期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
零均值高斯过程的Karhunen-Loève展开及再生核希尔伯特空间(英文)
1
作者 王敏慧 刘国庆 《黑龙江大学自然科学学报》 CAS 北大核心 2011年第6期788-792,共5页
Xt=W(t)-αtW(1),t∈[0,b],b和α都是常数,W(t)是标准布朗运动,得到它的Karhunen-Loève展开及再生核希尔伯特空间。所用的方法是Mercer定理和Fredholm积分方程,得到的结果推广了布朗运动和布朗桥的已知结果。
关键词 Karhunen-Loève展开 rkhs 布朗桥 高斯过程 第二类FREDHOLM积分方程
在线阅读 下载PDF
瑞科汉斯:创造更安全的电气环境 访瑞科汉斯电气有限公司技术部部长张劲松
2
作者 史海疆 《电气应用》 北大核心 2012年第6期10-12,共3页
RHEF电气火灾监控系统具备综合保护、实时监控、运行自检和数据存储四大功能,可以检测出线路所存在的电气隐患,完全能够将电气火灾消除在初始阶段。
关键词 电气火灾监控系统 rkhs多功能仪表 既有建筑改造项目
原文传递
基于双特征的丘陵山区耕地低空遥感图像配准算法 被引量:4
3
作者 宋飞 杨扬 +2 位作者 杨昆 张愫 毕东升 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2018年第9期1952-1963,共12页
针对丘陵山区耕地小型无人机航拍图像(低空遥感图像)中的尺度变化、几何畸变、图像重叠等问题,提出了基于双特征的丘陵山区耕地低空遥感图像配准算法。该算法鉴于丘陵山区耕地背景环境复杂、光照因素等影响,采用尺度不变特征SURF算法提... 针对丘陵山区耕地小型无人机航拍图像(低空遥感图像)中的尺度变化、几何畸变、图像重叠等问题,提出了基于双特征的丘陵山区耕地低空遥感图像配准算法。该算法鉴于丘陵山区耕地背景环境复杂、光照因素等影响,采用尺度不变特征SURF算法提取了遥感图像的特征点,并构建了能够稳健描述航拍图像几何特征的双特征描述子;在此基础上,以高斯混合模型(GMM)为核心,结合2个单一特征差异描述子(基于欧氏距离的全局特征和基于和向量的局部特征)构造的双特征描述子,得到了能够同时通过2种特征进行对应关系评估的双特征有限混合模型(DFMM),并通过再生核希尔伯特空间(RKHS),基于高斯径向基函数(GRBF)对待配准图像进行了全局与局部结构双约束的空间变换更新。为了验证本文算法的可行性及其性能,采用小型无人机航拍的丘陵山区坡耕地多视角遥感图像开展了实验,将本文算法与SIFT、SURF、CPD、AGMReg、GLMDTPS及PRGLS进行了比较。实验结果表明,本文算法不仅在不同坡度的坡耕地航拍图像多视角配准过程中,均具有较好的鲁棒性,也适用于部分复杂地形小型无人机航拍的多视角遥感图像配准。 展开更多
关键词 图像配准 小型无人机 双特征 有限混合模型 再生核希尔伯特空间(rkhs)
原文传递
泛函回归代理及条件期望配准的机械摆动测量 被引量:1
4
作者 郑思凡 陈平平 +1 位作者 苏凯雄 吴永春 《光学精密工程》 EI CAS CSCD 北大核心 2021年第5期1154-1168,共15页
在机械摆动的运动分割及视觉测量中,针对传统以块状轨迹群为单位的谱聚类运动分割因摆杆光流轨迹中断及线速度分布差异所导致的碎片化与过分割的局限性,提出一种以曲率为相似度度量的弧状轨迹群为单位的谱聚类分割算法,并结合点云配准... 在机械摆动的运动分割及视觉测量中,针对传统以块状轨迹群为单位的谱聚类运动分割因摆杆光流轨迹中断及线速度分布差异所导致的碎片化与过分割的局限性,提出一种以曲率为相似度度量的弧状轨迹群为单位的谱聚类分割算法,并结合点云配准完成转速图像测量。算法先用活动子集的稀疏高斯回归学习出弧状轨迹群的平均轨迹,将此平均轨迹作为稀疏子空间聚类的种子样本一次性完成运动分割,最后将非种子样本重新归入其被代理的种子样本聚类中以获得每帧最大稠密度的分割点云。在各帧点云基础上,通过条件期望点云配准算法求取帧间点云变换矩阵,并提取转动分量完成摆杆摆角测量。为证明有效性,结合客运车辆日次安全检测视觉自动化系统项目,以6种不同照度下5种车型的双摇杆刮水器总成为对象,比较了三种算法对摆角的测量精度。结果表明:本算法能完整学习出等长轨迹,且与人为标定角位移回归值误差均方值小于10%,同时运算量小于传统的交替方向乘子法(ADMM)单次迭代,可作为工业智能制造与自动控制系统中的机械视觉运动测量及机械视觉故障诊断方面应用。 展开更多
关键词 变分光流 子空间聚类 稀疏高斯回归 rkhs空间 视觉里程计 Grashof双摇杆 李群流形 最大条件期望
在线阅读 下载PDF
基于平移不变核的异构迁移学习 被引量:2
5
作者 关增达 程立 朱廷劭 《中国科学院大学学报(中英文)》 CAS CSCD 北大核心 2015年第1期121-126,共6页
提出一种新的异构迁移学习方法.利用与目标数据集相关的异构特征数据集.通过把目标集和异构集的数据使用平移不变核(欧式距离核和径向基函数核),映射到一个新的再生核希尔伯特空间上.在新空间中2个数据集的特征相同,特征维度相等,分布接... 提出一种新的异构迁移学习方法.利用与目标数据集相关的异构特征数据集.通过把目标集和异构集的数据使用平移不变核(欧式距离核和径向基函数核),映射到一个新的再生核希尔伯特空间上.在新空间中2个数据集的特征相同,特征维度相等,分布接近,且保持数据的拓扑性质不变.实验证明,该方法特别是基于欧式距离核的方法取得了较好的效果,在目标训练集的标注数据较少时,有大于5%甚至超过10%的精度提高. 展开更多
关键词 异构迁移学习 平移不变核 rkhs
在线阅读 下载PDF
核双样检验的连杆摆动光流轨迹混叠去除及补偿
6
作者 郑思凡 陈平平 +2 位作者 苏凯雄 吴永春 林志坚 《仪器仪表学报》 EI CAS CSCD 北大核心 2023年第7期182-193,共12页
在连杆摆动视觉测量中,针对高速曝光产生的背景噪点对前景光流轨迹混叠及阻断导致配准误差,本文提出了一种新的视频滤波与补偿算法。该算法以背景噪声与前景摆杆光流轨迹不同的运动统计特性作为先验模型,通过核双样假设检验检测光流轨... 在连杆摆动视觉测量中,针对高速曝光产生的背景噪点对前景光流轨迹混叠及阻断导致配准误差,本文提出了一种新的视频滤波与补偿算法。该算法以背景噪声与前景摆杆光流轨迹不同的运动统计特性作为先验模型,通过核双样假设检验检测光流轨迹速度突变,剪除背景噪点轨迹片段实现去噪。为实现轨迹补偿,首先引入机械连杆铰接点为参照物的相对光流采集方式,将各帧摆杆铰接点配准翘曲至第1帧铰接点位置,将连杆摆动轨迹从复合高阶摆线中分离形成低阶理想圆弧。其次采用Pratt拟合翘曲后的摆杆轨迹的圆心与半径,将轨迹聚类为不同半径的弧状轨迹群。最后,将弧状轨迹群的x-y坐标ν-SVR回归作为几何约束,结合x-t动力学回归半监督学习出完整长度的轨迹。在刮刷总成摆角及共轭凸轮的针床推程位移比较的测量实验表明,该算法比传统VBM3D,MeshFlow等算法准确度可提高3.26%,运算复杂度降低2阶,在机械旋转运动视觉故障诊断及机械仪表数字化采集等方面具有广阔应用前景。 展开更多
关键词 连杆曲线图谱 BEBLID描述子 最大均值差异 rkhs再生核 密度功率散度 核双样检验
原文传递
腹腔镜下腹膜阴道成形术术式改良与探讨(附6例报告) 被引量:2
7
作者 黄沁松 马浩楠 涂持坤 《中国内镜杂志》 CSCD 北大核心 2005年第4期418-419,共2页
目的探讨该院常规腹腔镜下腹膜阴道成形术改良方法.方法经人工穴道钳夹翼状腹膜皱襞上缘,牵拉至穴道外口,形成阴道壁,镜下利用膀胱顶、直肠前及两侧盆壁腹膜作镜下荷包缝合,形成阴道顶;改良术式改为钝性剥离盆底腹膜及盆侧壁腹膜,钳夹... 目的探讨该院常规腹腔镜下腹膜阴道成形术改良方法.方法经人工穴道钳夹翼状腹膜皱襞上缘,牵拉至穴道外口,形成阴道壁,镜下利用膀胱顶、直肠前及两侧盆壁腹膜作镜下荷包缝合,形成阴道顶;改良术式改为钝性剥离盆底腹膜及盆侧壁腹膜,钳夹盆底腹膜最低点,而不是翼状腹膜皱襞上缘.结果手术:原术式60-100min,平均70min;改良术式35~50min,平均40min.结论牵拉腹膜容易,术后阴道壁腹膜易成活,对膀胱无干扰,手术简便易行. 展开更多
关键词 术式改良 腹腔镜 腹膜阴道成形术 RKH综合征
暂未订购
An Interpretable Denoising Layer for Neural Networks Based on Reproducing Kernel Hilbert Space and its Application in Machine Fault Diagnosis 被引量:9
8
作者 Baoxuan Zhao Changming Cheng +3 位作者 Guowei Tu Zhike Peng Qingbo He Guang Meng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第3期104-114,共11页
Deep learning algorithms based on neural networks make remarkable achievements in machine fault diagnosis,while the noise mixed in measured signals harms the prediction accuracy of networks.Existing denoising methods ... Deep learning algorithms based on neural networks make remarkable achievements in machine fault diagnosis,while the noise mixed in measured signals harms the prediction accuracy of networks.Existing denoising methods in neural networks,such as using complex network architectures and introducing sparse techniques,always suffer from the difficulty of estimating hyperparameters and the lack of physical interpretability.To address this issue,this paper proposes a novel interpretable denoising layer based on reproducing kernel Hilbert space(RKHS)as the first layer for standard neural networks,with the aim to combine the advantages of both traditional signal processing technology with physical interpretation and network modeling strategy with parameter adaption.By investigating the influencing mechanism of parameters on the regularization procedure in RKHS,the key parameter that dynamically controls the signal smoothness with low computational cost is selected as the only trainable parameter of the proposed layer.Besides,the forward and backward propagation algorithms of the designed layer are formulated to ensure that the selected parameter can be automatically updated together with other parameters in the neural network.Moreover,exponential and piecewise functions are introduced in the weight updating process to keep the trainable weight within a reasonable range and avoid the ill-conditioned problem.Experiment studies verify the effectiveness and compatibility of the proposed layer design method in intelligent fault diagnosis of machinery in noisy environments. 展开更多
关键词 Machine fault diagnosis Reproducing kernel Hilbert space(rkhs) Regularization problem Denoising layer Neural network
在线阅读 下载PDF
Design of semi-tensor product-based kernel function for SVM nonlinear classification 被引量:2
9
作者 Shengli Xue Lijun Zhang Zeyu Zhu 《Control Theory and Technology》 EI CSCD 2022年第4期456-464,共9页
The kernel function method in support vector machine(SVM)is an excellent tool for nonlinear classification.How to design a kernel function is difficult for an SVM nonlinear classification problem,even for the polynomi... The kernel function method in support vector machine(SVM)is an excellent tool for nonlinear classification.How to design a kernel function is difficult for an SVM nonlinear classification problem,even for the polynomial kernel function.In this paper,we propose a new kind of polynomial kernel functions,called semi-tensor product kernel(STP-kernel),for an SVM nonlinear classification problem by semi-tensor product of matrix(STP)theory.We have shown the existence of the STP-kernel function and verified that it is just a polynomial kernel.In addition,we have shown the existence of the reproducing kernel Hilbert space(RKHS)associated with the STP-kernel function.Compared to the existing methods,it is much easier to construct the nonlinear feature mapping for an SVM nonlinear classification problem via an STP operator. 展开更多
关键词 SVM Semi-tensor product STP-kernel NONLINEAR CLASSIFICATION Reproducing kernel Hilbert space(rkhs)
原文传递
RKH综合征并右侧孤立肾及输尿管下端狭窄1例
10
作者 柳林 郭霞 《齐鲁医学杂志》 2006年第3期272-272,共1页
关键词 RKH综合征 并发症 病例报告
暂未订购
Reproducing wavelet kernel method in nonlinear system identification
11
作者 文香军 许晓鸣 蔡云泽 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2008年第2期248-254,共7页
By combining the wavelet decomposition with kernel method, a practical approach of universal multiscale wavelet kernels constructed in reproducing kernel Hilbert space (RKHS) is discussed, and an identification sche... By combining the wavelet decomposition with kernel method, a practical approach of universal multiscale wavelet kernels constructed in reproducing kernel Hilbert space (RKHS) is discussed, and an identification scheme using wavelet support vector machines (WSVM) estimator is proposed for nordinear dynamic systems. The good approximating properties of wavelet kernel function enhance the generalization ability of the proposed method, and the comparison of some numerical experimental results between the novel approach and some existing methods is encouraging. 展开更多
关键词 wavelet kernels support vector machine (SVM) reproducing kernel Hilbert space rkhs nonlinear system identification
在线阅读 下载PDF
A Sparse Kernel Approximate Method for Fractional Boundary Value Problems
12
作者 Hongfang Bai Ieng Tak Leong 《Communications on Applied Mathematics and Computation》 EI 2023年第4期1406-1421,共16页
In this paper,the weak pre-orthogonal adaptive Fourier decomposition(W-POAFD)method is applied to solve fractional boundary value problems(FBVPs)in the reproducing kernel Hilbert spaces(RKHSs)W_(0)^(4)[0,1] and W^(1)[... In this paper,the weak pre-orthogonal adaptive Fourier decomposition(W-POAFD)method is applied to solve fractional boundary value problems(FBVPs)in the reproducing kernel Hilbert spaces(RKHSs)W_(0)^(4)[0,1] and W^(1)[0,1].The process of the W-POAFD is as follows:(i)choose a dictionary and implement the pre-orthogonalization to all the dictionary elements;(ii)select points in[0,1]by the weak maximal selection principle to determine the corresponding orthonormalized dictionary elements iteratively;(iii)express the analytical solution as a linear combination of these determined dictionary elements.Convergence properties of numerical solutions are also discussed.The numerical experiments are carried out to illustrate the accuracy and efficiency of W-POAFD for solving FBVPs. 展开更多
关键词 Weak pre-orthogonal adaptive Fourier decomposition(W-POAFD) Weak maximal selection principle Fractional boundary value problems(FBVPs) Reproducing kernel Hilbert space(rkhs)
在线阅读 下载PDF
Convergence rate of kernel canonical correlation analysis 被引量:5
13
作者 CAI Jia SUN HongWei 《Science China Mathematics》 SCIE 2011年第10期2161-2170,共10页
Kernel canonical correlation analysis(CCA) is a nonlinear extension of CCA,which aims at extract-ing the information shared by two random variables. It has wide applications in many fields,such as information retrieva... Kernel canonical correlation analysis(CCA) is a nonlinear extension of CCA,which aims at extract-ing the information shared by two random variables. It has wide applications in many fields,such as information retrieval. This paper gives the convergence rate analysis of kernel CCA under some approximation conditions and some suggestions on how to choose the regularization parameter. The result shows that the convergence rate only depends on two parameters:the rate of regularization parameter and the decay rate of eigenvalues of compact operator VY X,and it gives better understanding of kernel CCA. 展开更多
关键词 covariance operator canonical correlation analysis rkhs
原文传递
Some results for operators on a model space
14
作者 Mehmet GURDAL Ulas YAMANCI Mubariz GARAYEV 《Frontiers of Mathematics in China》 SCIE CSCD 2018年第2期287-300,共14页
We investigate some problems for truncated Toeplitz operators. Namely, the solvability of the Riccati operator equation on the set of all truncated Toeplitz operators on the model space Kθ = H^2θθH^2 is studied. We... We investigate some problems for truncated Toeplitz operators. Namely, the solvability of the Riccati operator equation on the set of all truncated Toeplitz operators on the model space Kθ = H^2θθH^2 is studied. We study in terms of Berezin symbols invertibility of model operators. We also prove some results for the Berezin number of the truncated Toeplitz operators. Moreover, we study some property for H2-functions in terms of noncyclicity of co-analytic Toeplitz operators and hypercyclicity of model operators. 展开更多
关键词 Reproducing kernel Hilbert space rkhs reproducing kernel Berezin symbol Berezin number truncated Toeplitz operator modeloperator Toeplitz operator
原文传递
Personalised medicine with multiple treatments: a PhD thesis abstract
15
作者 Zhilan Lou 《Statistical Theory and Related Fields》 2017年第2期182-184,共3页
When there is substantial heterogeneity of treatment effectiveness for comparative treatmentselection, it is crucial to identify individualised treatment rules for patients who have heterogeneous responses to treatmen... When there is substantial heterogeneity of treatment effectiveness for comparative treatmentselection, it is crucial to identify individualised treatment rules for patients who have heterogeneous responses to treatment. Existing approaches include directly modelling clinical outcomeby defining the optimal treatment rule according to the interactions between treatment andcovariates and outcome weighted approach that uses clinical outcome as weights to maximise atarget function whose value directly reflects correct treatment assignment. All existing articles ofestimating individualised treatment rules are all assuming just two treatment assignments. Herewe propose an outcome weighted learning approach that uses a vector hinge loss to extend estimating individualised treatment rules in multi-category treatments case. The consistency of theresulting estimator is shown. We also demonstrate the performance of our approach in simulationstudies and a real data analysis. 展开更多
关键词 Heterogeneity of treatment effectiveness individualised treatment rule risk bound rkhs weighted multi-category support vector machine
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部