Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk...Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk management.This study aims to use deep learning to develop real-time models for predicting the penetration rate(PR).The models are built using data from the Changsha metro project,and their performances are evaluated using unseen data from the Zhengzhou Metro project.In one-step forecast,the predicted penetration rate follows the trend of the measured penetration rate in both training and testing.The autoregressive integrated moving average(ARIMA)model is compared with the recurrent neural network(RNN)model.The results show that univariate models,which only consider historical penetration rate itself,perform better than multivariate models that take into account multiple geological and operational parameters(GEO and OP).Next,an RNN variant combining time series of penetration rate with the last-step geological and operational parameters is developed,and it performs better than other models.A sensitivity analysis shows that the penetration rate is the most important parameter,while other parameters have a smaller impact on time series forecasting.It is also found that smoothed data are easier to predict with high accuracy.Nevertheless,over-simplified data can lose real characteristics in time series.In conclusion,the RNN variant can accurately predict the next-step penetration rate,and data smoothing is crucial in time series forecasting.This study provides practical guidance for TBM performance forecasting in practical engineering.展开更多
For the beam pumping unit,the power consumption of oil-well power heater accounts for a large part of the pumping unit.Decreasing the energy consumption of the power heater is an important approach to reduce that of t...For the beam pumping unit,the power consumption of oil-well power heater accounts for a large part of the pumping unit.Decreasing the energy consumption of the power heater is an important approach to reduce that of the pumping unit.To decrease the energy consumption of oil-well power heater,the proper control method is needed.Based on summarizing the existing control method of power heater,a control method of oil-well power heater of beam pumping unit based on RNN neural network is proposed.The method is forecasting the polished rod load of the beam pumping unit through RNN neural network and using the polished rod load for real-time closed-loop control of the power heater,which adjusts average output power,so as to decrease the power consumption.The experimental data show that the control method is entirely feasible.It not only ensures the oil production,but also improves the energy-saving effect of the pumping unit.展开更多
This research aims to enhance Clinical Decision Support Systems(CDSS)within Wireless Body Area Networks(WBANs)by leveraging advanced machine learning techniques.Specifically,we target the challenges of accurate diagno...This research aims to enhance Clinical Decision Support Systems(CDSS)within Wireless Body Area Networks(WBANs)by leveraging advanced machine learning techniques.Specifically,we target the challenges of accurate diagnosis in medical imaging and sequential data analysis using Recurrent Neural Networks(RNNs)with Long Short-Term Memory(LSTM)layers and echo state cells.These models are tailored to improve diagnostic precision,particularly for conditions like rotator cuff tears in osteoporosis patients and gastrointestinal diseases.Traditional diagnostic methods and existing CDSS frameworks often fall short in managing complex,sequential medical data,struggling with long-term dependencies and data imbalances,resulting in suboptimal accuracy and delayed decisions.Our goal is to develop Artificial Intelligence(AI)models that address these shortcomings,offering robust,real-time diagnostic support.We propose a hybrid RNN model that integrates SimpleRNN,LSTM layers,and echo state cells to manage long-term dependencies effectively.Additionally,we introduce CG-Net,a novel Convolutional Neural Network(CNN)framework for gastrointestinal disease classification,which outperforms traditional CNN models.We further enhance model performance through data augmentation and transfer learning,improving generalization and robustness against data scarcity and imbalance.Comprehensive validation,including 5-fold cross-validation and metrics such as accuracy,precision,recall,F1-score,and Area Under the Curve(AUC),confirms the models’reliability.Moreover,SHapley Additive exPlanations(SHAP)and Local Interpretable Model-agnostic Explanations(LIME)are employed to improve model interpretability.Our findings show that the proposed models significantly enhance diagnostic accuracy and efficiency,offering substantial advancements in WBANs and CDSS.展开更多
为满足铁路接触网腕臂智能检修作业中机械臂自动导航需求,提出一种综合解决路径规划和障碍物避让问题的研究方法。该方法将双重目标转化为单一的约束优化问题。在此基础上,对标准快速搜索随机树(Rapidly exploring Random Tree,RRT)算...为满足铁路接触网腕臂智能检修作业中机械臂自动导航需求,提出一种综合解决路径规划和障碍物避让问题的研究方法。该方法将双重目标转化为单一的约束优化问题。在此基础上,对标准快速搜索随机树(Rapidly exploring Random Tree,RRT)算法进行改进,引入地图复杂程度评估策略和高斯混合分布采样策略,以约束随机采样点的生成方向。通过加入角度约束策略和临近障碍物的变步长机制,确保随机树始终向目标点方向生长,从而规划出渐进最优的路径。此外,设计一种基于甲虫嗅觉探测的递归神经网络(Recurrent Neural Network based on Beetle Olfactory Detection,RNNBOD)算法,配置最优关节角度,驱动冗余机械臂末端执行器沿规划的参考路径移动,从而降低其计算成本。仿真结果表明,该方法不仅有效提升了标准RRT算法的搜索效率、节点利用率和路径质量,还成功解决了冗余机械臂在运行过程中的跟踪控制难题。展开更多
针对脱机文字识别,提出了一种基于线性合成的双粒度递归神经网络(Recurrent neural net work,RNN)集成系统.首先,使用单词RNN对未知图像进行识别;然后,依据识别结果进行字符分割,使用字符RNN对分割后的字符进行识别,并利用查表法计算字...针对脱机文字识别,提出了一种基于线性合成的双粒度递归神经网络(Recurrent neural net work,RNN)集成系统.首先,使用单词RNN对未知图像进行识别;然后,依据识别结果进行字符分割,使用字符RNN对分割后的字符进行识别,并利用查表法计算字符的后验概率;最后,综合两个RNN的识别结果决定最终单词输出.在CAPTCHA识别和手写识别上的实验结果证明了该系统的有效性.展开更多
文摘Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk management.This study aims to use deep learning to develop real-time models for predicting the penetration rate(PR).The models are built using data from the Changsha metro project,and their performances are evaluated using unseen data from the Zhengzhou Metro project.In one-step forecast,the predicted penetration rate follows the trend of the measured penetration rate in both training and testing.The autoregressive integrated moving average(ARIMA)model is compared with the recurrent neural network(RNN)model.The results show that univariate models,which only consider historical penetration rate itself,perform better than multivariate models that take into account multiple geological and operational parameters(GEO and OP).Next,an RNN variant combining time series of penetration rate with the last-step geological and operational parameters is developed,and it performs better than other models.A sensitivity analysis shows that the penetration rate is the most important parameter,while other parameters have a smaller impact on time series forecasting.It is also found that smoothed data are easier to predict with high accuracy.Nevertheless,over-simplified data can lose real characteristics in time series.In conclusion,the RNN variant can accurately predict the next-step penetration rate,and data smoothing is crucial in time series forecasting.This study provides practical guidance for TBM performance forecasting in practical engineering.
文摘For the beam pumping unit,the power consumption of oil-well power heater accounts for a large part of the pumping unit.Decreasing the energy consumption of the power heater is an important approach to reduce that of the pumping unit.To decrease the energy consumption of oil-well power heater,the proper control method is needed.Based on summarizing the existing control method of power heater,a control method of oil-well power heater of beam pumping unit based on RNN neural network is proposed.The method is forecasting the polished rod load of the beam pumping unit through RNN neural network and using the polished rod load for real-time closed-loop control of the power heater,which adjusts average output power,so as to decrease the power consumption.The experimental data show that the control method is entirely feasible.It not only ensures the oil production,but also improves the energy-saving effect of the pumping unit.
基金supported by the“Human Resources Program in Energy Technology”of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)and granted financial resources from the Ministry of Trade,Industry,and Energy,Korea(No.20204010600090).
文摘This research aims to enhance Clinical Decision Support Systems(CDSS)within Wireless Body Area Networks(WBANs)by leveraging advanced machine learning techniques.Specifically,we target the challenges of accurate diagnosis in medical imaging and sequential data analysis using Recurrent Neural Networks(RNNs)with Long Short-Term Memory(LSTM)layers and echo state cells.These models are tailored to improve diagnostic precision,particularly for conditions like rotator cuff tears in osteoporosis patients and gastrointestinal diseases.Traditional diagnostic methods and existing CDSS frameworks often fall short in managing complex,sequential medical data,struggling with long-term dependencies and data imbalances,resulting in suboptimal accuracy and delayed decisions.Our goal is to develop Artificial Intelligence(AI)models that address these shortcomings,offering robust,real-time diagnostic support.We propose a hybrid RNN model that integrates SimpleRNN,LSTM layers,and echo state cells to manage long-term dependencies effectively.Additionally,we introduce CG-Net,a novel Convolutional Neural Network(CNN)framework for gastrointestinal disease classification,which outperforms traditional CNN models.We further enhance model performance through data augmentation and transfer learning,improving generalization and robustness against data scarcity and imbalance.Comprehensive validation,including 5-fold cross-validation and metrics such as accuracy,precision,recall,F1-score,and Area Under the Curve(AUC),confirms the models’reliability.Moreover,SHapley Additive exPlanations(SHAP)and Local Interpretable Model-agnostic Explanations(LIME)are employed to improve model interpretability.Our findings show that the proposed models significantly enhance diagnostic accuracy and efficiency,offering substantial advancements in WBANs and CDSS.
文摘为满足铁路接触网腕臂智能检修作业中机械臂自动导航需求,提出一种综合解决路径规划和障碍物避让问题的研究方法。该方法将双重目标转化为单一的约束优化问题。在此基础上,对标准快速搜索随机树(Rapidly exploring Random Tree,RRT)算法进行改进,引入地图复杂程度评估策略和高斯混合分布采样策略,以约束随机采样点的生成方向。通过加入角度约束策略和临近障碍物的变步长机制,确保随机树始终向目标点方向生长,从而规划出渐进最优的路径。此外,设计一种基于甲虫嗅觉探测的递归神经网络(Recurrent Neural Network based on Beetle Olfactory Detection,RNNBOD)算法,配置最优关节角度,驱动冗余机械臂末端执行器沿规划的参考路径移动,从而降低其计算成本。仿真结果表明,该方法不仅有效提升了标准RRT算法的搜索效率、节点利用率和路径质量,还成功解决了冗余机械臂在运行过程中的跟踪控制难题。
文摘针对脱机文字识别,提出了一种基于线性合成的双粒度递归神经网络(Recurrent neural net work,RNN)集成系统.首先,使用单词RNN对未知图像进行识别;然后,依据识别结果进行字符分割,使用字符RNN对分割后的字符进行识别,并利用查表法计算字符的后验概率;最后,综合两个RNN的识别结果决定最终单词输出.在CAPTCHA识别和手写识别上的实验结果证明了该系统的有效性.