In this paper,we propose an RLC equivalent circuit model theory which can accurately predict the spectral response and resonance characteristics of metamaterial absorption structures,extend its design,and characterize...In this paper,we propose an RLC equivalent circuit model theory which can accurately predict the spectral response and resonance characteristics of metamaterial absorption structures,extend its design,and characterize the parameters of the model in detail.By employing this model,we conducted computations to characterize the response wavelength and bandwidth of variously sized metamaterial absorbers.A comparative analysis with Finite Difference Time Domain(FDTD)simulations demonstrated a remarkable level of consistency in the results.The designed absorbers were fabricated using micro-nano fabrication processes,and were experimentally tested to demonstrate absorption rates exceeding 90%at a wavelength of 9.28μm.The predicted results are then compared with test results.The comparison reveals good consistency in two aspects of the resonance responses,thereby confirming the rationality and accuracy of this model.展开更多
This research,based on Mason's formula,proposes a novel design for a second-order transconductance-mode universal filter with the operational transconductance amplifier(OTA)as the core and the second-generation cu...This research,based on Mason's formula,proposes a novel design for a second-order transconductance-mode universal filter with the operational transconductance amplifier(OTA)as the core and the second-generation current-controlled conveyor(CCCⅡ)as the auxiliary.The circuit incorporates two OTAs,one CCCⅡ,two grounded capacitors,and one grounded resistor.The quality factor Q and natural frequency fo of the filter can be electronically tuned and are not sensitive to temperature.The input and output terminals of the cir-cuit exhibit no loading effect,and the sensitivity of the circuit is low.At last,alternating frequency analysis,parameter scanning analysis,and temperature scanning analysis have been carried out by using Multisim software,confirming the correctness and effectiveness of the designed circuit.展开更多
According to the physical mechanism of the generation of the resistance or the electron phonon interaction, a new method is proposed to quantize the RLC electric circuit. Calculations show that the quantum fluctuatio...According to the physical mechanism of the generation of the resistance or the electron phonon interaction, a new method is proposed to quantize the RLC electric circuit. Calculations show that the quantum fluctuations under this new quantization are smaller than those by the traditional effective Hamiltonian method. And squeezed states can be generated if the inductance and capacity are time dependent. Meanwhile, the shortcoming of the traditional method that the electric charge and current will vanish in the long time limit is overcome.展开更多
Based on the scheme of damped harmonic oscillator quantization and thermo-field dynamics (TFD), the quantization of mesoscopic damped double resonance RLC circuit with mutual capacitance-inductance coupling is propo...Based on the scheme of damped harmonic oscillator quantization and thermo-field dynamics (TFD), the quantization of mesoscopic damped double resonance RLC circuit with mutual capacitance-inductance coupling is proposed. The quantum fluctuations of charge and current of each loop in a squeezed vacuum state are studied in the thermal excitation case. It is shown that the fluctuations not only depend on circuit inherent parameters, but also rely on excitation quantum number and squeezing parameter. Moreover, due to the finite environmental temperature and damped resistance, the fluctuations increase with the temperature rising, and decay with time.展开更多
Using the path integral method we derive quantum wave function and quantum fluctuations of charge andcurrent in the mesoscopic RLC circuit. We find that the quantum fluctuation of charge decreases with time, oppositel...Using the path integral method we derive quantum wave function and quantum fluctuations of charge andcurrent in the mesoscopic RLC circuit. We find that the quantum fluctuation of charge decreases with time, oppositely,the quantum fluctuation of current increases with time monotonously. Therefore there is a squeezing effect in the circuit.If some more charge devices are used in the mesoscopic-damped circuit, the quantum noise can be reduced. We also findthat uncertainty relation of charge and current periodically varies with the period π/2 in the under-damped case.展开更多
By virtue of the generalized Hellmann-Feynman theorem for the ensemble average, we obtain the internal energy and average energy consumed by the resistance R in a quantized resistance-inductance-capacitance (RLC) el...By virtue of the generalized Hellmann-Feynman theorem for the ensemble average, we obtain the internal energy and average energy consumed by the resistance R in a quantized resistance-inductance-capacitance (RLC) electric circuit. We also calculate the entropy-variation with R. The relation between entropy and R is also derived. By the use of figures we indeed see that the entropy increases with the increment of R.展开更多
With the help of the time-dependent Lagrangian for a damped harmonic oscillator, the quantization of mesoscopic RLC circuit in the context of a number-phase quantization scheme is realized and the corresponding Hamilt...With the help of the time-dependent Lagrangian for a damped harmonic oscillator, the quantization of mesoscopic RLC circuit in the context of a number-phase quantization scheme is realized and the corresponding Hamiltonian operator is obtained. Then the evolution of the charge number and phase difference across the capacity are obtained. It is shown that the number-phase analysis is useful to tackle the quantization of some mesoscopic circuits and dynamical equations of the corresponding operators.展开更多
The invariants for a mesoscopic RLC circuit with a power source are studied and used to construct the squeezed states and squeezed number states for the system. The quantum fluctuations of the mesoscopic RLC circuit i...The invariants for a mesoscopic RLC circuit with a power source are studied and used to construct the squeezed states and squeezed number states for the system. The quantum fluctuations of the mesoscopic RLC circuit in the squeezed states and squeezed number states are also investigated.展开更多
Using the path integral method we derive quantum wave function and quantum fluctuations of charge andcurrent in the mesoscopic RLC circuit. We find that the quantum fluctuation of charge decreases with time, oppositel...Using the path integral method we derive quantum wave function and quantum fluctuations of charge andcurrent in the mesoscopic RLC circuit. We find that the quantum fluctuation of charge decreases with time, oppositely,the quantum fluctuation of current increases with time monotonously. Therefore there is a squeezing effect in the circuit.If some more charge devices are used in the mesoscopic-damped circuit, the quantum noise can be reduced. We also findthat uncertainty relation of charge and current periodically varies with the period π/2 in the under-damped case.展开更多
基金Supported by the National Natural Science Foundation of China(62174092)the Open Fund of State Key Laboratory of Infrared Physics(SITP-NLIST-ZD-2023-04)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0580000)。
文摘In this paper,we propose an RLC equivalent circuit model theory which can accurately predict the spectral response and resonance characteristics of metamaterial absorption structures,extend its design,and characterize the parameters of the model in detail.By employing this model,we conducted computations to characterize the response wavelength and bandwidth of variously sized metamaterial absorbers.A comparative analysis with Finite Difference Time Domain(FDTD)simulations demonstrated a remarkable level of consistency in the results.The designed absorbers were fabricated using micro-nano fabrication processes,and were experimentally tested to demonstrate absorption rates exceeding 90%at a wavelength of 9.28μm.The predicted results are then compared with test results.The comparison reveals good consistency in two aspects of the resonance responses,thereby confirming the rationality and accuracy of this model.
基金Supported by the Natural Science Foundation of Shaanxi Province(2017JM6087)。
文摘This research,based on Mason's formula,proposes a novel design for a second-order transconductance-mode universal filter with the operational transconductance amplifier(OTA)as the core and the second-generation current-controlled conveyor(CCCⅡ)as the auxiliary.The circuit incorporates two OTAs,one CCCⅡ,two grounded capacitors,and one grounded resistor.The quality factor Q and natural frequency fo of the filter can be electronically tuned and are not sensitive to temperature.The input and output terminals of the cir-cuit exhibit no loading effect,and the sensitivity of the circuit is low.At last,alternating frequency analysis,parameter scanning analysis,and temperature scanning analysis have been carried out by using Multisim software,confirming the correctness and effectiveness of the designed circuit.
文摘According to the physical mechanism of the generation of the resistance or the electron phonon interaction, a new method is proposed to quantize the RLC electric circuit. Calculations show that the quantum fluctuations under this new quantization are smaller than those by the traditional effective Hamiltonian method. And squeezed states can be generated if the inductance and capacity are time dependent. Meanwhile, the shortcoming of the traditional method that the electric charge and current will vanish in the long time limit is overcome.
基金Project supported by the Natural Science Foundation of Heze University of Shandong Province, China (Grant No XY05WL01), the University Experimental Technology Foundation of Shandong Province, China (Grant No S04W138), the Natural Science Foundation of Shandong Province, China (Grant No Y2004A09) and the National Natural Science Foundation of China (Grant No 10574060).
文摘Based on the scheme of damped harmonic oscillator quantization and thermo-field dynamics (TFD), the quantization of mesoscopic damped double resonance RLC circuit with mutual capacitance-inductance coupling is proposed. The quantum fluctuations of charge and current of each loop in a squeezed vacuum state are studied in the thermal excitation case. It is shown that the fluctuations not only depend on circuit inherent parameters, but also rely on excitation quantum number and squeezing parameter. Moreover, due to the finite environmental temperature and damped resistance, the fluctuations increase with the temperature rising, and decay with time.
基金The project supported by Natural Science Foundation of Jiangxi Province of China under Grant No. 001004
文摘Using the path integral method we derive quantum wave function and quantum fluctuations of charge andcurrent in the mesoscopic RLC circuit. We find that the quantum fluctuation of charge decreases with time, oppositely,the quantum fluctuation of current increases with time monotonously. Therefore there is a squeezing effect in the circuit.If some more charge devices are used in the mesoscopic-damped circuit, the quantum noise can be reduced. We also findthat uncertainty relation of charge and current periodically varies with the period π/2 in the under-damped case.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10775097 and 10874174)the Research Foundation of the Education Department of Jiangxi Province of China (Grant No.GJJ10097)
文摘By virtue of the generalized Hellmann-Feynman theorem for the ensemble average, we obtain the internal energy and average energy consumed by the resistance R in a quantized resistance-inductance-capacitance (RLC) electric circuit. We also calculate the entropy-variation with R. The relation between entropy and R is also derived. By the use of figures we indeed see that the entropy increases with the increment of R.
文摘With the help of the time-dependent Lagrangian for a damped harmonic oscillator, the quantization of mesoscopic RLC circuit in the context of a number-phase quantization scheme is realized and the corresponding Hamiltonian operator is obtained. Then the evolution of the charge number and phase difference across the capacity are obtained. It is shown that the number-phase analysis is useful to tackle the quantization of some mesoscopic circuits and dynamical equations of the corresponding operators.
基金The project supported by National Natural Science Foundation of China under Grant No.10174066
文摘The invariants for a mesoscopic RLC circuit with a power source are studied and used to construct the squeezed states and squeezed number states for the system. The quantum fluctuations of the mesoscopic RLC circuit in the squeezed states and squeezed number states are also investigated.
文摘Using the path integral method we derive quantum wave function and quantum fluctuations of charge andcurrent in the mesoscopic RLC circuit. We find that the quantum fluctuation of charge decreases with time, oppositely,the quantum fluctuation of current increases with time monotonously. Therefore there is a squeezing effect in the circuit.If some more charge devices are used in the mesoscopic-damped circuit, the quantum noise can be reduced. We also findthat uncertainty relation of charge and current periodically varies with the period π/2 in the under-damped case.