期刊文献+
共找到39,824篇文章
< 1 2 250 >
每页显示 20 50 100
A Comprehensive Review on RNA-seq Data Analysis 被引量:1
1
作者 Zhang Li Liu Xuejun 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第3期339-361,共23页
RNA-sequencing(RNA-seq),based on next-generation sequencing technologies,has rapidly become a standard and popular technology for transcriptome analysis.However,serious challenges still exist in analyzing and interpre... RNA-sequencing(RNA-seq),based on next-generation sequencing technologies,has rapidly become a standard and popular technology for transcriptome analysis.However,serious challenges still exist in analyzing and interpreting the RNA-seq data.With the development of high-throughput sequencing technology,the sequencing depth of RNA-seq data increases explosively.The intricate biological process of transcriptome is more complicated and diversified beyond our imagination.Moreover,most of the remaining organisms still have no available reference genome or have only incomplete genome annotations.Therefore,a large number of bioinformatics methods for various transcriptomics studies are proposed to effectively settle these challenges.This review comprehensively summarizes the various studies in RNA-seq data analysis and their corresponding analysis methods,including genome annotation,quality control and pre-processing of reads,read alignment,transcriptome assembly,gene and isoform expression quantification,differential expression analysis,data visualization and other analyses. 展开更多
关键词 transcriptome analysis high-throughput sequencing rna-seq data analysis analysis pipeline
在线阅读 下载PDF
Gene Expression Data Analysis Based on Mixed Effects Model
2
作者 Yuanbo Dai 《Journal of Computer and Communications》 2025年第2期223-235,共13页
DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expres... DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expression data generated. To address this, this paper employs a mixed-effects model to analyze gene expression data. In terms of data selection, 1176 genes from the white mouse gene expression dataset under two experimental conditions were chosen, setting up two conditions: pneumococcal infection and no infection, and constructing a mixed-effects model. After preprocessing the gene chip information, the data were imported into the model, preliminary results were calculated, and permutation tests were performed to biologically validate the preliminary results using GSEA. The final dataset consists of 20 groups of gene expression data from pneumococcal infection, which categorizes functionally related genes based on the similarity of their expression profiles, facilitating the study of genes with unknown functions. 展开更多
关键词 Mixed Effects Model Gene Expression data analysis Gene analysis Gene Chip
暂未订购
Research on the Development Strategies of Realtime Data Analysis and Decision-support Systems
3
作者 Wei Tang 《Journal of Electronic Research and Application》 2025年第2期204-210,共7页
With the advent of the big data era,real-time data analysis and decision-support systems have been recognized as essential tools for enhancing enterprise competitiveness and optimizing the decision-making process.This... With the advent of the big data era,real-time data analysis and decision-support systems have been recognized as essential tools for enhancing enterprise competitiveness and optimizing the decision-making process.This study aims to explore the development strategies of real-time data analysis and decision-support systems,and analyze their application status and future development trends in various industries.The article first reviews the basic concepts and importance of real-time data analysis and decision-support systems,and then discusses in detail the key technical aspects such as system architecture,data collection and processing,analysis methods,and visualization techniques. 展开更多
关键词 Real-time data analysis Decision-support system Big data System architecture data processing Visualization technology
在线阅读 下载PDF
Analysis of the Impact of Legal Digital Currencies on Bank Big Data Practices
4
作者 Zhengkun Xiu 《Journal of Electronic Research and Application》 2025年第1期23-27,共5页
This paper analyzes the advantages of legal digital currencies and explores their impact on bank big data practices.By combining bank big data collection and processing,it clarifies that legal digital currencies can e... This paper analyzes the advantages of legal digital currencies and explores their impact on bank big data practices.By combining bank big data collection and processing,it clarifies that legal digital currencies can enhance the efficiency of bank data processing,enrich data types,and strengthen data analysis and application capabilities.In response to future development needs,it is necessary to strengthen data collection management,enhance data processing capabilities,innovate big data application models,and provide references for bank big data practices,promoting the transformation and upgrading of the banking industry in the context of legal digital currencies. 展开更多
关键词 Legal digital currency Bank big data data processing efficiency data analysis and application Countermeasures and suggestions
在线阅读 下载PDF
Multi-Source Heterogeneous Data Fusion Analysis Platform for Thermal Power Plants
5
作者 Jianqiu Wang Jianting Wen +1 位作者 Hui Gao Chenchen Kang 《Journal of Architectural Research and Development》 2025年第6期24-28,共5页
With the acceleration of intelligent transformation of energy system,the monitoring of equipment operation status and optimization of production process in thermal power plants face the challenge of multi-source heter... With the acceleration of intelligent transformation of energy system,the monitoring of equipment operation status and optimization of production process in thermal power plants face the challenge of multi-source heterogeneous data integration.In view of the heterogeneous characteristics of physical sensor data,including temperature,vibration and pressure that generated by boilers,steam turbines and other key equipment and real-time working condition data of SCADA system,this paper proposes a multi-source heterogeneous data fusion and analysis platform for thermal power plants based on edge computing and deep learning.By constructing a multi-level fusion architecture,the platform adopts dynamic weight allocation strategy and 5D digital twin model to realize the collaborative analysis of physical sensor data,simulation calculation results and expert knowledge.The data fusion module combines Kalman filter,wavelet transform and Bayesian estimation method to solve the problem of data time series alignment and dimension difference.Simulation results show that the data fusion accuracy can be improved to more than 98%,and the calculation delay can be controlled within 500 ms.The data analysis module integrates Dymola simulation model and AERMOD pollutant diffusion model,supports the cascade analysis of boiler combustion efficiency prediction and flue gas emission monitoring,system response time is less than 2 seconds,and data consistency verification accuracy reaches 99.5%. 展开更多
关键词 Thermal power plant Multi-source heterogeneous data data fusion analysis platform Edge computing
在线阅读 下载PDF
Extraction of effective response for controlled-source electromagnetic data based on clustering analysis
6
作者 Cong Zhou Zhan-zi Qin +2 位作者 Liang Yang Tara P.Banjade Xiao-fei Zhou 《Applied Geophysics》 2025年第4期1297-1312,1499,共17页
The issue of strong noise has increasingly become a bottleneck restricting the precision and application space of electromagnetic exploration methods.Noise suppression and extraction of effective electromagnetic respo... The issue of strong noise has increasingly become a bottleneck restricting the precision and application space of electromagnetic exploration methods.Noise suppression and extraction of effective electromagnetic response information under a strong noise background is a crucial scientific task to be addressed.To solve the noise suppression problem of the controlled-source electromagnetic method in strong interference areas,we propose an approach based on complex-plane 2D k-means clustering for data processing.Based on the stability of the controlled-source signal response,clustering analysis is applied to classify the spectra of different sources and noises in multiple time segments.By identifying the power spectra with controlled-source characteristics,it helps to improve the quality of the controlled-source response extraction.This paper presents the principle and workflow of the proposed algorithm,and demonstrates feasibility and effectiveness of the new algorithm through synthetic and real data examples.The results show that,compared with the conventional Robust denoising method,the clustering algorithm has a stronger suppression effect on common noise,can identify high-quality signals,and improve the preprocessing data quality of the controlledsource electromagnetic method. 展开更多
关键词 controlled-source electromagnetic method data processing Cluster analysis Noise
在线阅读 下载PDF
Evaluating fracture volume loss during production process by comparative analysis of initial and second flowback data
7
作者 Chong Cao Tamer Moussa Hassan Dehghanpour 《International Journal of Coal Science & Technology》 2025年第3期274-290,共17页
The fracture volume is gradually changed with the depletion of fracture pressure during the production process.However,there are few flowback models available so far that can estimate the fracture volume loss using pr... The fracture volume is gradually changed with the depletion of fracture pressure during the production process.However,there are few flowback models available so far that can estimate the fracture volume loss using pressure transient and rate transient data.The initial flowback involves producing back the fracturing fuid after hydraulic fracturing,while the second flowback involves producing back the preloading fluid injected into the parent wells before fracturing of child wells.The main objective of this research is to compare the initial and second flowback data to capture the changes in fracture volume after production and preload processes.Such a comparison is useful for evaluating well performance and optimizing frac-turing operations.We construct rate-normalized pressure(RNP)versus material balance time(MBT)diagnostic plots using both initial and second flowback data(FB;and FBs,respectively)of six multi-fractured horizontal wells completed in Niobrara and Codell formations in DJ Basin.In general,the slope of RNP plot during the FB,period is higher than that during the FB;period,indicating a potential loss of fracture volume from the FB;to the FB,period.We estimate the changes in effective fracture volume(Ver)by analyzing the changes in the RNP slope and total compressibility between these two flowback periods.Ver during FB,is in general 3%-45%lower than that during FB:.We also compare the drive mechanisms for the two flowback periods by calculating the compaction-drive index(CDI),hydrocarbon-drive index(HDI),and water-drive index(WDI).The dominant drive mechanism during both flowback periods is CDI,but its contribution is reduced by 16%in the FB,period.This drop is generally compensated by a relatively higher HDI during this period.The loss of effective fracture volume might be attributed to the pressure depletion in fractures,which occurs during the production period and can extend 800 days. 展开更多
关键词 Second flowback data analysis Infill development Preloading effect Effective fracture volume loss Flowback rate-transient analysis
在线阅读 下载PDF
Application of Big Data Technology in User Behavior Analysis of E-commerce Platforms
8
作者 Yanzhao Jia 《Journal of Electronic Research and Application》 2025年第3期104-110,共7页
With the rapid development of the Internet and e-commerce,e-commerce platforms have accumulated huge amounts of user behavior data.The emergence of big data technology provides a powerful means for in-depth analysis o... With the rapid development of the Internet and e-commerce,e-commerce platforms have accumulated huge amounts of user behavior data.The emergence of big data technology provides a powerful means for in-depth analysis of these data and insight into user behavior patterns and preferences.This paper elaborates on the application of big data technology in the analysis of user behavior on e-commerce platforms,including the technical methods of data collection,storage,processing and analysis,as well as the specific applications in the construction of user profiles,precision marketing,personalized recommendation,user retention and churn analysis,etc.,and discusses the challenges and countermeasures faced in the application.Through the study of actual cases,it demonstrates the remarkable effectiveness of big data technology in enhancing the competitiveness of e-commerce platforms and user experience. 展开更多
关键词 Big data technology E-commerce platform User behavior analysis
在线阅读 下载PDF
Topology Data Analysis-Based Error Detection for Semantic Image Transmission with Incremental Knowledge-Based HARQ
9
作者 Ni Fei Li Rongpeng +1 位作者 Zhao Zhifeng Zhang Honggang 《China Communications》 2025年第1期235-255,共21页
Semantic communication(SemCom)aims to achieve high-fidelity information delivery under low communication consumption by only guaranteeing semantic accuracy.Nevertheless,semantic communication still suffers from unexpe... Semantic communication(SemCom)aims to achieve high-fidelity information delivery under low communication consumption by only guaranteeing semantic accuracy.Nevertheless,semantic communication still suffers from unexpected channel volatility and thus developing a re-transmission mechanism(e.g.,hybrid automatic repeat request[HARQ])becomes indispensable.In that regard,instead of discarding previously transmitted information,the incremental knowledge-based HARQ(IK-HARQ)is deemed as a more effective mechanism that could sufficiently utilize the information semantics.However,considering the possible existence of semantic ambiguity in image transmission,a simple bit-level cyclic redundancy check(CRC)might compromise the performance of IK-HARQ.Therefore,there emerges a strong incentive to revolutionize the CRC mechanism,thus more effectively reaping the benefits of both SemCom and HARQ.In this paper,built on top of swin transformer-based joint source-channel coding(JSCC)and IK-HARQ,we propose a semantic image transmission framework SC-TDA-HARQ.In particular,different from the conventional CRC,we introduce a topological data analysis(TDA)-based error detection method,which capably digs out the inner topological and geometric information of images,to capture semantic information and determine the necessity for re-transmission.Extensive numerical results validate the effectiveness and efficiency of the proposed SC-TDA-HARQ framework,especially under the limited bandwidth condition,and manifest the superiority of TDA-based error detection method in image transmission. 展开更多
关键词 error detection incremental knowledgebased HARQ joint source-channel coding semantic communication swin transformer topological data analysis
在线阅读 下载PDF
Correction:Data analysis framework for silicon strip detector in compact spectrometer for heavy-ion experiments
10
作者 Xiao-Bao Wei Yu-Hao Qin +15 位作者 Sheng Xiao Da-Wei Si Dong Guo Zhi Qin Fen-Hai Guan Xin-Yue Diao Bo-Yuan Zhang Bai-Ting Tian Jun-Huai Xu Tian-Ren Zhuo Yi-Bo Hao Zeng-Xiang Wang Shi-Tao Wang Chun-Wang Ma Yi-Jie Wang Zhi-Gang Xiao 《Nuclear Science and Techniques》 2025年第11期367-367,共1页
In section‘Track decoding’of this article,one of the paragraphs was inadvertently missed out after the text'…shows the flow diagram of the Tr2-1121 track mode.'The missed paragraph is provided below.
关键词 tr track mode flow diagram data analysis heavy ion experiments silicon strip detector compact spectrometer track decoding
在线阅读 下载PDF
Single-Cell and Multi-Dimensional Data Analysis of the Key Role of IDH2 in Cervical Squamous Cell Carcinoma Progression
11
作者 Xiaojuan Liu Zhenpeng Zhu +5 位作者 Chenyang Hou Hui Ma Xiaoyan Li Chunxing Ma Lisha Shu Huiying Zhang 《Biomedical and Environmental Sciences》 2025年第6期773-778,共6页
Cervical cancer,a leading malignancy globally,poses a significant threat to women's health,with an estimated 604,000 new cases and 342,000 deaths reported in 2020^([1]).As cervical cancer is closely linked to huma... Cervical cancer,a leading malignancy globally,poses a significant threat to women's health,with an estimated 604,000 new cases and 342,000 deaths reported in 2020^([1]).As cervical cancer is closely linked to human papilloma virus(HPV)infection,early detection relies on HPV screening;however,late-stage prognosis remains poor,underscoring the need for novel diagnostic and therapeutic targets^([2]). 展开更多
关键词 cervical squamous cell carcinoma IDH cervical cancera multi dimensional data analysis novel diagnostic therapeutic targets cervical cancer prognosis human papilloma virus hpv infectionearly
暂未订购
ADGAP:a user-friendly online ancient DNA database and genome analysis platform
12
作者 Yanwei Chen Yu Xu +1 位作者 Kongyang Zhu Chuan-Chao Wang 《Journal of Genetics and Genomics》 2025年第8期1058-1061,共4页
The analysis of ancient genomics provides opportunities to explore human population history across both temporal and geographic dimensions(Haak et al.,2015;Wang et al.,2021,2024)to enhance the accessibility and utilit... The analysis of ancient genomics provides opportunities to explore human population history across both temporal and geographic dimensions(Haak et al.,2015;Wang et al.,2021,2024)to enhance the accessibility and utility of these ancient genomic datasets,a range of databases and advanced statistical models have been developed,including the Allen Ancient DNA Resource(AADR)(Mallick et al.,2024)and AdmixTools(Patterson et al.,2012).While upstream processes such as sequencing and raw data processing have been streamlined by resources like the AADR,the downstream analysis of these datasets-encompassing population genetics inference and spatiotemporal interpretation-remains a significant challenge.The AADR provides a unified collection of published ancient DNA(aDNA)data,yet its file-based format and reliance on command-line tools,such as those in Admix-Tools(Patterson et al.,2012),require advanced computational expertise for effective exploration and analysis.These requirements can present significant challenges forresearchers lackingadvanced computational expertise,limiting the accessibility and broader application of these valuable genomic resources. 展开更多
关键词 dataBASE raw data processing analysis ancient genomics upstream processes ancient DNA explore human population history allen ancient dna resource aadr mallick ancient genomic datasetsa
原文传递
LncPipe" A Nextflow-based pipeline for identification and analysis of long non-coding RNAs from RNA-Seq data 被引量:1
13
作者 Qi Zhao Yu Sun +4 位作者 Dawei Wang Hongwan Zhang Kai Yu Jian Zheng Zhixiang Zuo 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2018年第7期399-401,共3页
Long noncoding RNAs (IncRNAs) have been increasingly implicated in a variety of human diseases, including autoimmune disease (Wu et al., 2015), neurodegenerative diseases (Wapinski and Chang, 2011) and cancer (... Long noncoding RNAs (IncRNAs) have been increasingly implicated in a variety of human diseases, including autoimmune disease (Wu et al., 2015), neurodegenerative diseases (Wapinski and Chang, 2011) and cancer (Huarte, 2015). Due to recent advances in next-generation sequencing technologies, tens of thousands of lncRNAs have been identified and annotated, a number of them have been proven to be functional in diverse biological processes through various mechanisms. 展开更多
关键词 LncPipe" A Nextflow-based pipeline IDENTIFICATION analysis of long non-coding RNAs rna-seq data
原文传递
Seismic data analysis based on spatial subsets 被引量:2
14
作者 蔡希玲 刘学伟 +2 位作者 李虹 钱宇明 吕英梅 《Applied Geophysics》 SCIE CSCD 2009年第4期384-392,395,共10页
There are some limitations when we apply conventional methods to analyze the massive amounts of seismic data acquired with high-density spatial sampling since processors usually obtain the properties of raw data from ... There are some limitations when we apply conventional methods to analyze the massive amounts of seismic data acquired with high-density spatial sampling since processors usually obtain the properties of raw data from common shot gathers or other datasets located at certain points or along lines. We propose a novel method in this paper to observe seismic data on time slices from spatial subsets. The composition of a spatial subset and the unique character of orthogonal or oblique subsets are described and pre-stack subsets are shown by 3D visualization. In seismic data processing, spatial subsets can be used for the following aspects: (1) to check the trace distribution uniformity and regularity; (2) to observe the main features of ground-roll and linear noise; (3) to find abnormal traces from slices of datasets; and (4) to QC the results of pre-stack noise attenuation. The field data application shows that seismic data analysis in spatial subsets is an effective method that may lead to a better discrimination among various wavefields and help us obtain more information. 展开更多
关键词 spatial subset 3D visualization high density sampling noise attenuation data analysis
在线阅读 下载PDF
Frame Work of Data Envelopment Analysis—A Model to Evaluate the Environmental Efficiency of China'S Industrial Sectors 被引量:24
15
作者 TAO ZHANG 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2009年第1期8-13,共6页
Objective To evaluate the environmental and technical efficiencies of China's industrial sectors and provide appropriate advice for policy makers in the context of rapid economic growth and concurrent serious environ... Objective To evaluate the environmental and technical efficiencies of China's industrial sectors and provide appropriate advice for policy makers in the context of rapid economic growth and concurrent serious environmental damages caused by industrial pollutants. Methods A data of envelopment analysis (DEA) framework crediting both reduction of pollution outputs and expansion of good outputs was designed as a model to compute environmental efficiency of China's regional industrial systems. Results As shown by the geometric mean of environmental efficiency, if other inputs were made constant and good outputs were not to be improved, the air pollution outputs would have the potential to be decreased by about 60% in the whole China. Conclusion Both environmental and technical efficiencies have the potential to be greatly improved in China, which may provide some advice for policy-makers. 展开更多
关键词 Technical efficiency Environmental efficiency Directional distance function Technical-environmentalefficiency data of envelopment analysis China
在线阅读 下载PDF
Impact of the Assimilation Frequency of Radar Data with the ARPS 3DVar and Cloud Analysis System on Forecasts of a Squall Line in Southern China 被引量:7
16
作者 Yujie PAN Mingjun WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第2期160-172,共13页
Assimilation configurations have significant impacts on analysis results and subsequent forecasts. A squall line system that occurred on 23 April 2007 over southern China was used to investigate the impacts of the dat... Assimilation configurations have significant impacts on analysis results and subsequent forecasts. A squall line system that occurred on 23 April 2007 over southern China was used to investigate the impacts of the data assimilation frequency of radar data on analyses and forecasts. A three-dimensional variational system was used to assimilate radial velocity data,and a cloud analysis system was used for reflectivity assimilation with a 2-h assimilation window covering the initial stage of the squall line. Two operators of radar reflectivity for cloud analyses corresponding to single-and double-moment schemes were used. In this study, we examined the sensitivity of assimilation frequency using 10-, 20-, 30-, and 60-min assimilation intervals. The results showed that analysis fields were not consistent with model dynamics and microphysics in general;thus, model states, including dynamic and microphysical variables, required approximately 20 min to reach a new balance after data assimilation in all experiments. Moreover, a 20-min data assimilation interval generally produced better forecasts for both single-and double-moment schemes in terms of equitable threat and bias scores. We conclude that a higher data assimilation frequency can produce a more intense cold pool and rear inflow jets but does not necessarily lead to a better forecast. 展开更多
关键词 CLOUD analysis radar data ASSIMILATION data ASSIMILATION INTERVAL
在线阅读 下载PDF
Analysis and application of automatic deformation monitoring data for buildings and structures of mining area 被引量:9
17
作者 XIAO Jie1, 2, 3, ZHANG Jin4 1. Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China 2. Key Laboratory of Dynamic Geodesy, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China 3. Graduate School of Chinese Academy of Sciences, Beijing 100049, China 4. Department of Surveying and Mapping, Taiyuan University of Technology, Taiyuan 030024, China 《中国有色金属学会会刊:英文版》 CSCD 2011年第S3期516-522,共7页
The buildings and structures of mines were monitored automatically using modern surveying technology. Through the analysis of the monitoring data, the deformation characteristics were found out from three aspects cont... The buildings and structures of mines were monitored automatically using modern surveying technology. Through the analysis of the monitoring data, the deformation characteristics were found out from three aspects containing points, lines and regions, which play an important role in understanding the stable state of buildings and structures. The stability and deformation of monitoring points were analysed, and time-series data of monitoring points were denoised with wavelet analysis and Kalman filtering, and exponent function and periodic function were used to get the ideal deformation trend model of monitoring points. Through calculating the monitoring data obtained, analyzing the deformation trend, and cognizing the deformation regularity, it can better service mine safety production and decision-making. 展开更多
关键词 WAVELET analysis KALMAN FILTERING DEFORMATION monitoring data analysis MINE
在线阅读 下载PDF
Regularized least-squares migration of simultaneous-source seismic data with adaptive singular spectrum analysis 被引量:12
18
作者 Chuang Li Jian-Ping Huang +1 位作者 Zhen-Chun Li Rong-Rong Wang 《Petroleum Science》 SCIE CAS CSCD 2017年第1期61-74,共14页
Simultaneous-source acquisition has been recog- nized as an economic and efficient acquisition method, but the direct imaging of the simultaneous-source data produces migration artifacts because of the interference of... Simultaneous-source acquisition has been recog- nized as an economic and efficient acquisition method, but the direct imaging of the simultaneous-source data produces migration artifacts because of the interference of adjacent sources. To overcome this problem, we propose the regularized least-squares reverse time migration method (RLSRTM) using the singular spectrum analysis technique that imposes sparseness constraints on the inverted model. Additionally, the difference spectrum theory of singular values is presented so that RLSRTM can be implemented adaptively to eliminate the migration artifacts. With numerical tests on a fiat layer model and a Marmousi model, we validate the superior imaging quality, efficiency and convergence of RLSRTM compared with LSRTM when dealing with simultaneoussource data, incomplete data and noisy data. 展开更多
关键词 Least-squares migration Adaptive singularspectrum analysis Regularization Blended data
原文传递
Clustering Structure Analysis in Time-Series Data With Density-Based Clusterability Measure 被引量:6
19
作者 Juho Jokinen Tomi Raty Timo Lintonen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第6期1332-1343,共12页
Clustering is used to gain an intuition of the struc tures in the data.Most of the current clustering algorithms pro duce a clustering structure even on data that do not possess such structure.In these cases,the algor... Clustering is used to gain an intuition of the struc tures in the data.Most of the current clustering algorithms pro duce a clustering structure even on data that do not possess such structure.In these cases,the algorithms force a structure in the data instead of discovering one.To avoid false structures in the relations of data,a novel clusterability assessment method called density-based clusterability measure is proposed in this paper.I measures the prominence of clustering structure in the data to evaluate whether a cluster analysis could produce a meaningfu insight to the relationships in the data.This is especially useful in time-series data since visualizing the structure in time-series data is hard.The performance of the clusterability measure is evalu ated against several synthetic data sets and time-series data sets which illustrate that the density-based clusterability measure can successfully indicate clustering structure of time-series data. 展开更多
关键词 CLUSTERING EXPLORATORY data analysis time-series UNSUPERVISED LEARNING
在线阅读 下载PDF
NONLINEAR DATA RECONCILIATION METHOD BASED ON KERNEL PRINCIPAL COMPONENT ANALYSIS 被引量:6
20
作者 Yan Weiwu Shao HuiheDepartment of Automation,Shanghai Jiaotong University,Shanghai 200030, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第2期117-119,共3页
In the industrial process situation, principal component analysis (PCA) is ageneral method in data reconciliation. However, PCA sometime is unfeasible to nonlinear featureanalysis and limited in application to nonline... In the industrial process situation, principal component analysis (PCA) is ageneral method in data reconciliation. However, PCA sometime is unfeasible to nonlinear featureanalysis and limited in application to nonlinear industrial process. Kernel PCA (KPCA) is extensionof PCA and can be used for nonlinear feature analysis. A nonlinear data reconciliation method basedon KPCA is proposed. The basic idea of this method is that firstly original data are mapped to highdimensional feature space by nonlinear function, and PCA is implemented in the feature space. Thennonlinear feature analysis is implemented and data are reconstructed by using the kernel. The datareconciliation method based on KPCA is applied to ternary distillation column. Simulation resultsshow that this method can filter the noise in measurements of nonlinear process and reconciliateddata can represent the true information of nonlinear process. 展开更多
关键词 principal component analysis KERNEL data reconciliation NONLINEAR
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部