RNA interference(RNAi)is a post-transcriptional gene-silencing technique induced by the introduction of double-stranded RNA(dsRNA)or small interfering RNA(siRNA)[1].RNAi-based strategies have been extensively applied ...RNA interference(RNAi)is a post-transcriptional gene-silencing technique induced by the introduction of double-stranded RNA(dsRNA)or small interfering RNA(siRNA)[1].RNAi-based strategies have been extensively applied in the treatment of human diseases and crop protection against insect pests[2-4].With the availability of the full genome sequences of major mosquito vectors,RNAi has become increasingly used as a novel means of mosquito control[5].展开更多
Nucleic acid drugs represent the third wave of innovation in drug research and development,succeeding small-molecule and antibody drugs.These drugs,particularly RNA interference(RNAi)therapies,have become a pivotal fo...Nucleic acid drugs represent the third wave of innovation in drug research and development,succeeding small-molecule and antibody drugs.These drugs,particularly RNA interference(RNAi)therapies,have become a pivotal focus in the pharmaceutical industry.RNAi drugs are extensively utilized in the treatment of chronic and rare diseases due to their exceptional gene-silencing efficiency,manageable side effects,and straightforward synthesis process.This study undertook a thorough analysis of the global landscape of RNAi drug patents,highlighting the latest technological advancements and trends.We meticulously identified and cataloged the key technologies that dominated this patent landscape.The goal was to provide valuable insights and references for researchers involved in the development of RNAi drugs within the domestic pharmaceutical sector.展开更多
FOXL 2 and CYP 19 B are crucial transcription factors in vertebrates and invertebrates that play pivotal roles in sex differentiation and gonadal development.The potential roles of the foxl 2 and cyp 19 b genes in sex...FOXL 2 and CYP 19 B are crucial transcription factors in vertebrates and invertebrates that play pivotal roles in sex differentiation and gonadal development.The potential roles of the foxl 2 and cyp 19 b genes in sex determination and gonadal development in Cyprinus carpio var.koi were explored using a non-invasive RNA interference(RNAi)method,histopathological observation and qPCR.Results demonstrate that foxl 2 exhibited a sexually dimorphic expression pattern in gonads,with a notable expression in ovaries;cyp 19 b was expressed in all peripheral tissues,with a particularly prominent expression in brain and gonads.The knockdown of foxl 2 by RNAi resulted in delay in the development of the female gonads.Conversely,no notable alterations were discerned in the gonads of C.carpio var.koi following the knockdown of cyp 19 b.The upregulation of sox 9 a,amh,and cyp 19 b following foxl 2 knockdown indicates that foxl 2 may play a pivotal role in gonadal development.Nevertheless,further investigation is required to ascertain the potential role of cyp 19 b.This study elucidated the role of foxl 2 and enhanced the understanding of the mechanisms of sex determination and gonadal development in C.carpio var.koi.展开更多
BACKGROUND In vivo degradation of bone scaffolds is significantly influenced by osteoclast(OC)activity,which is orchestrated by the interplay between receptor activator of nuclear factor-kappa B ligand(RANKL)and osteo...BACKGROUND In vivo degradation of bone scaffolds is significantly influenced by osteoclast(OC)activity,which is orchestrated by the interplay between receptor activator of nuclear factor-kappa B ligand(RANKL)and osteoprotegerin(OPG).The ratio of RANKL/OPG is a crucial determinant of OC-mediated bone resorption,which plays an integral role in bone remodeling and scaffold degradation.Elevated levels of RANKL relative to OPG enhance osteoclastogenesis,thereby accelerating the degradation process essential for integrating bone scaffolds into the host tissue.AIM To elucidate the effects of OPG gene silencing on osteoclastogenesis within rat bone marrow-derived mesenchymal stem cells(BMSCs).By investigating these effects,the study aimed to provide deeper insights into the regulatory mechanisms that influence bone scaffold degradation,potentially leading to improved bone repair and regeneration strategies.METHODS We employed recombinant lentiviral plasmids to silence the OPG gene in rat BMSCs to achieve the aims.The efficacy of gene silencing was assessed using quantitative reverse transcription polymerase chain reaction and western blot analysis to measure the expression levels of OPG and RANKL.Tartrate-resistant acid phosphatase staining was utilized to evaluate the formation of OCs.Additionally,co-immunoprecipitation assays were conducted to explore the interactions between RANKL and OPG proteins,further assessing the biochemical pathways involved in osteoclastogenesis.RESULTS The silencing of the OPG gene in BMSCs resulted in a significant increase in the RANKL/OPG ratio,evidenced by decreased expression levels of OPG and increased levels of RANKL.Enhanced osteoclastogenesis was observed through tartrate-resistant acid phosphatase staining,which indicated a substantial rise in OC formation in response to the altered RANKL/OPG balance.The co-immunoprecipitation assays provided concrete evidence of the direct interaction between RANKL and OPG proteins,substantiating their pivotal roles in regulating OC activity.CONCLUSION The findings from this study underscore the critical role of the RANKL/OPG axis in osteoclastogenesis.Silencing of the OPG gene in BMSCs effectively increases the RANKL/OPG ratio,promoting OC activity and potentially enhancing bone scaffold degradation.This regulatory mechanism offers a promising avenue for modulating bone remodeling processes,which is essential for effective bone repair and the successful integration of bone scaffolds into damaged sites.Future research might focus on optimizing the control of this axis to better facilitate bone tissue engineering and regenerative therapies.展开更多
Delta-12 oleate desaturase gene (FAD2-1) which converts oleic acid into linoleic acid, is the key enzyme determining the fatty acid composition of cottonseed oil. By employing RT-PCR method, full length cDNA of cott...Delta-12 oleate desaturase gene (FAD2-1) which converts oleic acid into linoleic acid, is the key enzyme determining the fatty acid composition of cottonseed oil. By employing RT-PCR method, full length cDNA of cotton delta-12 oleate desat- urase gene GhFAD2-1 containing an open reading frame of 1 158 bp was cloned for constructing RNAi vector. A 515 bp long specific fragment of this gene was se- lected for constructing ihpRNA vector under the control of a seed-specific promoter NAPIN, named pFGC1008-NAPIN-FAD2-1; meanwhile miRNA gene-silencing vector pCAMBIA1302-amiRNA-FAD2-1 targeting GhFAD2-1 was also constructed.展开更多
The chloride channel 7 gene(CLC 7)of the Hong Kong oyster Crassostrea hongkongensis was cloned and named ChCLC 7.The cDNA was 2572 bp in length,with a 5′non-coding region containing 25 bp,a 3′non-coding region conta...The chloride channel 7 gene(CLC 7)of the Hong Kong oyster Crassostrea hongkongensis was cloned and named ChCLC 7.The cDNA was 2572 bp in length,with a 5′non-coding region containing 25 bp,a 3′non-coding region containing 327 bp,and an open reading frame of 2298 bp.ChCLC 7 has 96.8%and 92.1%homology with CLC 7 of Crassostrea gigas and Crassostrea virginica,respectively,and it was clustered with CLC 7 of C.gigas and C.virginica.QRT-PCR showed that ChCLC 7 was expressed in all eight tissues,with the highest in adductor muscle and second in gill.The ChCLC 7 expression pattern in gill was altered significantly under high salinity stress with an overall upward and then downward trend.After RNA interference,the expression of ChCLC 7 and survival rate of oyster under high salinity stress was reduced significantly,and so did the concentration of hemolymph chloride ion in 48-96 h after RNA interference.We believed that ChCLC 7 could play an important role in osmoregulation of C.hongkongensis by regulating Cl^(-)transport.This study provided data for the analysis of molecular mechanism against oyster salinity stress.展开更多
RNA interference (RNAi) is an evolutionally conserved gene silencing mechanism present in a variety of eukaryotic species. RNAi uses short double-stranded RNA (dsRNA) to trigger degradation or translation repression o...RNA interference (RNAi) is an evolutionally conserved gene silencing mechanism present in a variety of eukaryotic species. RNAi uses short double-stranded RNA (dsRNA) to trigger degradation or translation repression of homologous RNA targets in a sequence-specific manner. This system can be induced effectively in vitro and in vivo by direct application of small interfering RNAs (siRNAs), or by expression of short hairpin RNA (shRNA) with non-viral and viral vectors. To date, RNAi has been extensively used as a novel and effective tool for functional genomic studies, and has displayed great potential in treating human diseases, including human genetic and acquired disorders such as cancer and viral infections. In the present review, we focus on the recent development in the use of RNAi in the prevention and treatment of viral infections. The mechanisms, strategies, hurdles and prospects of employing RNAi in the pharmaceutical industry are also discussed.展开更多
Colorado potato beetle(CPB),Leptinotarsa decemlineata,is a notorious destructive pest that mainly feeds on the leaves of potato and several other solanaceous plants.CPB is widely recognized for its adaptation to a rem...Colorado potato beetle(CPB),Leptinotarsa decemlineata,is a notorious destructive pest that mainly feeds on the leaves of potato and several other solanaceous plants.CPB is widely recognized for its adaptation to a remarkable variety of host plants and diverse climates,and its high resistance to insecticides and Bacillus thuringiensis toxins.RNA interference(RNAi)is a sequence-specific,endogenous gene silencing mechanism evoked by small RNA molecules that is used as a robust tool for virus and pest control.RNAi has been extensively tested for CPB management by employing various target genes and delivery methods.This article reviews the screening of RNAi target genes,efficient RNAi delivery systems,and factors affecting RNAi efficiency in CPB,which may help understand the mechanisms of RNAi and its application in CPB control strategy.展开更多
microRNAs are post-transcriptional regulators of gene expression that recruit RNA silencing complexes to target transcripts to prevent translation and promote their degradation. Experimental studies suggest that micro...microRNAs are post-transcriptional regulators of gene expression that recruit RNA silencing complexes to target transcripts to prevent translation and promote their degradation. Experimental studies suggest that microRNA binding to target transcripts can result in as much as a 90% decrease in gene expression. Because of this feature, the microRNA pathway has been utilized as a vehicle for potent RNA interference (RNAi). In recent years, significant advances have been made in engineering artificial microRNA vectors for RNAi in a number of biological systems, with the most progress in plants but also some success in mouse and human cell lines. In this mini-review, we provide a brief discussion of the potential of this technology in comparison with other RNAi strategies, and the current challenges in the design of microRNA-based RNAi vectors, particularly for animal systems.展开更多
RNA interference (RNAi), caused by endogenous or exogenous double- stranded RNA (dsRNA) homologous with target genes, refers to gene silencing widely existing in animals and plants. It was first found in plants, a...RNA interference (RNAi), caused by endogenous or exogenous double- stranded RNA (dsRNA) homologous with target genes, refers to gene silencing widely existing in animals and plants. It was first found in plants, and now it has developed into a kind of biotechnology as well as an important approach in post- genome era. This paper is to summarize the achievements of studies on RNAi tech- nology in basic biology, medicine, pharmacy, botany and other fields.展开更多
A partition model of interference efficiency was constructed to study the coupling interference effect under combined internal and external flow.The concept of“internal flow efficiency”,“velocity ratio”and“interf...A partition model of interference efficiency was constructed to study the coupling interference effect under combined internal and external flow.The concept of“internal flow efficiency”,“velocity ratio”and“interference efficiency”were introduced to quantify the effect of internal flow and interference,and reveal the coupling mechanism among internal flow,external flow and interference effect.The results showed that the dynamic response of risers under variable angles was significantly different after considering the effect of internal flow.When the external flow velocity was smaller than 0.25 m/s,the vibration of risers was promoted by the internal flow.With the increase of external flow velocity,the effect of internal flow was weakened and the dynamic response of riser mainly depended on the external flow and interference effect.Under the effect of different internal flow,the interference efficiency had similar change trend.The interference effect amplified the complex secondary flow effect inside the riser,making the dynamic response of riser complex and random.In this paper,the overlap area and subdivision criterion of interference effect were constructed within the range of experimental velocity ratio,and the change curve of interference efficiency was obtained with an average meaning,which may have important practical meaning.展开更多
The ability to knockdown the expression of an endogenous gene by RNAi has emerged as a powerful strategy for the rapid identification of specific gene functions. Vector-based constitutive expression of shRNA can resul...The ability to knockdown the expression of an endogenous gene by RNAi has emerged as a powerful strategy for the rapid identification of specific gene functions. Vector-based constitutive expression of shRNA can result in stable and efficient knockdown of target genes. However, constitutive expression of shRNA imposes major limitations when analyzing the fimction of genes whose expression is vital for the survival of an organism. Inducible RNAi systems can circumvent this limitation by enabling the inhibition of expression of an essential gene only when the inducing agent is present, and the level of knockdown of the essential gene can be controlled and adjusted by the concentration of inducing agent. In this review, we briefly summarize the recent development of various inducible RNAi systems and their potential applications in drug target validation.展开更多
OBJECTIVE To construct a eukaryotic expression vector for RNA interference of the human cyclinD1 gene, and to detect its interference effect in human ovarian cancer cells (HO-8910). METHODS Four target gene segments...OBJECTIVE To construct a eukaryotic expression vector for RNA interference of the human cyclinD1 gene, and to detect its interference effect in human ovarian cancer cells (HO-8910). METHODS Four target gene segments were synthesized and cloned into the pSUPER vector respectively to construct four recombinant eukaryotic expression vectors, pSUPER-C1-4. The four recombinant vectors were identified by enzyme digestion analysis and DNA sequencing. Then HO-8910 cells were transfected with the pSUPER-C1-4 vectors and subjected to G418 selection. In G418-resistant cells, the interference effect was detected by RT-PCR. RESULTS Enzyme digestion analysis and DNA sequencing showed that the target segments were cloned into the pSUPER vector. The four recombinant vectors inhibited transcription of the cyclinD1 gene. The pSUPER-C2 vector had a better interference effect. CONCLUSION The sequence-specific siRNA effectively interfered with expression of the cyclinD1 gene that was selected. The transcription and expression of the cyclinD1 gene were inhibited effectively by the constructed RNAi eukaryotic expression vectors in the ovarian cancer cells. These results indicate that it is possible to search for a new tumor gene therapy method,展开更多
Objective: MGMT protein expression has been associated with tumor resistance to alkylating agents. The objective of this paper is to construct the RNA interference vector which can specifically induce the expression ...Objective: MGMT protein expression has been associated with tumor resistance to alkylating agents. The objective of this paper is to construct the RNA interference vector which can specifically induce the expression silence of human DNA repair gene hMGMT. Methods: The hMGMT specific siRNA expression cassette was made by two steps PCR, linked with pUCI 9 to get pU6-MGMTi, co-transfected with pEGFP-CI into 16HBE and screened by G418. The MGMT mRNA and protein levels were detected by RT-PCR and Western Blot respectively. Results: hMGMT specific RNA interfere vector pU6-MGMTi was constructed successfully. In transfected 16HBE cells MGMT mRNA level could hardly be detected and the protein level was only 10% of control. Conclusion: MGMT specific RNAi expression cassette can effectively inhibit MGMT expression. MGMT silence cell line was built by co-transfection technology, which offered condition for studying the gene function of MGMT.展开更多
Objective: Lung cancer has emerged as a leading cause of cancer death in the world. Current therapies are ineffective, thus new approaches are needed to improve the therapeutic ratio. RNA interference (RNAi) has sh...Objective: Lung cancer has emerged as a leading cause of cancer death in the world. Current therapies are ineffective, thus new approaches are needed to improve the therapeutic ratio. RNA interference (RNAi) has shown promise in gene silencing in vitro, the potential of which in developing new methods for the therapy of non-small-cell lung cancer (NSCLC) needs to be further tested in vivo. In this study, chemically synthesized double-stranded RNA (dsRNA) targeting epidermal growth factor receptor (EGFR) was transfected into NSCLC cell line SPC-A1 cells and established the tumor burdened athymic nude mice model to investigate whether dsRNA could induce gene silencing in NSCLC cells in vivo. Methods: SPC-A1 was transfected with EGFR sequence-specific dsRNA formulated with Lipofectamine 2000. SPC-A1 cells (1 × 107/ mL) in 200 pL were injected s.c. into the left flank area of the mice to establish the tumor burdened athymic nude mice model. Calculate the tumor growth inhibition rate by measuring the diameter and the weight of the tumor. Immunohistochemistry and Westem blot were used to monitor the reduction in the production of the EGFR protein. Realtime RT-PCR was used to detect the silencing of the EGFR mRNA level. Results: It displayed that EGFR sequence specific dsRNA (dsRNA-EGFR) significantly inhibited the tumor growth in vivo. The tumor growth inhibition rate was 75.03%. The dsRNA-EGFR sequence specifically silenced EGFR with 53.6% of down-regulation of EGFR protein production and 32.3% of silencing of EGFR mRNA level. Conclusion: DsRNA-EGFR showed a blockbuster effect in downregulation of EGFR mRNA level and protein production, and inhibition of tumor growth in vivo.展开更多
RNA interference,widely regarded as a key mechanism for cells to regulate gene expression,is a natural gene silencing phenomenon.It can be used as the gene knockdown to reverse the multidrug resistance of tumor cells ...RNA interference,widely regarded as a key mechanism for cells to regulate gene expression,is a natural gene silencing phenomenon.It can be used as the gene knockdown to reverse the multidrug resistance of tumor cells and has been applied in the field of biomedicine,exhibiting huge potential in drug target identification,optimization of drug targets,multidrug resistance,etc.This paper first introduces the mechanism of RNA interference and the formation mechanism of multidrug resistance of tumor cells,on the basis of which it reviews the application and challenges of RNA interference technology in reversing multidrug resistance.Additionally,the development of the siRNA delivery system is illustrated.展开更多
Objective:To build GPC3 gene short hairpin interference RNA(shRNA)slow virus veclor.observe expression of Huh-7 GPC3 gene in human liver cell line proliferation apoptosis and the effect of GPC3 gene influencing on liv...Objective:To build GPC3 gene short hairpin interference RNA(shRNA)slow virus veclor.observe expression of Huh-7 GPC3 gene in human liver cell line proliferation apoptosis and the effect of GPC3 gene influencing on liver cancer cell growth,and provide theoretical basis for genc therapy of liver cancer.Methods:Hepatocellular carcinoma cell line Huh-7 wsa transfected by a RNA interference technique.GPC3 gene expression in a variety of liver cancer cell lines was detected by fluorescence quantitative PCR.Targeted GPC3 gene seqnences of small interfering RNA(siRNA)PGC-shRNA-GPC3 were restructured.Stable expression cell linse of siRNA were screened and established with the heplp of liposomes(lipofectamine^(TM2000))as carrier transfcetion of human liver cell lines.In order to validate siRNA interference efficiency.GPC3 siRNA mRNA expression was detected after transfection by using RT-PCR and Western blot.The absorbance value of the cells of blank group,untransfection group and transfection group,the cell cycle and cell apoptosis were calculated,and effects of GPC3 gene nn Huh-7 cell proliferation and apoptosis were observed.Results:In the liver cancer cell lines Huh-7 GPC3 gene showed high expression.PGC-shRNA-GPC3 recombinant plasmid was constructde successfully via sequencing validation.Stable recombinant plasmid transfected into liver cancer cell linse Huh-7can obviously inhibit GPC3 mRNA expression level.Conclusions:The targeted GPC3 siRNA can effectively inhibit the expression of GPC3.展开更多
基金supported by grants from the National Key Research and Development Program(2023YFE0113600).
文摘RNA interference(RNAi)is a post-transcriptional gene-silencing technique induced by the introduction of double-stranded RNA(dsRNA)or small interfering RNA(siRNA)[1].RNAi-based strategies have been extensively applied in the treatment of human diseases and crop protection against insect pests[2-4].With the availability of the full genome sequences of major mosquito vectors,RNAi has become increasingly used as a novel means of mosquito control[5].
文摘Nucleic acid drugs represent the third wave of innovation in drug research and development,succeeding small-molecule and antibody drugs.These drugs,particularly RNA interference(RNAi)therapies,have become a pivotal focus in the pharmaceutical industry.RNAi drugs are extensively utilized in the treatment of chronic and rare diseases due to their exceptional gene-silencing efficiency,manageable side effects,and straightforward synthesis process.This study undertook a thorough analysis of the global landscape of RNAi drug patents,highlighting the latest technological advancements and trends.We meticulously identified and cataloged the key technologies that dominated this patent landscape.The goal was to provide valuable insights and references for researchers involved in the development of RNAi drugs within the domestic pharmaceutical sector.
基金Supported by the Qingdao Aquarium Technology Collaborative Innovation Center Cooperation Project(No.20210021)the Researching Key Technologies for Selecting Excellent Koi Carp Germplasm(No.20223702032291)the Qingdao Agricultural University Tangwang Koi Carp Joint R&D Center Collaborative Project(No.20220271)。
文摘FOXL 2 and CYP 19 B are crucial transcription factors in vertebrates and invertebrates that play pivotal roles in sex differentiation and gonadal development.The potential roles of the foxl 2 and cyp 19 b genes in sex determination and gonadal development in Cyprinus carpio var.koi were explored using a non-invasive RNA interference(RNAi)method,histopathological observation and qPCR.Results demonstrate that foxl 2 exhibited a sexually dimorphic expression pattern in gonads,with a notable expression in ovaries;cyp 19 b was expressed in all peripheral tissues,with a particularly prominent expression in brain and gonads.The knockdown of foxl 2 by RNAi resulted in delay in the development of the female gonads.Conversely,no notable alterations were discerned in the gonads of C.carpio var.koi following the knockdown of cyp 19 b.The upregulation of sox 9 a,amh,and cyp 19 b following foxl 2 knockdown indicates that foxl 2 may play a pivotal role in gonadal development.Nevertheless,further investigation is required to ascertain the potential role of cyp 19 b.This study elucidated the role of foxl 2 and enhanced the understanding of the mechanisms of sex determination and gonadal development in C.carpio var.koi.
基金Supported by the National Natural Science Foundation of China,No.82160192and Guangxi Science and Technology Program,No.2023AB23037.
文摘BACKGROUND In vivo degradation of bone scaffolds is significantly influenced by osteoclast(OC)activity,which is orchestrated by the interplay between receptor activator of nuclear factor-kappa B ligand(RANKL)and osteoprotegerin(OPG).The ratio of RANKL/OPG is a crucial determinant of OC-mediated bone resorption,which plays an integral role in bone remodeling and scaffold degradation.Elevated levels of RANKL relative to OPG enhance osteoclastogenesis,thereby accelerating the degradation process essential for integrating bone scaffolds into the host tissue.AIM To elucidate the effects of OPG gene silencing on osteoclastogenesis within rat bone marrow-derived mesenchymal stem cells(BMSCs).By investigating these effects,the study aimed to provide deeper insights into the regulatory mechanisms that influence bone scaffold degradation,potentially leading to improved bone repair and regeneration strategies.METHODS We employed recombinant lentiviral plasmids to silence the OPG gene in rat BMSCs to achieve the aims.The efficacy of gene silencing was assessed using quantitative reverse transcription polymerase chain reaction and western blot analysis to measure the expression levels of OPG and RANKL.Tartrate-resistant acid phosphatase staining was utilized to evaluate the formation of OCs.Additionally,co-immunoprecipitation assays were conducted to explore the interactions between RANKL and OPG proteins,further assessing the biochemical pathways involved in osteoclastogenesis.RESULTS The silencing of the OPG gene in BMSCs resulted in a significant increase in the RANKL/OPG ratio,evidenced by decreased expression levels of OPG and increased levels of RANKL.Enhanced osteoclastogenesis was observed through tartrate-resistant acid phosphatase staining,which indicated a substantial rise in OC formation in response to the altered RANKL/OPG balance.The co-immunoprecipitation assays provided concrete evidence of the direct interaction between RANKL and OPG proteins,substantiating their pivotal roles in regulating OC activity.CONCLUSION The findings from this study underscore the critical role of the RANKL/OPG axis in osteoclastogenesis.Silencing of the OPG gene in BMSCs effectively increases the RANKL/OPG ratio,promoting OC activity and potentially enhancing bone scaffold degradation.This regulatory mechanism offers a promising avenue for modulating bone remodeling processes,which is essential for effective bone repair and the successful integration of bone scaffolds into damaged sites.Future research might focus on optimizing the control of this axis to better facilitate bone tissue engineering and regenerative therapies.
文摘Delta-12 oleate desaturase gene (FAD2-1) which converts oleic acid into linoleic acid, is the key enzyme determining the fatty acid composition of cottonseed oil. By employing RT-PCR method, full length cDNA of cotton delta-12 oleate desat- urase gene GhFAD2-1 containing an open reading frame of 1 158 bp was cloned for constructing RNAi vector. A 515 bp long specific fragment of this gene was se- lected for constructing ihpRNA vector under the control of a seed-specific promoter NAPIN, named pFGC1008-NAPIN-FAD2-1; meanwhile miRNA gene-silencing vector pCAMBIA1302-amiRNA-FAD2-1 targeting GhFAD2-1 was also constructed.
基金Supported by the Natural Science Foundation of Guangxi Province(Nos.2023 GXNSFAA 026503,2018 GXNSFBA281201)the Guangxi Key Research and Development Program(No.GuikeAB21196030)+3 种基金the Marine Science Guangxi First-Class Subject,Beibu Gulf University(No.DRC002)the Scientific Research and Technology Development Plan Project of Qinzhou(Nos.202014842,20223637)the Science and Technology Major Project of Guangxi Province(No.AA17204095-10)the Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation,Beibu Gulf University(Nos.2020ZB09,2020ZB04)。
文摘The chloride channel 7 gene(CLC 7)of the Hong Kong oyster Crassostrea hongkongensis was cloned and named ChCLC 7.The cDNA was 2572 bp in length,with a 5′non-coding region containing 25 bp,a 3′non-coding region containing 327 bp,and an open reading frame of 2298 bp.ChCLC 7 has 96.8%and 92.1%homology with CLC 7 of Crassostrea gigas and Crassostrea virginica,respectively,and it was clustered with CLC 7 of C.gigas and C.virginica.QRT-PCR showed that ChCLC 7 was expressed in all eight tissues,with the highest in adductor muscle and second in gill.The ChCLC 7 expression pattern in gill was altered significantly under high salinity stress with an overall upward and then downward trend.After RNA interference,the expression of ChCLC 7 and survival rate of oyster under high salinity stress was reduced significantly,and so did the concentration of hemolymph chloride ion in 48-96 h after RNA interference.We believed that ChCLC 7 could play an important role in osmoregulation of C.hongkongensis by regulating Cl^(-)transport.This study provided data for the analysis of molecular mechanism against oyster salinity stress.
基金RFCID, No 01030152, RGC, CUHK4428/06M, ITF ITS091/03 of Hong Kong Government, and Faculty Direct Fund of the Chinese University of Hong Kong
文摘RNA interference (RNAi) is an evolutionally conserved gene silencing mechanism present in a variety of eukaryotic species. RNAi uses short double-stranded RNA (dsRNA) to trigger degradation or translation repression of homologous RNA targets in a sequence-specific manner. This system can be induced effectively in vitro and in vivo by direct application of small interfering RNAs (siRNAs), or by expression of short hairpin RNA (shRNA) with non-viral and viral vectors. To date, RNAi has been extensively used as a novel and effective tool for functional genomic studies, and has displayed great potential in treating human diseases, including human genetic and acquired disorders such as cancer and viral infections. In the present review, we focus on the recent development in the use of RNAi in the prevention and treatment of viral infections. The mechanisms, strategies, hurdles and prospects of employing RNAi in the pharmaceutical industry are also discussed.
基金funded by the National Natural Science Foundation of China (31572071)
文摘Colorado potato beetle(CPB),Leptinotarsa decemlineata,is a notorious destructive pest that mainly feeds on the leaves of potato and several other solanaceous plants.CPB is widely recognized for its adaptation to a remarkable variety of host plants and diverse climates,and its high resistance to insecticides and Bacillus thuringiensis toxins.RNA interference(RNAi)is a sequence-specific,endogenous gene silencing mechanism evoked by small RNA molecules that is used as a robust tool for virus and pest control.RNAi has been extensively tested for CPB management by employing various target genes and delivery methods.This article reviews the screening of RNAi target genes,efficient RNAi delivery systems,and factors affecting RNAi efficiency in CPB,which may help understand the mechanisms of RNAi and its application in CPB control strategy.
文摘microRNAs are post-transcriptional regulators of gene expression that recruit RNA silencing complexes to target transcripts to prevent translation and promote their degradation. Experimental studies suggest that microRNA binding to target transcripts can result in as much as a 90% decrease in gene expression. Because of this feature, the microRNA pathway has been utilized as a vehicle for potent RNA interference (RNAi). In recent years, significant advances have been made in engineering artificial microRNA vectors for RNAi in a number of biological systems, with the most progress in plants but also some success in mouse and human cell lines. In this mini-review, we provide a brief discussion of the potential of this technology in comparison with other RNAi strategies, and the current challenges in the design of microRNA-based RNAi vectors, particularly for animal systems.
文摘RNA interference (RNAi), caused by endogenous or exogenous double- stranded RNA (dsRNA) homologous with target genes, refers to gene silencing widely existing in animals and plants. It was first found in plants, and now it has developed into a kind of biotechnology as well as an important approach in post- genome era. This paper is to summarize the achievements of studies on RNAi tech- nology in basic biology, medicine, pharmacy, botany and other fields.
基金supported by the National Natural Science Foundation of China(Grant Nos.51709161 and U2006226)the Key Technology Research and Development Program of Shandong Province(Grant No.2019GHY112061)+1 种基金the Natural Science Foundation of Shandong Province(Grant No.ZR2022QE118)the Youth Talent Introduction and Cultivation Program of College in Shandong Province。
文摘A partition model of interference efficiency was constructed to study the coupling interference effect under combined internal and external flow.The concept of“internal flow efficiency”,“velocity ratio”and“interference efficiency”were introduced to quantify the effect of internal flow and interference,and reveal the coupling mechanism among internal flow,external flow and interference effect.The results showed that the dynamic response of risers under variable angles was significantly different after considering the effect of internal flow.When the external flow velocity was smaller than 0.25 m/s,the vibration of risers was promoted by the internal flow.With the increase of external flow velocity,the effect of internal flow was weakened and the dynamic response of riser mainly depended on the external flow and interference effect.Under the effect of different internal flow,the interference efficiency had similar change trend.The interference effect amplified the complex secondary flow effect inside the riser,making the dynamic response of riser complex and random.In this paper,the overlap area and subdivision criterion of interference effect were constructed within the range of experimental velocity ratio,and the change curve of interference efficiency was obtained with an average meaning,which may have important practical meaning.
基金National Natural Science Foundation of China(Grant No.20852001)"985"Project Foundation(Grant No.985-2-126-121 )+1 种基金The Key Laboratory Grant(Grant No.20080104)National Basic Research Program of China(Grant No.973 Program,2010CB 12300)
文摘The ability to knockdown the expression of an endogenous gene by RNAi has emerged as a powerful strategy for the rapid identification of specific gene functions. Vector-based constitutive expression of shRNA can result in stable and efficient knockdown of target genes. However, constitutive expression of shRNA imposes major limitations when analyzing the fimction of genes whose expression is vital for the survival of an organism. Inducible RNAi systems can circumvent this limitation by enabling the inhibition of expression of an essential gene only when the inducing agent is present, and the level of knockdown of the essential gene can be controlled and adjusted by the concentration of inducing agent. In this review, we briefly summarize the recent development of various inducible RNAi systems and their potential applications in drug target validation.
文摘OBJECTIVE To construct a eukaryotic expression vector for RNA interference of the human cyclinD1 gene, and to detect its interference effect in human ovarian cancer cells (HO-8910). METHODS Four target gene segments were synthesized and cloned into the pSUPER vector respectively to construct four recombinant eukaryotic expression vectors, pSUPER-C1-4. The four recombinant vectors were identified by enzyme digestion analysis and DNA sequencing. Then HO-8910 cells were transfected with the pSUPER-C1-4 vectors and subjected to G418 selection. In G418-resistant cells, the interference effect was detected by RT-PCR. RESULTS Enzyme digestion analysis and DNA sequencing showed that the target segments were cloned into the pSUPER vector. The four recombinant vectors inhibited transcription of the cyclinD1 gene. The pSUPER-C2 vector had a better interference effect. CONCLUSION The sequence-specific siRNA effectively interfered with expression of the cyclinD1 gene that was selected. The transcription and expression of the cyclinD1 gene were inhibited effectively by the constructed RNAi eukaryotic expression vectors in the ovarian cancer cells. These results indicate that it is possible to search for a new tumor gene therapy method,
文摘Objective: MGMT protein expression has been associated with tumor resistance to alkylating agents. The objective of this paper is to construct the RNA interference vector which can specifically induce the expression silence of human DNA repair gene hMGMT. Methods: The hMGMT specific siRNA expression cassette was made by two steps PCR, linked with pUCI 9 to get pU6-MGMTi, co-transfected with pEGFP-CI into 16HBE and screened by G418. The MGMT mRNA and protein levels were detected by RT-PCR and Western Blot respectively. Results: hMGMT specific RNA interfere vector pU6-MGMTi was constructed successfully. In transfected 16HBE cells MGMT mRNA level could hardly be detected and the protein level was only 10% of control. Conclusion: MGMT specific RNAi expression cassette can effectively inhibit MGMT expression. MGMT silence cell line was built by co-transfection technology, which offered condition for studying the gene function of MGMT.
基金Supported by a grant from the Natural Science Foundation of Shanghai (No. 03ZR14004).
文摘Objective: Lung cancer has emerged as a leading cause of cancer death in the world. Current therapies are ineffective, thus new approaches are needed to improve the therapeutic ratio. RNA interference (RNAi) has shown promise in gene silencing in vitro, the potential of which in developing new methods for the therapy of non-small-cell lung cancer (NSCLC) needs to be further tested in vivo. In this study, chemically synthesized double-stranded RNA (dsRNA) targeting epidermal growth factor receptor (EGFR) was transfected into NSCLC cell line SPC-A1 cells and established the tumor burdened athymic nude mice model to investigate whether dsRNA could induce gene silencing in NSCLC cells in vivo. Methods: SPC-A1 was transfected with EGFR sequence-specific dsRNA formulated with Lipofectamine 2000. SPC-A1 cells (1 × 107/ mL) in 200 pL were injected s.c. into the left flank area of the mice to establish the tumor burdened athymic nude mice model. Calculate the tumor growth inhibition rate by measuring the diameter and the weight of the tumor. Immunohistochemistry and Westem blot were used to monitor the reduction in the production of the EGFR protein. Realtime RT-PCR was used to detect the silencing of the EGFR mRNA level. Results: It displayed that EGFR sequence specific dsRNA (dsRNA-EGFR) significantly inhibited the tumor growth in vivo. The tumor growth inhibition rate was 75.03%. The dsRNA-EGFR sequence specifically silenced EGFR with 53.6% of down-regulation of EGFR protein production and 32.3% of silencing of EGFR mRNA level. Conclusion: DsRNA-EGFR showed a blockbuster effect in downregulation of EGFR mRNA level and protein production, and inhibition of tumor growth in vivo.
基金the Doctoral Promotion Program Research Initiation Fund of Suzhou Polytechnic Institute of Agriculture(grant number:GSP20200066).
文摘RNA interference,widely regarded as a key mechanism for cells to regulate gene expression,is a natural gene silencing phenomenon.It can be used as the gene knockdown to reverse the multidrug resistance of tumor cells and has been applied in the field of biomedicine,exhibiting huge potential in drug target identification,optimization of drug targets,multidrug resistance,etc.This paper first introduces the mechanism of RNA interference and the formation mechanism of multidrug resistance of tumor cells,on the basis of which it reviews the application and challenges of RNA interference technology in reversing multidrug resistance.Additionally,the development of the siRNA delivery system is illustrated.
基金supported by Wuhan Municipal Science and Technology Bureau of applied basic research project(No.2013062301010823)Wuhan City health planning medieal research project(No.WX14A11)
文摘Objective:To build GPC3 gene short hairpin interference RNA(shRNA)slow virus veclor.observe expression of Huh-7 GPC3 gene in human liver cell line proliferation apoptosis and the effect of GPC3 gene influencing on liver cancer cell growth,and provide theoretical basis for genc therapy of liver cancer.Methods:Hepatocellular carcinoma cell line Huh-7 wsa transfected by a RNA interference technique.GPC3 gene expression in a variety of liver cancer cell lines was detected by fluorescence quantitative PCR.Targeted GPC3 gene seqnences of small interfering RNA(siRNA)PGC-shRNA-GPC3 were restructured.Stable expression cell linse of siRNA were screened and established with the heplp of liposomes(lipofectamine^(TM2000))as carrier transfcetion of human liver cell lines.In order to validate siRNA interference efficiency.GPC3 siRNA mRNA expression was detected after transfection by using RT-PCR and Western blot.The absorbance value of the cells of blank group,untransfection group and transfection group,the cell cycle and cell apoptosis were calculated,and effects of GPC3 gene nn Huh-7 cell proliferation and apoptosis were observed.Results:In the liver cancer cell lines Huh-7 GPC3 gene showed high expression.PGC-shRNA-GPC3 recombinant plasmid was constructde successfully via sequencing validation.Stable recombinant plasmid transfected into liver cancer cell linse Huh-7can obviously inhibit GPC3 mRNA expression level.Conclusions:The targeted GPC3 siRNA can effectively inhibit the expression of GPC3.