在公路隧道爆破中,为了获得准确、真实的振动特征,基于鲁棒性局部均值分解(robust local mean decomposition,RLMD)和经验小波变换(empirical wavelet transform,EWT),建立了一种RLMD-EWT联合降噪方法。首先,将实测信号进行RLMD分解,得...在公路隧道爆破中,为了获得准确、真实的振动特征,基于鲁棒性局部均值分解(robust local mean decomposition,RLMD)和经验小波变换(empirical wavelet transform,EWT),建立了一种RLMD-EWT联合降噪方法。首先,将实测信号进行RLMD分解,得到若干乘积函数(product functions,PF)分量,结合相关系数和样本熵(sample entropy,SE)对PF分量进行分类,对含噪分量进行EWT分解,进而实现降噪目标。通过降噪效果对比,RLMD-EWT联合降噪方法具备可行性,相较LMD、EWT、RLMD和LMD-WT方法,表现出更优的降噪性能、更高的降噪效率和准确度。结合HHT频谱图,RLMD-EWT方法对于30~50 Hz、250 Hz以上2个频段的噪声可实现有效滤除,具备良好的信号适用度。展开更多
针对配电网干扰情况下微弱故障信号特征不明显导致行波采集设备难以有效检测故障行波信号的问题,提出一种基于信号频谱特性的配电网故障行波检测方法。首先,通过分析配电网故障行波的传输特征与频率特性,建立基于波形增量比值的启动判据...针对配电网干扰情况下微弱故障信号特征不明显导致行波采集设备难以有效检测故障行波信号的问题,提出一种基于信号频谱特性的配电网故障行波检测方法。首先,通过分析配电网故障行波的传输特征与频率特性,建立基于波形增量比值的启动判据,对设备采样数据进行预处理,减少行波定位装置的误启动。然后,引入鲁棒性局部均值分解(robust local mean decomposition,RLMD)方法处理采样数据,滤除采样过程中的干扰信号,减少噪声信号的影响。最后,根据行波低频含量衰减较小而高频含量衰减快的性质,建立故障行波辨识判据,辨识配电网故障行波信号。仿真表明,所提方法能够有效检测微弱故障时的行波信号。展开更多
文摘在公路隧道爆破中,为了获得准确、真实的振动特征,基于鲁棒性局部均值分解(robust local mean decomposition,RLMD)和经验小波变换(empirical wavelet transform,EWT),建立了一种RLMD-EWT联合降噪方法。首先,将实测信号进行RLMD分解,得到若干乘积函数(product functions,PF)分量,结合相关系数和样本熵(sample entropy,SE)对PF分量进行分类,对含噪分量进行EWT分解,进而实现降噪目标。通过降噪效果对比,RLMD-EWT联合降噪方法具备可行性,相较LMD、EWT、RLMD和LMD-WT方法,表现出更优的降噪性能、更高的降噪效率和准确度。结合HHT频谱图,RLMD-EWT方法对于30~50 Hz、250 Hz以上2个频段的噪声可实现有效滤除,具备良好的信号适用度。
文摘针对配电网干扰情况下微弱故障信号特征不明显导致行波采集设备难以有效检测故障行波信号的问题,提出一种基于信号频谱特性的配电网故障行波检测方法。首先,通过分析配电网故障行波的传输特征与频率特性,建立基于波形增量比值的启动判据,对设备采样数据进行预处理,减少行波定位装置的误启动。然后,引入鲁棒性局部均值分解(robust local mean decomposition,RLMD)方法处理采样数据,滤除采样过程中的干扰信号,减少噪声信号的影响。最后,根据行波低频含量衰减较小而高频含量衰减快的性质,建立故障行波辨识判据,辨识配电网故障行波信号。仿真表明,所提方法能够有效检测微弱故障时的行波信号。