Serious startup drift of the Ring Laser Gyroscope(RLG)is observed during cold startup process,which will dramatically degrade the performances of the corresponding Inertial Navigation System(INS).In this paper,correla...Serious startup drift of the Ring Laser Gyroscope(RLG)is observed during cold startup process,which will dramatically degrade the performances of the corresponding Inertial Navigation System(INS).In this paper,correlation analysis method,which analyzes the relationship between the startup drift of the RLG and the temperature change,is used to determine the significant temperature-related terms during gyroscope startup.Based on the significant temperature-related terms and the startup time length,a startup drift compensation model for RLG based on monotonicity-constrained Radial Basis Function(RBF)neural network is proposed and validated.Compared with the raw RLG data without compensation,the standard deviation of the RLG output with the proposed constrained RBF network model is decreased by more than 46%,and the peak-to-peak value is decreased by more than 35%.Compared with the traditional multiple regression model,the standard deviation and peak-to-peak value of the RLG output are decreased by more than 10%and 6%,respectively.Compared with the common RBF network model,the standard deviation and peak-to-peak value of the RLG output are decreased by more than 8%and 3%,respectively.Navigation experiments also validate the effectiveness of the compensation model.展开更多
基于对典型催化裂化柴油(LCO)的烃类组成以及汽油馏分中高辛烷值组分的分析,结合芳烃加氢反应机理,确定了LCO选择性加氢裂化生产高辛烷值汽油或轻质芳烃原料(苯、甲苯、二甲苯)技术(RLG技术)的最优化学反应路径,研究了工艺条件对RLG产...基于对典型催化裂化柴油(LCO)的烃类组成以及汽油馏分中高辛烷值组分的分析,结合芳烃加氢反应机理,确定了LCO选择性加氢裂化生产高辛烷值汽油或轻质芳烃原料(苯、甲苯、二甲苯)技术(RLG技术)的最优化学反应路径,研究了工艺条件对RLG产品收率和产品性质的影响。第一代RLG技术工业应用结果表明,以密度(20℃)大于928.1 kg m 3的LCO为原料,可以生产收率大于43.48%、硫质量分数小于1.3μg g、研究法辛烷值大于92.0的高辛烷值汽油,同时还能兼产清洁柴油。在第一代RLG技术的基础上,开发了第二代RLG技术(RLG-Ⅱ技术),中型试验结果表明,RLG-Ⅱ技术具有良好的原料油适应性,可得到高收率、高辛烷值的产品汽油及低硫、低氮清洁柴油调合组分。展开更多
This paper describes a novel approach for identifying the Z-axis drift of the ring laser gyroscope (RLG) based on ge-netic algorithm (GA) and support vector regression (SVR) in the single-axis rotation inertial ...This paper describes a novel approach for identifying the Z-axis drift of the ring laser gyroscope (RLG) based on ge-netic algorithm (GA) and support vector regression (SVR) in the single-axis rotation inertial navigation system (SRINS). GA is used for selecting the optimal parameters of SVR. The latitude error and the temperature variation during the identification stage are adopted as inputs of GA-SVR. The navigation results show that the proposed GA-SVR model can reach an identification accuracy of 0.000 2 (?)/h for the Z-axis drift of RLG. Compared with the ra-dial basis function-neural network (RBF-NN) model, the GA-SVR model is more effective in identification of the Z-axis drift of RLG.展开更多
As mechanical dither is widely applied to reduce frequency “Lock in” of RLG(ring laser gyroscope) that is based on the principle proposed by Sagnac in 1913, it is necessary to know the recent development it the fie...As mechanical dither is widely applied to reduce frequency “Lock in” of RLG(ring laser gyroscope) that is based on the principle proposed by Sagnac in 1913, it is necessary to know the recent development it the field The proper design of dither mechanism that decides the effect of bias to some extent is discussed The proper dither signal and its control have a direct influence on dither efficiency Real,stable and accurate error compensation can improve the performance of RLG further Some proposals, which are helpful to future research on the field,are concluded展开更多
基金supported in part by the National Natural Science Foundation of China(No.61203199)。
文摘Serious startup drift of the Ring Laser Gyroscope(RLG)is observed during cold startup process,which will dramatically degrade the performances of the corresponding Inertial Navigation System(INS).In this paper,correlation analysis method,which analyzes the relationship between the startup drift of the RLG and the temperature change,is used to determine the significant temperature-related terms during gyroscope startup.Based on the significant temperature-related terms and the startup time length,a startup drift compensation model for RLG based on monotonicity-constrained Radial Basis Function(RBF)neural network is proposed and validated.Compared with the raw RLG data without compensation,the standard deviation of the RLG output with the proposed constrained RBF network model is decreased by more than 46%,and the peak-to-peak value is decreased by more than 35%.Compared with the traditional multiple regression model,the standard deviation and peak-to-peak value of the RLG output are decreased by more than 10%and 6%,respectively.Compared with the common RBF network model,the standard deviation and peak-to-peak value of the RLG output are decreased by more than 8%and 3%,respectively.Navigation experiments also validate the effectiveness of the compensation model.
文摘基于对典型催化裂化柴油(LCO)的烃类组成以及汽油馏分中高辛烷值组分的分析,结合芳烃加氢反应机理,确定了LCO选择性加氢裂化生产高辛烷值汽油或轻质芳烃原料(苯、甲苯、二甲苯)技术(RLG技术)的最优化学反应路径,研究了工艺条件对RLG产品收率和产品性质的影响。第一代RLG技术工业应用结果表明,以密度(20℃)大于928.1 kg m 3的LCO为原料,可以生产收率大于43.48%、硫质量分数小于1.3μg g、研究法辛烷值大于92.0的高辛烷值汽油,同时还能兼产清洁柴油。在第一代RLG技术的基础上,开发了第二代RLG技术(RLG-Ⅱ技术),中型试验结果表明,RLG-Ⅱ技术具有良好的原料油适应性,可得到高收率、高辛烷值的产品汽油及低硫、低氮清洁柴油调合组分。
文摘This paper describes a novel approach for identifying the Z-axis drift of the ring laser gyroscope (RLG) based on ge-netic algorithm (GA) and support vector regression (SVR) in the single-axis rotation inertial navigation system (SRINS). GA is used for selecting the optimal parameters of SVR. The latitude error and the temperature variation during the identification stage are adopted as inputs of GA-SVR. The navigation results show that the proposed GA-SVR model can reach an identification accuracy of 0.000 2 (?)/h for the Z-axis drift of RLG. Compared with the ra-dial basis function-neural network (RBF-NN) model, the GA-SVR model is more effective in identification of the Z-axis drift of RLG.
文摘As mechanical dither is widely applied to reduce frequency “Lock in” of RLG(ring laser gyroscope) that is based on the principle proposed by Sagnac in 1913, it is necessary to know the recent development it the field The proper design of dither mechanism that decides the effect of bias to some extent is discussed The proper dither signal and its control have a direct influence on dither efficiency Real,stable and accurate error compensation can improve the performance of RLG further Some proposals, which are helpful to future research on the field,are concluded