A global variance reduction(GVR)method based on the SPN method is proposed.First,the global multi-group cross-sections are obtained by Monte Carlo(MC)global homogenization.Then,the SP3 equation is solved to obtain the...A global variance reduction(GVR)method based on the SPN method is proposed.First,the global multi-group cross-sections are obtained by Monte Carlo(MC)global homogenization.Then,the SP3 equation is solved to obtain the global flux distribution.Finally,the global weight windows are approximated by the global flux distribution,and the GVR simulation is performed.This GVR method is implemented as an automatic process in the RMC code.The SP3-coupled GVR method was tested on a modified version of C5 G7 benchmark with a thickened water shield.The results show that the SP3-coupled GVR method can improve the efficiency of MC criticality calculation.展开更多
In loosely coupled or large-scale problems with high dominance ratios,slow fission source convergence can take extremely long time,reducing Monte Carlo(MC)criticality calculation efficiency.Although various accelerati...In loosely coupled or large-scale problems with high dominance ratios,slow fission source convergence can take extremely long time,reducing Monte Carlo(MC)criticality calculation efficiency.Although various acceleration methods have been developed,some methods cannot reduce convergence times,whereas others have been limited to specific problem geometries.In this study,a new fission source convergence acceleration(FSCA)method,the forced propagation(FP)method,has been proposed,which forces the fission source to propagate and accelerate fission source convergence.Additionally,some stabilization techniques have been designed to render the method more practical.The resulting stabilized method was then successfully implemented in the MC transport code,and its feasibility and effectiveness were tested using the modified OECD/NEA,one-dimensional slab benchmark,and the Hoogenboom full-core problem.The comparison results showed that the FP method was able to achieve efficient FSCA.展开更多
Recent advances in reconfigurable computing have led to new ways of implementing complex algorithms while maintaining reasonable throughput. Video codecs are becoming more complex in order to provide efficient compres...Recent advances in reconfigurable computing have led to new ways of implementing complex algorithms while maintaining reasonable throughput. Video codecs are becoming more complex in order to provide efficient compression for video with ever-increasing resolution. This problem is compounded by the fact that spectra of video decoding devices has become wider in the move from traditional TV to cable and satellite TV, IPTV, mobile TV, and Internet media. MPEG is tackling this problem with a reconfigurable video coding (RVC) framework and is standardizing a modular definition of tools and connections. MPEG ' s work started with video coding and has recently extended to graphics data coding. RVC will be supported by non-MPEG standards such as the Chinese audio-video standard (AVS). This article gives a brief background to the reconfigurable codec framework. The key to this framework is reconfigurability and reducing granularity to find commonality between different standards.展开更多
热管冷却反应堆采用固态反应堆设计理念,具有功率密度高、结构紧凑、固有安全性高等特点,在深空探索、深海勘探、偏远地区等场景中具有广阔的应用前景。核燃料作为热管冷却反应堆的重要组成部分,不同类型核燃料在堆芯燃耗分析时会呈现...热管冷却反应堆采用固态反应堆设计理念,具有功率密度高、结构紧凑、固有安全性高等特点,在深空探索、深海勘探、偏远地区等场景中具有广阔的应用前景。核燃料作为热管冷却反应堆的重要组成部分,不同类型核燃料在堆芯燃耗分析时会呈现不同的中子学性能。基于美国爱达荷国家实验室(INL)提出的热管冷却反应堆INL Design A,利用清华大学蒙特卡罗中子输运程序RMC(Reactor Monte Carlo code)建立堆芯物理模型,选取UO_(2),(U_(0.9)Pu_(0.1))O_(2),U-10Zr,U-8Pu-10Zr,UN,UC这6种核燃料开展燃耗计算,分析了不同核燃料、不同功率水平对热管冷却反应堆堆芯燃耗性能的影响。计算结果表明:在堆芯燃耗深度相同情况下(20.8 GW·d·t^(−1)),装载U-8Pu-10Zr燃料的堆芯所需^(235)U富集度最低(9.8%),具有较好的U-Pu增殖性能。堆芯功率处于5 MW的热管冷却反应堆,燃料中^(241)Pu的存在不仅没起到增大堆芯燃耗深度的作用,反而导致堆芯剩余反应性和堆芯寿期末次锕系核素(MAs)的产量增大,影响反应堆的安全性与经济性。因此,对于装载含有Pu燃料的小功率长寿期热管冷却反应堆,需重点关注^(241)Pu对堆芯燃耗性能的影响。展开更多
基金Supported by the Shanghai Sailing Program,China(No.21YF1421100)the Startup Fund for Youngman Research at SJTU。
文摘A global variance reduction(GVR)method based on the SPN method is proposed.First,the global multi-group cross-sections are obtained by Monte Carlo(MC)global homogenization.Then,the SP3 equation is solved to obtain the global flux distribution.Finally,the global weight windows are approximated by the global flux distribution,and the GVR simulation is performed.This GVR method is implemented as an automatic process in the RMC code.The SP3-coupled GVR method was tested on a modified version of C5 G7 benchmark with a thickened water shield.The results show that the SP3-coupled GVR method can improve the efficiency of MC criticality calculation.
基金supported by the National Natural Science Foundation of China(Nos.11775126,11545013,11605101)the Young Elite Scientists Sponsorship Program by CAST(No.2016QNRC001)+1 种基金Science Challenge Project by MIIT of China(No.TZ2018001)Tsinghua University,Initiative Scientific Research Program。
文摘In loosely coupled or large-scale problems with high dominance ratios,slow fission source convergence can take extremely long time,reducing Monte Carlo(MC)criticality calculation efficiency.Although various acceleration methods have been developed,some methods cannot reduce convergence times,whereas others have been limited to specific problem geometries.In this study,a new fission source convergence acceleration(FSCA)method,the forced propagation(FP)method,has been proposed,which forces the fission source to propagate and accelerate fission source convergence.Additionally,some stabilization techniques have been designed to render the method more practical.The resulting stabilized method was then successfully implemented in the MC transport code,and its feasibility and effectiveness were tested using the modified OECD/NEA,one-dimensional slab benchmark,and the Hoogenboom full-core problem.The comparison results showed that the FP method was able to achieve efficient FSCA.
文摘Recent advances in reconfigurable computing have led to new ways of implementing complex algorithms while maintaining reasonable throughput. Video codecs are becoming more complex in order to provide efficient compression for video with ever-increasing resolution. This problem is compounded by the fact that spectra of video decoding devices has become wider in the move from traditional TV to cable and satellite TV, IPTV, mobile TV, and Internet media. MPEG is tackling this problem with a reconfigurable video coding (RVC) framework and is standardizing a modular definition of tools and connections. MPEG ' s work started with video coding and has recently extended to graphics data coding. RVC will be supported by non-MPEG standards such as the Chinese audio-video standard (AVS). This article gives a brief background to the reconfigurable codec framework. The key to this framework is reconfigurability and reducing granularity to find commonality between different standards.
文摘热管冷却反应堆采用固态反应堆设计理念,具有功率密度高、结构紧凑、固有安全性高等特点,在深空探索、深海勘探、偏远地区等场景中具有广阔的应用前景。核燃料作为热管冷却反应堆的重要组成部分,不同类型核燃料在堆芯燃耗分析时会呈现不同的中子学性能。基于美国爱达荷国家实验室(INL)提出的热管冷却反应堆INL Design A,利用清华大学蒙特卡罗中子输运程序RMC(Reactor Monte Carlo code)建立堆芯物理模型,选取UO_(2),(U_(0.9)Pu_(0.1))O_(2),U-10Zr,U-8Pu-10Zr,UN,UC这6种核燃料开展燃耗计算,分析了不同核燃料、不同功率水平对热管冷却反应堆堆芯燃耗性能的影响。计算结果表明:在堆芯燃耗深度相同情况下(20.8 GW·d·t^(−1)),装载U-8Pu-10Zr燃料的堆芯所需^(235)U富集度最低(9.8%),具有较好的U-Pu增殖性能。堆芯功率处于5 MW的热管冷却反应堆,燃料中^(241)Pu的存在不仅没起到增大堆芯燃耗深度的作用,反而导致堆芯剩余反应性和堆芯寿期末次锕系核素(MAs)的产量增大,影响反应堆的安全性与经济性。因此,对于装载含有Pu燃料的小功率长寿期热管冷却反应堆,需重点关注^(241)Pu对堆芯燃耗性能的影响。