;模型解决了传统方法在长距离丢失点上精度缺失的问题,在20个连续点丢失的情况上,将修复误差降低至50m量级。 展开更多
关键词 船舶工程 双向长短时记忆网络(BLSTM) 循环神经网络(rnn) 船舶轨迹修复 船舶自动驾驶
在线阅读 下载PDF
基于RNN和主题模型的社交网络突发话题发现 被引量:16
18
作者 石磊 杜军平 梁美玉 《通信学报》 EI CSCD 北大核心 2018年第4期189-198,共10页
社交网络数据是稀疏和嘈杂的,并伴有大量的无意义话题。传统突发话题发现方法无法解决社交网络短文本稀疏性问题,并需要复杂的后处理过程。为了解决上述问题,提出一种基于循环神经网络(RNN,recurrent neural network)和主题模型的突发... 社交网络数据是稀疏和嘈杂的,并伴有大量的无意义话题。传统突发话题发现方法无法解决社交网络短文本稀疏性问题,并需要复杂的后处理过程。为了解决上述问题,提出一种基于循环神经网络(RNN,recurrent neural network)和主题模型的突发话题发现(RTM-SBTD)方法。首先,综合RNN和逆序文档频率(IDF,inverse document frequency)构建权重先验来学习词的关系,同时通过构建词对解决短文本稀疏性问题。其次,模型中引入针板先验(spike and slab)来解耦突发话题分布的稀疏和平滑。最后,引入词的突发性来区分建模普通话题和突发话题,实现突发话题自动发现。实验结果表明与现有的主流突发话题发现方法相比,所提RTM-SBTD方法在多种评价指标上优于对比算法。 展开更多
关键词 社交网络 突发话题发现 主题模型 循环神经网络
在线阅读 下载PDF
SVM和RNN在网络评论情感分析中的比较研究 被引量:3
19
作者 吴国栋 刘国良 +1 位作者 张凯 涂立静 《上海工程技术大学学报》 CAS 2019年第4期378-383,共6页
随着电子商务的迅猛发展,网络评论情感分析研究日益受到重视.分别从传统的机器学习模型和深度学习模型视角,运用支持向量机(Support Vector Machine,SVM)和循环神经网络(Recurrent Neural Network,RNN)方法对向量化表示后的网络评论文... 随着电子商务的迅猛发展,网络评论情感分析研究日益受到重视.分别从传统的机器学习模型和深度学习模型视角,运用支持向量机(Support Vector Machine,SVM)和循环神经网络(Recurrent Neural Network,RNN)方法对向量化表示后的网络评论文本进行情感倾向的学习分析.研究表明,在精确率、召回率及F1等评价指标方面,基于RNN模型的评论情感分析效果明显优于SVM模型.该结果可以帮助消费者更好进行网络消费决策. 展开更多
关键词 支持向量机 循环神经网络 评论文本 情感分析 词向量
在线阅读 下载PDF
基于RNN模型与LSTM模型的机器作诗研究 被引量:5
20
作者 武丽芬 严学勇 赵吉 《科技创新与应用》 2021年第27期48-50,共3页
现如今自然语言处理在人类生产生活中起到极其重要的作用,随着各类机器学习算法以及深度神经网络的发展,各类写诗机器人频频出现。文章通过机器写诗系统研究了循环神经网络(RNN)与长短期记忆网络(LSTM)在唐诗写作方面的模型效果。本系... 现如今自然语言处理在人类生产生活中起到极其重要的作用,随着各类机器学习算法以及深度神经网络的发展,各类写诗机器人频频出现。文章通过机器写诗系统研究了循环神经网络(RNN)与长短期记忆网络(LSTM)在唐诗写作方面的模型效果。本系统基于谷歌开源的深度学习框架TensorFlow,Python作为开发语言,交叉熵损失作为实验结果评价依据进行研究,其结果有力证明了LSTM模型在作诗方面的优越性,并阐释了其具有优越性的具体原因。 展开更多
关键词 深度学习 循环神经网络 长短期记忆网络 TensorFlow
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部