Ma et al recently reported in the World Journal of Diabetes that ferroptosis occurs in osteoblasts under high glucose conditions,reflecting diabetes pathology.This condition could be protected by the upregulation of t...Ma et al recently reported in the World Journal of Diabetes that ferroptosis occurs in osteoblasts under high glucose conditions,reflecting diabetes pathology.This condition could be protected by the upregulation of the gene encoding polycytosine RNA-binding protein 1(PCBP1).Additionally,Ma et al used a lentivirus infection system to express PCBP1.As the authors’method of administration can be improved in terms of stability and cost,we propose delivering PCBP1 to treat type 2 diabetic osteoporosis by encapsulating it in protein nanoparticles.First,PCBP1 is small and druggable.Second,intravenous injection can help deliver PCBP1 across the mucosa while avoiding acid and enzyme-catalyzed degradation.Furthermore,incorporating PCBP1 into nanoparticles prevents its interaction with water or oxygen and protects PCBP1’s structure and activity.Notably,the safety of the protein materials and the industrialization techniques for large-scale production of protein nanoparticles must be comprehensively investigated before clinical application.展开更多
This article summarizes recent advances in the understanding of RNA-binding proteins(RBPs),with a focus on their roles in exercise-induced mRNA regulation and their implications for schizophrenia(SZ).RBPs are critical...This article summarizes recent advances in the understanding of RNA-binding proteins(RBPs),with a focus on their roles in exercise-induced mRNA regulation and their implications for schizophrenia(SZ).RBPs are critical regulators of mRNA stability,splicing,transport,translation,and degradation,directly influencing gene expression through sequence-and structure-specific binding.In the nervous system,RBPs sustain synaptic plasticity,neural development,and neuronal homeostasis.Emerging evidence shows that exercise modulates the expression and activity of RBPs,thereby influencing mRNA translation and neurotransmitter signaling,which may underlie its beneficial effects on brain function.Dysregulation of specific RBPs has been identified in SZ,implicating them in disrupted synaptic transmission,impaired plasticity,and neuroinflammation.RBPs involved in memory and emotional regulation show marked dysfunction in SZ patients.Some RBPs have been proposed as potential biomarkers for early diagnosis and treatment monitoring.Moreover,therapeutic modulation of RBPs,through pharmacological or behavioral interventions such as exercise,may restore neuronal function by targeting post-transcriptional gene regulation.Exercise,as a non-invasive modulator of RBP expression,holds promise as an adjunctive strategy in SZ treatment,particularly in early stages.Further research into RBP-mediated pathways may offer novel insights into SZ pathophysiology and inform the development of targeted interventions.展开更多
Rice grain yield is primarily determined by three key agronomic traits:panicle number,grain number per panicle,and grain weight(GW).However,the inherent tradeoffs among these yield components remain a persistent chall...Rice grain yield is primarily determined by three key agronomic traits:panicle number,grain number per panicle,and grain weight(GW).However,the inherent tradeoffs among these yield components remain a persistent challenge in rice breeding programs.Notably,compared with GW,brown rice weight(BRW)provides a more direct metric associated with actual grain yield potential.In this study,we conducted a two-year replicated genome-wide association study to elucidate the genetic architecture of BRW and identify new loci regulating GW.Among seven consistently detected loci across experimental replicates,four were not co-localized with previously reported genes associated with BRW or GW traits.BRW1.1,one of the four newly identified loci,was found to encode a novel RNA-binding protein.Functional characterization revealed that BRW1.1 acts as a negative regulator of BRW,potentially through modulating mRNA translation processes.Intriguingly,through integrated analysis of mutant phenotypes and haplotype variations,we demonstrated that BRW1.1 mediates the physiological tradeoff between GW and panicle number.This study not only delineates the genetic determinants of BRW but also identifies BRW1.1 as a promising molecular target for breaking the yield component tradeoff in precision rice breeding.展开更多
Biomolecular condensates,also known as membraneless organelles,play a crucial role in cellular organization by concentrating or sequestering biomolecules.Despite their importance,synthetically mimicking these organell...Biomolecular condensates,also known as membraneless organelles,play a crucial role in cellular organization by concentrating or sequestering biomolecules.Despite their importance,synthetically mimicking these organelles using non-peptidic small organic molecules has posed a significant challenge.The present study reports the discovery of D008,a self-assembling small molecule that sequesters a unique subset of RNA-binding proteins.Analysis and screening of a comprehensive collection of approximately 1 million compounds in the Chinese National Compound Library(Shanghai)identified 44 self-assembling small molecules in aqueous solutions.Subsequent screening of the focused library,coupled with proteome analysis,led to the discovery of D008 as a small organic molecule with the ability to condensate a specific subset of RNA-binding proteins.In vitro experiments demonstrated that the D008-induced sequestration of RNA-binding proteins impeded mRNA translation.D008 may offer a unique opportunity for studying the condensations of RNA-binding proteins and for developing an unprecedented class of small molecules that control gene expression.展开更多
BACKGROUND Cold-inducible RNA-binding protein(CIRP)is related to a family of stressinduced RNA-binding proteins.It is primarily found in the nucleus,where it regulates transcription.Under stress,CIRP translocates to t...BACKGROUND Cold-inducible RNA-binding protein(CIRP)is related to a family of stressinduced RNA-binding proteins.It is primarily found in the nucleus,where it regulates transcription.Under stress,CIRP translocates to the cytoplasm where it modulates translation;a subset is secreted as extracellular CIRP(eCIRP)which is a damage-associated molecular pattern(DAMP)molecule that stimulates the production of inflammatory mediators.Elevated blood eCIRP levels may foster immune tolerance and facilitate tumor growth.Increased CIRP levels have been noted in various malignancies including colorectal cancer(CRC).This study’s objective was to determine plasma eCIRP levels before and after minimally invasive colorectal resection(MICR)for CRC.AIM To assess plasma eCIRP levels prior to and following minimally invasive colorectal resection in the context of cancer pathology.METHODS MICR patients from an IRB-approved data/tissue bank for whom plasma samples were available were eligible.Plasma specimens were obtained preoperatively(preop)and at least 3 time’s postop[between postoperative day(POD)1-41];late samples were grouped into 7-day blocks and were considered separate time points.eCIRP levels were assessed via enzyme-linked immunosorbent assay(pg/mL)and results presented as mean±SD,analysis with Wilcoxon paired t-test.RESULTS A total of 83 CRC patients who underwent MICR[colon 66%,rectal 34%;laparoscopic-assisted(LA),70%;handassisted laparoscopic(HAL),30%]were studied.The mean preop eCIRP level was 896.8±757.0 pg/mL.Elevations in mean plasma levels(P=<0.001)were noted on POD1(2549±2632 pg/mL,n=83),POD3(1871±1362 pg/mL,n=77),POD7-13(1788±1403 pg/mL,n=57),POD14-20(1473±738.8 pg/mL,n=30),and POD21-27(1681±1375 pg/mL,n=21).No significant differences were noted at POD 28-41.Higher values were noted in the HAL’s(vs LA)group,however,there were more rectal cancers in the former.CONCLUSION Elevated plasma eCIRP levels persist for a month post MICR for CRC(change from baseline,77%-184%);highest values seen on POD1.The initial surge may be due to the acute inflammatory response while later elevations may be related to wound healing and remodeling.The higher levels noted in the HAL’s group(with greater IL and more rectal cases)suggest the extent of surgical trauma impacts eCIRP levels.Further investigations are needed.展开更多
BACKGROUND Recently,type 2 diabetic osteoporosis(T2DOP)has become a research hotspot for the complications of diabetes,but the specific mechanism of its occurrence and development remains unknown.Ferroptosis caused by...BACKGROUND Recently,type 2 diabetic osteoporosis(T2DOP)has become a research hotspot for the complications of diabetes,but the specific mechanism of its occurrence and development remains unknown.Ferroptosis caused by iron overload is con-sidered an important cause of T2DOP.Polycytosine RNA-binding protein 1(PCBP1),an iron ion chaperone,is considered a protector of ferroptosis.AIM To investigate the existence of ferroptosis and specific role of PCBP1 in the development of type 2 diabetes.METHODS A cell counting kit-8 assay was used to detect changes in osteoblast viability under high glucose(HG)and/or ferroptosis inhibitors at different concentrations and times.Transmission electron microscopy was used to examine the morpho-logical changes in the mitochondria of osteoblasts under HG,and western blotting was used to detect the expression levels of PCBP1,ferritin,and the ferroptosis-related protein glutathione peroxidase 4(GPX4).A lentivirus silenced and overex-pressed PCBP1.Western blotting was used to detect the expression levels of the osteoblast functional proteins osteoprotegerin(OPG)and osteocalcin(OCN),whereas flow cytometry was used to detect changes in reactive oxygen species(ROS)levels in each group.RESULTS Under HG,the viability of osteoblasts was considerably decreased,the number of mitochondria undergoing atrophy was considerably increased,PCBP1 and ferritin expression levels were increased,and GPX4 expression was decreased.Western blotting results demonstrated that infection with lentivirus overexpressing PCBP1,increased the expression levels of ferritin,GPX4,OPG,and OCN,compared with the HG group.Flow cytometry results showed a reduction in ROS,and an opposite result was obtained after silencing PCBP1.CONCLUSION PCBP1 may protect osteoblasts and reduce the harm caused by ferroptosis by promoting ferritin expression under a HG environment.Moreover,PCBP1 may be a potential therapeutic target for T2DOP.展开更多
The specification of germ cells in zebrafish mostly relies on an inherited mechanism by which localized maternal determinants,called germ plasm,confer germline fate in the early embryo.Extensive studies have partially...The specification of germ cells in zebrafish mostly relies on an inherited mechanism by which localized maternal determinants,called germ plasm,confer germline fate in the early embryo.Extensive studies have partially allowed the identification of key regulators governing germ plasm formation and subsequent germ cell development.RNA-binding proteins,acting in concert with other germ plasm components,play essential roles in the organization of the germ plasm and the specification,migration,maintenance,and differentiation of primordial germ cells.The loss of their functions impairs germ cell formation and causes sterility or sexual conversion.Evidence is emerging that they instruct germline development through differential regulation of mRNA fates in somatic and germ cells.However,the challenge remains to decipher the complex interplay of maternal germ plasm components in germ plasm compartmentalization and germ cell specification.Because failure to control the developmental outcome of germ cells disrupts the formation of gametes,it is important to gain a complete picture of regulatory mechanisms operating in the germ cell lineage.This review sheds light on the contributions of RNA-binding proteins to germ cell development in zebrafish and highlights intriguing questions that remain open for future investigation.展开更多
Cold-inducible RNA-binding protein(CIRP), a key regulatory protein, could be facilitated by mild hypothermia in the brain, heart and liver. This study observed the effects of mild hypothermia at 31 ± 0.5℃ on t...Cold-inducible RNA-binding protein(CIRP), a key regulatory protein, could be facilitated by mild hypothermia in the brain, heart and liver. This study observed the effects of mild hypothermia at 31 ± 0.5℃ on traumatic brain injury in rats. Results demonstrated that mild hypothermia suppressed apoptosis in the cortex, hippocampus and hypothalamus, facilitated CIRP m RNA and protein expression in these regions, especially in the hypothalamus. The anti-apoptotic effect of mild hypothermia disappeared after CIRP silencing. There was no correlation between mitogen-activated extracellular signal-regulated kinase activation and CIRP silencing. CIRP silencing inhibited extracellular signal-regulated kinase-1/2 activation. These indicate that CIRP inhibits apoptosis by affecting extracellular signal-regulated kinase-1/2 activation, and exerts a neuroprotective effect during mild hypothermia for traumatic brain injury.展开更多
During vegetative development, higher plants continuously form new leaves in regular spatial and temporal patterns. Mutants with abnormal leaf developmental patterns not only provide a great insight into understanding...During vegetative development, higher plants continuously form new leaves in regular spatial and temporal patterns. Mutants with abnormal leaf developmental patterns not only provide a great insight into understanding the regulatory mechanism of plant architecture, but also enrich the ways to its modification by which crop yield could be improved. Here, we reported the characterization of the rice leafy-head2 (lhd2) mutant that exhibits shortened plastochron, dwarfism, reduced tiller number, and failure of phase transition from vegetative to reproductive growth. Anatomical and histological study revealed that the rapid emergence of leaves in lhd2 was resulted from the rapid initiation of leaf primordia whereas the reduced tiller number was a consequence of the suppression of the tiller bud outgrowth. The molecular and genetic analysis showed that LHD2 encodes a putative RNA binding protein with 67% similarity to maize TEl. Comparison of genome-scale expression profiles between wild-type and lhd2 plants suggested that LHD2 may regulate rice shoot development through KNOXand hormone-related genes. The similar phenotypes caused by LHD2 mutation and the conserved expression pattern of LHD2 indicated a conserved mechanism in controlling the temporal leaf initiation in grass.展开更多
Cold-inducible RNA-binding protein (CIRP) is an RNA-binding protein that is expressed in normal testes and downregulated after heat stress caused by cryptorchidism, varicocele or environmental temperatures. The purp...Cold-inducible RNA-binding protein (CIRP) is an RNA-binding protein that is expressed in normal testes and downregulated after heat stress caused by cryptorchidism, varicocele or environmental temperatures. The purpose of this study was to investigate the functions of CIRP in the testes. We employed RNAi technique to knock down the expression of CIRP in the testes, and performed haematoxylin and eosin staining to evaluate morphological changes following knockdown. Germ cell apoptosis was examined by terminal deoxynucleotidal transferase-mediated dUTP nick end labelling (TUNEL) assay, and mitogen-activated protein kinase (MAPK) signalling pathways were investigated by Western blotting to determine the possible mechanism of apoptosis. We found that using siRNA is a feasible and reliable method for knocking down gene expression in the testes. Compared to controls, the mean seminiferous tubule diameter (MSTD) and the thickness of the germ cell layers decreased following siRNA treatment, whereas the percentage of apoptotic seminiferous tubules increased. The p44/p42, p38 and SAPK/JNK MAPK pathways were activated after downregulation of CIRP. In conclusion, we discovered that downregulation of CIRP resulted in increased germ cell apoptosis, possibly viathe activation of the p44/p42, p38 and SAPK/JNK MAPK pathways.展开更多
Plants have developed many signals and specific genes' regulations at both transcriptional and post-transcriptional levels in order to tolerate and adapt to various environmental stresses. RNA-binding proteins (RBPs...Plants have developed many signals and specific genes' regulations at both transcriptional and post-transcriptional levels in order to tolerate and adapt to various environmental stresses. RNA-binding proteins (RBPs) play crucial roles in the post- transcriptional regulation via mRNA splicing, polyadenylation, sequence editing, transport, mRNA stability, mRNA localization, and translation. In this paper, four cDNAs of glycine-rich RNA-binding proteins (GR-RBPs), named NtRGP-la, -lb, -2, and -3, were isolated from Nicotiana tabacum by RT-PCR analysis, and special emphases were given to the sequences alignment, phylogenetic analysis and gene expression. Sequences alignment revealed minor difference of cDNA sequences, but no difference of deduced proteins between N. sylvestris and N. tabacum. Phylogenetic alignment revealed that four cDNAs in tobacco were clustered into two different groups. NtRGP-2 and -3 were evolutionarily closest to Arabidopsis GR-RBPs genes and related to animal GR-RBPs genes, while NtRGP-la and -lb were closest to Gramineae GR-RBPs genes. The expression analyses of these four NtRGPs in response to different abiotic stresses revealed the similar expression pattern. Moreover, the four NtRGPs, especially NtRGP-la and NtRGP-3, were strongly induced by stresses including water, wound, cold, and high temperature, weakly induced by PEG, drought and SA, while reduced by NaC1 and unaffected by ABA treatment. The fact that all of these abiotic stresses included in our experiments affected the water balance and resulted in osmotic stress on cellular level, suggests that NtRGPs in tobacco should be a family of crucial osmosis-related proteins, and may play a key role in signal transduction with ABA-independent pathway under abiotic stresses.展开更多
Taking advantage of the fast-growing knowledge of RNA-binding proteins(RBPs)we review the signature of downregulated genes for RBPs in the transcriptome of induced pluripotent stem cell neurons(iNeurons)modelling the ...Taking advantage of the fast-growing knowledge of RNA-binding proteins(RBPs)we review the signature of downregulated genes for RBPs in the transcriptome of induced pluripotent stem cell neurons(iNeurons)modelling the neurodevelopmental Rubinstein Taybi Syndrome(RSTS)caused by mutations in the genes encoding CBP/p300 acetyltransferases.We discuss top and functionally connected downregulated genes sorted to“RNA processing”and“Ribonucleoprotein complex biogenesis”Gene Ontology clusters.The first set of downregulated RBPs includes members of hnRNHP(A1,A2B1,D,G,H2-H1,MAGOHB,PAPBC),core subunits of U small nuclear ribonucleoproteins and Serine-Arginine splicing regulators families,acting in precursor messenger RNA alternative splicing and processing.Consistent with literature findings on reduced transcript levels of serine/arginine repetitive matrix 4(SRRM4)protein,the main regulator of the neural-specific microexons splicing program upon depletion of Ep300 and Crebbp in mouse neurons,RSTS iNeurons show downregulated genes for proteins impacting this network.We link downregulated genes to neurological disorders including the new HNRNPH1-related intellectual disability syndrome with clinical overlap to RSTS.The set of downregulated genes for Ribosome biogenesis includes several components of ribosomal subunits and nucleolar proteins,such NOP58 and fibrillarin that form complexes with snoRNAs with a central role in guiding post-transcriptional modifications needed for rRNA maturation.These nucleolar proteins are“dual”players as fibrillarin is also required for epigenetic regulation of ribosomal genes and conversely NOP58-associated snoRNA levels are under the control of NOP58 interactor BMAL1,a transcriptional regulator of the circadian rhythm.Additional downregulated genes for“dual specificity”RBPs such as RUVBL1 and METTL1 highlight the links between chromatin and the RBP-ome and the contribution of perturbations in their cross-talk to RSTS.We underline the hub position of CBP/p300 in chromatin regulation,the impact of its defect on neurons’post-transcriptional regulation of gene expression and the potential use of epidrugs in therapeutics of RBP-caused neurodevelopmental disorders.展开更多
Objective To construct and verificate an RNA-binding protein(RBP)-associated prognostic model for gliomas using integrated bioinformatics analysis.Methods RNA-sequencing and clinic pathological data of glioma patients...Objective To construct and verificate an RNA-binding protein(RBP)-associated prognostic model for gliomas using integrated bioinformatics analysis.Methods RNA-sequencing and clinic pathological data of glioma patients from The Cancer Genome Atlas(TCGA)database and the Chinese Glioma Genome Atlas database(CGGA)were downloaded.The aberrantly expressed RBPs were investigated between gliomas and normal samples in TCGA database.We then identified prognosis related hub genes and constructed a prognostic model.This model was further validated in the CGGA-693 and CGGA-325 cohorts.Results Totally 174 differently expressed genes-encoded RBPs were identified,containing 85 down-regulated and 89 up-regulated genes.We identified five genes-encoded RBPs(ERI1,RPS2,BRCA1,NXT1,and TRIM21)as prognosis related key genes and constructed a prognostic model.Overall survival(OS)analysis revealed that the patients in the high-risk subgroup based on the model were worse than those in the low-risk subgroup.The area under the receiver operator characteristic curve(AUC)of the prognostic model was 0.836 in the TCGA dataset and 0.708 in the CGGA-693 dataset,demonstrating a favorable prognostic model.Survival analyses of the five RBPs in the CGGA-325 cohort validated the findings.A nomogram was constructed based on the five genes and validated in the TCGA cohort,confirming a promising discriminating ability for gliomas.Conclusion The prognostic model of the five RBPs might serve as an independent prognostic algorithm for gliomas.展开更多
Xenopus ZFP36L1(zinc finger protein 36,C3H type-like 1)belongs to the ZFP36 family of RNA-binding proteins,which contains two characteristic tandem CCCH-type zinc-finger domains.The ZFP36 proteins can bind AU-rich ele...Xenopus ZFP36L1(zinc finger protein 36,C3H type-like 1)belongs to the ZFP36 family of RNA-binding proteins,which contains two characteristic tandem CCCH-type zinc-finger domains.The ZFP36 proteins can bind AU-rich elements in 3'untranslated regions of target mRNAs and promote their turnover.However,the expression and role of ZFP36 genes during neural development in Xenopus embryos remains largely unknown.The present study showed that Xenopus ZFP36L1 was expressed at the dorsal part of the forebrain,forebrain-midbrain boundary,and midbrain-hindbrain boundary from late neurula stages to tadpole stages of embryonic development.Overexpression of XZFP36L1 in Xenopus embryos inhibited neural induction and differentiation,leading to severe neural tube defects.The function of XZP36L1 requires both its zinc finger and C terminal domains,which also affect its subcellular localization.These results suggest that XZFP36L1 is likely involved in neural development in Xenopus and might play an important role in post-transcriptional regulation.展开更多
Xenopus ZFP36L1 (zinc finger protein 36, C3H type-like 1) belongs to the ZFP36 family of RNA-binding proteins, which contains two characteristic tandem CCCH-type zinc-finger domains. The ZFP36 proteins can bind AU-r...Xenopus ZFP36L1 (zinc finger protein 36, C3H type-like 1) belongs to the ZFP36 family of RNA-binding proteins, which contains two characteristic tandem CCCH-type zinc-finger domains. The ZFP36 proteins can bind AU-rich elements in 3' untranslated regions of target mRNAs and promote their turnover. However, the expression and role of ZFP36 genes during neural development in Xenopus embryos remains largely unknown. The present study showed that Xenopus ZFP36L1 was expressed at the dorsal part of the forebrain, forebrain-midbrain boundary, and midbrain-hindbrain boundary from late neurula stages to tadpole stages of embryonic development. Overexpression of XZFP36L1 in Xenopus embryos inhibited neural induction and differentiation, leading to severe neural tube defects. The function of XZP36L1 requires both its zinc finger and C terminal domains, which also affect its subcellular localization. These results suggest that XZFP36L1 is likely involved in neural development in Xenopus and might play an important role in post-transcriptional regulation.展开更多
RNA-binding proteins(RBPs) are key regulators of gene expression. There are several distinct families of RBPs and they are involved in the cellular response to environmental changes, cell differentiation and cell deat...RNA-binding proteins(RBPs) are key regulators of gene expression. There are several distinct families of RBPs and they are involved in the cellular response to environmental changes, cell differentiation and cell death. The RBPs can differentially combine with RNA molecules and form ribonucleoprotein(RNP) complexes, defining the function and fate of RNA molecules in the cell. RBPs display diverse domains that allow them to be categorized into distinct families. They play important roles in the cellular response to physiological stress, in cell differentiation, and, it is believed, in the cellular localization of certain mRNAs. In several protozoa, a physiological stress(nutritional, temperature or pH) triggers differentiation to a distinct developmental stage. Most of the RBPs characterized in protozoa arise from trypanosomatids. In these protozoa gene expression regulation is mostly post-transcriptional, which suggests that some RBPs might display regulatory functions distinct from those described for other eukaryotes. mRNA stability can be altered as a response to stress. Transcripts are sequestered to RNA granules that ultimately modulate their availability to the translation machinery, storage or degradation, depending on the associated proteins. These aggregates of mRNPs containing mRNAs that are not being translated colocalize in cytoplasmic foci, and their numbers and size vary according to cell conditions such as oxidative stress, nutritional status and treatment with drugs that inhibit translation.展开更多
RNA-binding proteins(RBPs)accompany RNA from synthesis to decay,mediating every aspect of RNA metabolism and impacting diverse cellular and developmental processes in eukaryotes.Many RBPs undergo phase separation alon...RNA-binding proteins(RBPs)accompany RNA from synthesis to decay,mediating every aspect of RNA metabolism and impacting diverse cellular and developmental processes in eukaryotes.Many RBPs undergo phase separation along with their bound RNA to form and function in dynamic membraneless biomolecular condensates for spatiotemporal coordination or regulation of RNA metabolism.Increasing evidence suggests that phase-separating RBPs with RNA-binding domains and intrinsically disordered regions play important roles in plant development and stress adaptation.Here,we summarize the current knowledge about how dynamic partitioning of RBPs into condensates controls plant development and enables sensing of experimental changes to confer growth plasticity under stress conditions,with a focus on the dynamics and functional mechanisms of RBP-rich nuclear condensates and cytoplasmic granules in mediating RNA metabolism.We also discuss roles of multiple factors,such as environmental signals,protein modifications,and N6-methyladenosine RNA methylation,in modulating the phase separation behaviors of RBPs,and highlight the prospects and challenges for future research on phase-separating RBPs in crops.展开更多
Background:Extracellular cold-inducible RNA-binding protein(eCIRP)plays a vital role in the inflammatory response during cerebral ischaemia.However,the potential role and regulatory mechanism of eCIRP in traumatic bra...Background:Extracellular cold-inducible RNA-binding protein(eCIRP)plays a vital role in the inflammatory response during cerebral ischaemia.However,the potential role and regulatory mechanism of eCIRP in traumatic brain injury(TBI)remain unclear.Here,we explored the effect of eCIRP on the development of TBI using a neural-specific CIRP knockout(KO)mouse model to determine the contribution of eCIRP to TBI-induced neuronal injury and to discover novel therapeutic targets for TBI.Methods:TBI animal models were generated in mice using the fluid percussion injury method.Microglia or neuron lines were subjected to different drug interventions.Histological and functional changes were observed by immunofluorescence and neurobehavioural testing.Apoptosis was examined by a TdT-mediated dUTP nick end labelling assay in vivo or by an annexin-V assay in vitro.Ultrastructural alterations in the cells were examined via electron microscopy.Tissue acetylation alterations were identified by non-labelled quantitative acetylation via proteomics.Protein or mRNA expression in cells and tissues was determined by western blot analysis or realtime quantitative polymerase chain reaction.The levels of inflammatory cytokines and mediators in the serum and supernatants were measured via enzyme-linked immunoassay.Results:There were closely positive correlations between eCIRP and inflammatory mediators,and between eCIRP and TBI markers in human and mouse serum.Neural-specific eCIRP KO decreased hemispheric volume loss and neuronal apoptosis and alleviated glial cell activation and neurological function damage after TBI.In contrast,eCIRP treatment resulted in endoplasmic reticulum disruption and ER stress(ERS)-related death of neurons and enhanced inflammatory mediators by glial cells.Mechanistically,we noted that eCIRP-induced neural apoptosis was associated with the activation of the protein kinase RNA-like ER kinase-activating transcription factor 4(ATF4)-C/EBP homologous protein signalling pathway,and that eCIRP-induced microglial inflammation was associated with histone H3 acetylation and theα7 nicotinic acetylcholine receptor.Conclusions:These results suggest that TBI obviously enhances the secretion of eCIRP,thereby resulting in neural damage and inflammation in TBI.eCIRP may be a biomarker of TBI that can mediate the apoptosis of neuronal cells through the ERS apoptotic pathway and regulate the inflammatory response of microglia via histone modification.展开更多
With the development of proteomics and epigenetics,a large number of RNA-binding proteins(RBPs)have been discovered in recent years,and the inter-action between long non-coding RNAs(lncRNAs)and RBPs has also received ...With the development of proteomics and epigenetics,a large number of RNA-binding proteins(RBPs)have been discovered in recent years,and the inter-action between long non-coding RNAs(lncRNAs)and RBPs has also received increasing attention.It is extremely important to conduct in-depth research on the lncRNA-RBP interaction network,especially in the context of its role in the occurrence and development of cancer.Increasing evidence has demonstrated that lncRNA-RBP interactions play a vital role in cancer progression;there-fore,targeting these interactions could provide new insights for cancer drug discovery.In this review,we discussed how lncRNAs can interact with RBPs to regulate their localization,modification,stability,and activity and discussed the effects of RBPs on the stability,transport,transcription,and localization of lncRNAs.Moreover,we explored the regulation and influence of these inter-actions on lncRNAs,RBPs,and downstream pathways that are related to can-cer development,such as N6-methyladenosine(m6A)modification of lncRNAs.In addition,we discussed how the lncRNA-RBP interaction network regulates cancer cell phenotypes,such as proliferation,apoptosis,metastasis,drug resis-tance,immunity,tumor environment,and metabolism.Furthermore,we sum-marized the therapeutic strategies that target the lncRNA-RBP interaction net-work.Although these treatments are still in the experimental stage and various theories and processes are still being studied,we believe that these strategiesmay provide new ideas for cancer treatment.展开更多
RNA-binding proteins (RBPs) play an important role in post-transcriptional gene regulation. However, the functions of RBPs in plants remain poorly understood. Maize kernel mutant dek42 has small defective kernels and ...RNA-binding proteins (RBPs) play an important role in post-transcriptional gene regulation. However, the functions of RBPs in plants remain poorly understood. Maize kernel mutant dek42 has small defective kernels and lethal seedlings. Dek42 was cloned by Mutator tag isolation and further confirmed by an independent mutant allele and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 materials. Dek42 encodes an RRM_RBM48 type RNA-binding protein that localizes to the nucleus. Dek42 is constitutively expressed in various maize tissues. The dek42 mutation caused a significant reduction in the accumulation of DEK42 protein in mutant kernels. RNA-seq analysis showed that the dek42 mutation significantly disturbed the expression of thousands of genes during maize kernel development. Sequence analysis also showed that the dek42 mutation significantly changed alternative splicing in expressed genes, which were especially enriched for the U12-type intron-retained type. Yeast two-hybrid screening identified SF3a1 as a DEK42-interacting protein. DEK42 also interacts with the spliceosome component U1-70K. These results suggested that DEK42 participates in the regulation of pre-messenger RNA splicing through its interaction with other spliceosome components. This study showed the function of a newly identified RBP and provided insights into alternative splicing regulation during maize kernel development.展开更多
文摘Ma et al recently reported in the World Journal of Diabetes that ferroptosis occurs in osteoblasts under high glucose conditions,reflecting diabetes pathology.This condition could be protected by the upregulation of the gene encoding polycytosine RNA-binding protein 1(PCBP1).Additionally,Ma et al used a lentivirus infection system to express PCBP1.As the authors’method of administration can be improved in terms of stability and cost,we propose delivering PCBP1 to treat type 2 diabetic osteoporosis by encapsulating it in protein nanoparticles.First,PCBP1 is small and druggable.Second,intravenous injection can help deliver PCBP1 across the mucosa while avoiding acid and enzyme-catalyzed degradation.Furthermore,incorporating PCBP1 into nanoparticles prevents its interaction with water or oxygen and protects PCBP1’s structure and activity.Notably,the safety of the protein materials and the industrialization techniques for large-scale production of protein nanoparticles must be comprehensively investigated before clinical application.
文摘This article summarizes recent advances in the understanding of RNA-binding proteins(RBPs),with a focus on their roles in exercise-induced mRNA regulation and their implications for schizophrenia(SZ).RBPs are critical regulators of mRNA stability,splicing,transport,translation,and degradation,directly influencing gene expression through sequence-and structure-specific binding.In the nervous system,RBPs sustain synaptic plasticity,neural development,and neuronal homeostasis.Emerging evidence shows that exercise modulates the expression and activity of RBPs,thereby influencing mRNA translation and neurotransmitter signaling,which may underlie its beneficial effects on brain function.Dysregulation of specific RBPs has been identified in SZ,implicating them in disrupted synaptic transmission,impaired plasticity,and neuroinflammation.RBPs involved in memory and emotional regulation show marked dysfunction in SZ patients.Some RBPs have been proposed as potential biomarkers for early diagnosis and treatment monitoring.Moreover,therapeutic modulation of RBPs,through pharmacological or behavioral interventions such as exercise,may restore neuronal function by targeting post-transcriptional gene regulation.Exercise,as a non-invasive modulator of RBP expression,holds promise as an adjunctive strategy in SZ treatment,particularly in early stages.Further research into RBP-mediated pathways may offer novel insights into SZ pathophysiology and inform the development of targeted interventions.
基金supported by the National Natural Science Foundation of China(Grant Nos.32000377,32172037,and 32472211)the Biological Breeding-National Science and Technology Major Project,China(Grant No.2023ZD04068)+2 种基金the Fundamental Research Funds for the Central Universities,China(Grant No.KJQN202103)the open funds of the State Key Laboratory of Crop Genetics&Germplasm Enhancement and Utilization,China(Grant No.ZW202401)the Cyrus Tang Innovation Center for Crop Seed Industry,China.
文摘Rice grain yield is primarily determined by three key agronomic traits:panicle number,grain number per panicle,and grain weight(GW).However,the inherent tradeoffs among these yield components remain a persistent challenge in rice breeding programs.Notably,compared with GW,brown rice weight(BRW)provides a more direct metric associated with actual grain yield potential.In this study,we conducted a two-year replicated genome-wide association study to elucidate the genetic architecture of BRW and identify new loci regulating GW.Among seven consistently detected loci across experimental replicates,four were not co-localized with previously reported genes associated with BRW or GW traits.BRW1.1,one of the four newly identified loci,was found to encode a novel RNA-binding protein.Functional characterization revealed that BRW1.1 acts as a negative regulator of BRW,potentially through modulating mRNA translation processes.Intriguingly,through integrated analysis of mutant phenotypes and haplotype variations,we demonstrated that BRW1.1 mediates the physiological tradeoff between GW and panicle number.This study not only delineates the genetic determinants of BRW but also identifies BRW1.1 as a promising molecular target for breaking the yield component tradeoff in precision rice breeding.
基金supported by JSPS(No.22H00350 to M.U.)Ministry of Health&Welfare,Republic of Korea(Korea Health Technology R&D Project through the Korea Health Industry Development Institute,No.HI19C1234 to H.K.)+3 种基金JST(the Establishment of University Fellowships towards the Creation of Science Technology Innovation,No.JPMJFS2123 to K.T.)supported and inspired by the International Collaborative Research Program of Institute for Chemical Research,Kyoto University(No.2024-84)Kyoto University On-Site Lab(Fudan-Kyoto Shanghai Lab)the international and interdisciplinary environments of JSPS CORE-to-CORE Program“Asian Chemical Biology Initiative”.
文摘Biomolecular condensates,also known as membraneless organelles,play a crucial role in cellular organization by concentrating or sequestering biomolecules.Despite their importance,synthetically mimicking these organelles using non-peptidic small organic molecules has posed a significant challenge.The present study reports the discovery of D008,a self-assembling small molecule that sequesters a unique subset of RNA-binding proteins.Analysis and screening of a comprehensive collection of approximately 1 million compounds in the Chinese National Compound Library(Shanghai)identified 44 self-assembling small molecules in aqueous solutions.Subsequent screening of the focused library,coupled with proteome analysis,led to the discovery of D008 as a small organic molecule with the ability to condensate a specific subset of RNA-binding proteins.In vitro experiments demonstrated that the D008-induced sequestration of RNA-binding proteins impeded mRNA translation.D008 may offer a unique opportunity for studying the condensations of RNA-binding proteins and for developing an unprecedented class of small molecules that control gene expression.
文摘BACKGROUND Cold-inducible RNA-binding protein(CIRP)is related to a family of stressinduced RNA-binding proteins.It is primarily found in the nucleus,where it regulates transcription.Under stress,CIRP translocates to the cytoplasm where it modulates translation;a subset is secreted as extracellular CIRP(eCIRP)which is a damage-associated molecular pattern(DAMP)molecule that stimulates the production of inflammatory mediators.Elevated blood eCIRP levels may foster immune tolerance and facilitate tumor growth.Increased CIRP levels have been noted in various malignancies including colorectal cancer(CRC).This study’s objective was to determine plasma eCIRP levels before and after minimally invasive colorectal resection(MICR)for CRC.AIM To assess plasma eCIRP levels prior to and following minimally invasive colorectal resection in the context of cancer pathology.METHODS MICR patients from an IRB-approved data/tissue bank for whom plasma samples were available were eligible.Plasma specimens were obtained preoperatively(preop)and at least 3 time’s postop[between postoperative day(POD)1-41];late samples were grouped into 7-day blocks and were considered separate time points.eCIRP levels were assessed via enzyme-linked immunosorbent assay(pg/mL)and results presented as mean±SD,analysis with Wilcoxon paired t-test.RESULTS A total of 83 CRC patients who underwent MICR[colon 66%,rectal 34%;laparoscopic-assisted(LA),70%;handassisted laparoscopic(HAL),30%]were studied.The mean preop eCIRP level was 896.8±757.0 pg/mL.Elevations in mean plasma levels(P=<0.001)were noted on POD1(2549±2632 pg/mL,n=83),POD3(1871±1362 pg/mL,n=77),POD7-13(1788±1403 pg/mL,n=57),POD14-20(1473±738.8 pg/mL,n=30),and POD21-27(1681±1375 pg/mL,n=21).No significant differences were noted at POD 28-41.Higher values were noted in the HAL’s(vs LA)group,however,there were more rectal cancers in the former.CONCLUSION Elevated plasma eCIRP levels persist for a month post MICR for CRC(change from baseline,77%-184%);highest values seen on POD1.The initial surge may be due to the acute inflammatory response while later elevations may be related to wound healing and remodeling.The higher levels noted in the HAL’s group(with greater IL and more rectal cases)suggest the extent of surgical trauma impacts eCIRP levels.Further investigations are needed.
基金Supported by the National Natural Science Foundation of China,No.81471094 and No.82202743.
文摘BACKGROUND Recently,type 2 diabetic osteoporosis(T2DOP)has become a research hotspot for the complications of diabetes,but the specific mechanism of its occurrence and development remains unknown.Ferroptosis caused by iron overload is con-sidered an important cause of T2DOP.Polycytosine RNA-binding protein 1(PCBP1),an iron ion chaperone,is considered a protector of ferroptosis.AIM To investigate the existence of ferroptosis and specific role of PCBP1 in the development of type 2 diabetes.METHODS A cell counting kit-8 assay was used to detect changes in osteoblast viability under high glucose(HG)and/or ferroptosis inhibitors at different concentrations and times.Transmission electron microscopy was used to examine the morpho-logical changes in the mitochondria of osteoblasts under HG,and western blotting was used to detect the expression levels of PCBP1,ferritin,and the ferroptosis-related protein glutathione peroxidase 4(GPX4).A lentivirus silenced and overex-pressed PCBP1.Western blotting was used to detect the expression levels of the osteoblast functional proteins osteoprotegerin(OPG)and osteocalcin(OCN),whereas flow cytometry was used to detect changes in reactive oxygen species(ROS)levels in each group.RESULTS Under HG,the viability of osteoblasts was considerably decreased,the number of mitochondria undergoing atrophy was considerably increased,PCBP1 and ferritin expression levels were increased,and GPX4 expression was decreased.Western blotting results demonstrated that infection with lentivirus overexpressing PCBP1,increased the expression levels of ferritin,GPX4,OPG,and OCN,compared with the HG group.Flow cytometry results showed a reduction in ROS,and an opposite result was obtained after silencing PCBP1.CONCLUSION PCBP1 may protect osteoblasts and reduce the harm caused by ferroptosis by promoting ferritin expression under a HG environment.Moreover,PCBP1 may be a potential therapeutic target for T2DOP.
文摘The specification of germ cells in zebrafish mostly relies on an inherited mechanism by which localized maternal determinants,called germ plasm,confer germline fate in the early embryo.Extensive studies have partially allowed the identification of key regulators governing germ plasm formation and subsequent germ cell development.RNA-binding proteins,acting in concert with other germ plasm components,play essential roles in the organization of the germ plasm and the specification,migration,maintenance,and differentiation of primordial germ cells.The loss of their functions impairs germ cell formation and causes sterility or sexual conversion.Evidence is emerging that they instruct germline development through differential regulation of mRNA fates in somatic and germ cells.However,the challenge remains to decipher the complex interplay of maternal germ plasm components in germ plasm compartmentalization and germ cell specification.Because failure to control the developmental outcome of germ cells disrupts the formation of gametes,it is important to gain a complete picture of regulatory mechanisms operating in the germ cell lineage.This review sheds light on the contributions of RNA-binding proteins to germ cell development in zebrafish and highlights intriguing questions that remain open for future investigation.
基金supported by the National Natural Science Foundation of China,No.81303091
文摘Cold-inducible RNA-binding protein(CIRP), a key regulatory protein, could be facilitated by mild hypothermia in the brain, heart and liver. This study observed the effects of mild hypothermia at 31 ± 0.5℃ on traumatic brain injury in rats. Results demonstrated that mild hypothermia suppressed apoptosis in the cortex, hippocampus and hypothalamus, facilitated CIRP m RNA and protein expression in these regions, especially in the hypothalamus. The anti-apoptotic effect of mild hypothermia disappeared after CIRP silencing. There was no correlation between mitogen-activated extracellular signal-regulated kinase activation and CIRP silencing. CIRP silencing inhibited extracellular signal-regulated kinase-1/2 activation. These indicate that CIRP inhibits apoptosis by affecting extracellular signal-regulated kinase-1/2 activation, and exerts a neuroprotective effect during mild hypothermia for traumatic brain injury.
文摘During vegetative development, higher plants continuously form new leaves in regular spatial and temporal patterns. Mutants with abnormal leaf developmental patterns not only provide a great insight into understanding the regulatory mechanism of plant architecture, but also enrich the ways to its modification by which crop yield could be improved. Here, we reported the characterization of the rice leafy-head2 (lhd2) mutant that exhibits shortened plastochron, dwarfism, reduced tiller number, and failure of phase transition from vegetative to reproductive growth. Anatomical and histological study revealed that the rapid emergence of leaves in lhd2 was resulted from the rapid initiation of leaf primordia whereas the reduced tiller number was a consequence of the suppression of the tiller bud outgrowth. The molecular and genetic analysis showed that LHD2 encodes a putative RNA binding protein with 67% similarity to maize TEl. Comparison of genome-scale expression profiles between wild-type and lhd2 plants suggested that LHD2 may regulate rice shoot development through KNOXand hormone-related genes. The similar phenotypes caused by LHD2 mutation and the conserved expression pattern of LHD2 indicated a conserved mechanism in controlling the temporal leaf initiation in grass.
文摘Cold-inducible RNA-binding protein (CIRP) is an RNA-binding protein that is expressed in normal testes and downregulated after heat stress caused by cryptorchidism, varicocele or environmental temperatures. The purpose of this study was to investigate the functions of CIRP in the testes. We employed RNAi technique to knock down the expression of CIRP in the testes, and performed haematoxylin and eosin staining to evaluate morphological changes following knockdown. Germ cell apoptosis was examined by terminal deoxynucleotidal transferase-mediated dUTP nick end labelling (TUNEL) assay, and mitogen-activated protein kinase (MAPK) signalling pathways were investigated by Western blotting to determine the possible mechanism of apoptosis. We found that using siRNA is a feasible and reliable method for knocking down gene expression in the testes. Compared to controls, the mean seminiferous tubule diameter (MSTD) and the thickness of the germ cell layers decreased following siRNA treatment, whereas the percentage of apoptotic seminiferous tubules increased. The p44/p42, p38 and SAPK/JNK MAPK pathways were activated after downregulation of CIRP. In conclusion, we discovered that downregulation of CIRP resulted in increased germ cell apoptosis, possibly viathe activation of the p44/p42, p38 and SAPK/JNK MAPK pathways.
基金funded by the National Natural Science Foundation of China (30560062)the Natural Science Foundation of Yunnan Province, China (2003C0342M)the Science-Technology Foundation of Tobacco Company of Yunnan Province, China (06A02)
文摘Plants have developed many signals and specific genes' regulations at both transcriptional and post-transcriptional levels in order to tolerate and adapt to various environmental stresses. RNA-binding proteins (RBPs) play crucial roles in the post- transcriptional regulation via mRNA splicing, polyadenylation, sequence editing, transport, mRNA stability, mRNA localization, and translation. In this paper, four cDNAs of glycine-rich RNA-binding proteins (GR-RBPs), named NtRGP-la, -lb, -2, and -3, were isolated from Nicotiana tabacum by RT-PCR analysis, and special emphases were given to the sequences alignment, phylogenetic analysis and gene expression. Sequences alignment revealed minor difference of cDNA sequences, but no difference of deduced proteins between N. sylvestris and N. tabacum. Phylogenetic alignment revealed that four cDNAs in tobacco were clustered into two different groups. NtRGP-2 and -3 were evolutionarily closest to Arabidopsis GR-RBPs genes and related to animal GR-RBPs genes, while NtRGP-la and -lb were closest to Gramineae GR-RBPs genes. The expression analyses of these four NtRGPs in response to different abiotic stresses revealed the similar expression pattern. Moreover, the four NtRGPs, especially NtRGP-la and NtRGP-3, were strongly induced by stresses including water, wound, cold, and high temperature, weakly induced by PEG, drought and SA, while reduced by NaC1 and unaffected by ABA treatment. The fact that all of these abiotic stresses included in our experiments affected the water balance and resulted in osmotic stress on cellular level, suggests that NtRGPs in tobacco should be a family of crucial osmosis-related proteins, and may play a key role in signal transduction with ABA-independent pathway under abiotic stresses.
基金This work was supported by Italian Ministery of Health RC 08C921 to LL,Istituto Auxologico Italiano,IRCCs.
文摘Taking advantage of the fast-growing knowledge of RNA-binding proteins(RBPs)we review the signature of downregulated genes for RBPs in the transcriptome of induced pluripotent stem cell neurons(iNeurons)modelling the neurodevelopmental Rubinstein Taybi Syndrome(RSTS)caused by mutations in the genes encoding CBP/p300 acetyltransferases.We discuss top and functionally connected downregulated genes sorted to“RNA processing”and“Ribonucleoprotein complex biogenesis”Gene Ontology clusters.The first set of downregulated RBPs includes members of hnRNHP(A1,A2B1,D,G,H2-H1,MAGOHB,PAPBC),core subunits of U small nuclear ribonucleoproteins and Serine-Arginine splicing regulators families,acting in precursor messenger RNA alternative splicing and processing.Consistent with literature findings on reduced transcript levels of serine/arginine repetitive matrix 4(SRRM4)protein,the main regulator of the neural-specific microexons splicing program upon depletion of Ep300 and Crebbp in mouse neurons,RSTS iNeurons show downregulated genes for proteins impacting this network.We link downregulated genes to neurological disorders including the new HNRNPH1-related intellectual disability syndrome with clinical overlap to RSTS.The set of downregulated genes for Ribosome biogenesis includes several components of ribosomal subunits and nucleolar proteins,such NOP58 and fibrillarin that form complexes with snoRNAs with a central role in guiding post-transcriptional modifications needed for rRNA maturation.These nucleolar proteins are“dual”players as fibrillarin is also required for epigenetic regulation of ribosomal genes and conversely NOP58-associated snoRNA levels are under the control of NOP58 interactor BMAL1,a transcriptional regulator of the circadian rhythm.Additional downregulated genes for“dual specificity”RBPs such as RUVBL1 and METTL1 highlight the links between chromatin and the RBP-ome and the contribution of perturbations in their cross-talk to RSTS.We underline the hub position of CBP/p300 in chromatin regulation,the impact of its defect on neurons’post-transcriptional regulation of gene expression and the potential use of epidrugs in therapeutics of RBP-caused neurodevelopmental disorders.
基金supported by the National Natural Science Foundation of China(No.82072795).
文摘Objective To construct and verificate an RNA-binding protein(RBP)-associated prognostic model for gliomas using integrated bioinformatics analysis.Methods RNA-sequencing and clinic pathological data of glioma patients from The Cancer Genome Atlas(TCGA)database and the Chinese Glioma Genome Atlas database(CGGA)were downloaded.The aberrantly expressed RBPs were investigated between gliomas and normal samples in TCGA database.We then identified prognosis related hub genes and constructed a prognostic model.This model was further validated in the CGGA-693 and CGGA-325 cohorts.Results Totally 174 differently expressed genes-encoded RBPs were identified,containing 85 down-regulated and 89 up-regulated genes.We identified five genes-encoded RBPs(ERI1,RPS2,BRCA1,NXT1,and TRIM21)as prognosis related key genes and constructed a prognostic model.Overall survival(OS)analysis revealed that the patients in the high-risk subgroup based on the model were worse than those in the low-risk subgroup.The area under the receiver operator characteristic curve(AUC)of the prognostic model was 0.836 in the TCGA dataset and 0.708 in the CGGA-693 dataset,demonstrating a favorable prognostic model.Survival analyses of the five RBPs in the CGGA-325 cohort validated the findings.A nomogram was constructed based on the five genes and validated in the TCGA cohort,confirming a promising discriminating ability for gliomas.Conclusion The prognostic model of the five RBPs might serve as an independent prognostic algorithm for gliomas.
基金National Natural Science Foundation of China(90919039,C120106)the National Institute for Basic Biology,Japan,for the Xl073b24 clone.
文摘Xenopus ZFP36L1(zinc finger protein 36,C3H type-like 1)belongs to the ZFP36 family of RNA-binding proteins,which contains two characteristic tandem CCCH-type zinc-finger domains.The ZFP36 proteins can bind AU-rich elements in 3'untranslated regions of target mRNAs and promote their turnover.However,the expression and role of ZFP36 genes during neural development in Xenopus embryos remains largely unknown.The present study showed that Xenopus ZFP36L1 was expressed at the dorsal part of the forebrain,forebrain-midbrain boundary,and midbrain-hindbrain boundary from late neurula stages to tadpole stages of embryonic development.Overexpression of XZFP36L1 in Xenopus embryos inhibited neural induction and differentiation,leading to severe neural tube defects.The function of XZP36L1 requires both its zinc finger and C terminal domains,which also affect its subcellular localization.These results suggest that XZFP36L1 is likely involved in neural development in Xenopus and might play an important role in post-transcriptional regulation.
基金Foundation items: This work was supported by National Natural Science Foundation of China (90919039 C120106) Acknowledgements We thank the National Institute for Basic Biology, Japan, for the X1073h24 clone.
文摘Xenopus ZFP36L1 (zinc finger protein 36, C3H type-like 1) belongs to the ZFP36 family of RNA-binding proteins, which contains two characteristic tandem CCCH-type zinc-finger domains. The ZFP36 proteins can bind AU-rich elements in 3' untranslated regions of target mRNAs and promote their turnover. However, the expression and role of ZFP36 genes during neural development in Xenopus embryos remains largely unknown. The present study showed that Xenopus ZFP36L1 was expressed at the dorsal part of the forebrain, forebrain-midbrain boundary, and midbrain-hindbrain boundary from late neurula stages to tadpole stages of embryonic development. Overexpression of XZFP36L1 in Xenopus embryos inhibited neural induction and differentiation, leading to severe neural tube defects. The function of XZP36L1 requires both its zinc finger and C terminal domains, which also affect its subcellular localization. These results suggest that XZFP36L1 is likely involved in neural development in Xenopus and might play an important role in post-transcriptional regulation.
文摘RNA-binding proteins(RBPs) are key regulators of gene expression. There are several distinct families of RBPs and they are involved in the cellular response to environmental changes, cell differentiation and cell death. The RBPs can differentially combine with RNA molecules and form ribonucleoprotein(RNP) complexes, defining the function and fate of RNA molecules in the cell. RBPs display diverse domains that allow them to be categorized into distinct families. They play important roles in the cellular response to physiological stress, in cell differentiation, and, it is believed, in the cellular localization of certain mRNAs. In several protozoa, a physiological stress(nutritional, temperature or pH) triggers differentiation to a distinct developmental stage. Most of the RBPs characterized in protozoa arise from trypanosomatids. In these protozoa gene expression regulation is mostly post-transcriptional, which suggests that some RBPs might display regulatory functions distinct from those described for other eukaryotes. mRNA stability can be altered as a response to stress. Transcripts are sequestered to RNA granules that ultimately modulate their availability to the translation machinery, storage or degradation, depending on the associated proteins. These aggregates of mRNPs containing mRNAs that are not being translated colocalize in cytoplasmic foci, and their numbers and size vary according to cell conditions such as oxidative stress, nutritional status and treatment with drugs that inhibit translation.
基金supported by the National Research Foundation Competitive Research Programme(NRF-CRP22-2019-0001)the intramural funding from Temasek Life Sciences Laboratory。
文摘RNA-binding proteins(RBPs)accompany RNA from synthesis to decay,mediating every aspect of RNA metabolism and impacting diverse cellular and developmental processes in eukaryotes.Many RBPs undergo phase separation along with their bound RNA to form and function in dynamic membraneless biomolecular condensates for spatiotemporal coordination or regulation of RNA metabolism.Increasing evidence suggests that phase-separating RBPs with RNA-binding domains and intrinsically disordered regions play important roles in plant development and stress adaptation.Here,we summarize the current knowledge about how dynamic partitioning of RBPs into condensates controls plant development and enables sensing of experimental changes to confer growth plasticity under stress conditions,with a focus on the dynamics and functional mechanisms of RBP-rich nuclear condensates and cytoplasmic granules in mediating RNA metabolism.We also discuss roles of multiple factors,such as environmental signals,protein modifications,and N6-methyladenosine RNA methylation,in modulating the phase separation behaviors of RBPs,and highlight the prospects and challenges for future research on phase-separating RBPs in crops.
基金supported by grants from the National Natural Science Foundation of China(82172124,82130062,82241062)the National Key Research and Development Program of China(No.2022YFA1104604)the Key Medical Innovation Program of the Chinese People’s Liberation Army(18CXZ026).
文摘Background:Extracellular cold-inducible RNA-binding protein(eCIRP)plays a vital role in the inflammatory response during cerebral ischaemia.However,the potential role and regulatory mechanism of eCIRP in traumatic brain injury(TBI)remain unclear.Here,we explored the effect of eCIRP on the development of TBI using a neural-specific CIRP knockout(KO)mouse model to determine the contribution of eCIRP to TBI-induced neuronal injury and to discover novel therapeutic targets for TBI.Methods:TBI animal models were generated in mice using the fluid percussion injury method.Microglia or neuron lines were subjected to different drug interventions.Histological and functional changes were observed by immunofluorescence and neurobehavioural testing.Apoptosis was examined by a TdT-mediated dUTP nick end labelling assay in vivo or by an annexin-V assay in vitro.Ultrastructural alterations in the cells were examined via electron microscopy.Tissue acetylation alterations were identified by non-labelled quantitative acetylation via proteomics.Protein or mRNA expression in cells and tissues was determined by western blot analysis or realtime quantitative polymerase chain reaction.The levels of inflammatory cytokines and mediators in the serum and supernatants were measured via enzyme-linked immunoassay.Results:There were closely positive correlations between eCIRP and inflammatory mediators,and between eCIRP and TBI markers in human and mouse serum.Neural-specific eCIRP KO decreased hemispheric volume loss and neuronal apoptosis and alleviated glial cell activation and neurological function damage after TBI.In contrast,eCIRP treatment resulted in endoplasmic reticulum disruption and ER stress(ERS)-related death of neurons and enhanced inflammatory mediators by glial cells.Mechanistically,we noted that eCIRP-induced neural apoptosis was associated with the activation of the protein kinase RNA-like ER kinase-activating transcription factor 4(ATF4)-C/EBP homologous protein signalling pathway,and that eCIRP-induced microglial inflammation was associated with histone H3 acetylation and theα7 nicotinic acetylcholine receptor.Conclusions:These results suggest that TBI obviously enhances the secretion of eCIRP,thereby resulting in neural damage and inflammation in TBI.eCIRP may be a biomarker of TBI that can mediate the apoptosis of neuronal cells through the ERS apoptotic pathway and regulate the inflammatory response of microglia via histone modification.
基金supported by the National Key Research andDevelopment Programof China(2021YFC2501000 and 2017YFA0505100)and the National Natural Science Foun-dation of China(31961160727,81973339,and 81773085).
文摘With the development of proteomics and epigenetics,a large number of RNA-binding proteins(RBPs)have been discovered in recent years,and the inter-action between long non-coding RNAs(lncRNAs)and RBPs has also received increasing attention.It is extremely important to conduct in-depth research on the lncRNA-RBP interaction network,especially in the context of its role in the occurrence and development of cancer.Increasing evidence has demonstrated that lncRNA-RBP interactions play a vital role in cancer progression;there-fore,targeting these interactions could provide new insights for cancer drug discovery.In this review,we discussed how lncRNAs can interact with RBPs to regulate their localization,modification,stability,and activity and discussed the effects of RBPs on the stability,transport,transcription,and localization of lncRNAs.Moreover,we explored the regulation and influence of these inter-actions on lncRNAs,RBPs,and downstream pathways that are related to can-cer development,such as N6-methyladenosine(m6A)modification of lncRNAs.In addition,we discussed how the lncRNA-RBP interaction network regulates cancer cell phenotypes,such as proliferation,apoptosis,metastasis,drug resis-tance,immunity,tumor environment,and metabolism.Furthermore,we sum-marized the therapeutic strategies that target the lncRNA-RBP interaction net-work.Although these treatments are still in the experimental stage and various theories and processes are still being studied,we believe that these strategiesmay provide new ideas for cancer treatment.
基金supported by the National Key Research and Development Program of China (2016YFD0101003)the National Natural Science Foundation of China (91635303 and 31425019)
文摘RNA-binding proteins (RBPs) play an important role in post-transcriptional gene regulation. However, the functions of RBPs in plants remain poorly understood. Maize kernel mutant dek42 has small defective kernels and lethal seedlings. Dek42 was cloned by Mutator tag isolation and further confirmed by an independent mutant allele and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 materials. Dek42 encodes an RRM_RBM48 type RNA-binding protein that localizes to the nucleus. Dek42 is constitutively expressed in various maize tissues. The dek42 mutation caused a significant reduction in the accumulation of DEK42 protein in mutant kernels. RNA-seq analysis showed that the dek42 mutation significantly disturbed the expression of thousands of genes during maize kernel development. Sequence analysis also showed that the dek42 mutation significantly changed alternative splicing in expressed genes, which were especially enriched for the U12-type intron-retained type. Yeast two-hybrid screening identified SF3a1 as a DEK42-interacting protein. DEK42 also interacts with the spliceosome component U1-70K. These results suggested that DEK42 participates in the regulation of pre-messenger RNA splicing through its interaction with other spliceosome components. This study showed the function of a newly identified RBP and provided insights into alternative splicing regulation during maize kernel development.