期刊文献+
共找到2,988篇文章
< 1 2 150 >
每页显示 20 50 100
Simulation and Optimization of Coupling Dynamic Response of Steel Catenary Riser for a Semi-Submersible Platform Under Harsh Conditions in the South China Sea 被引量:1
1
作者 YIN Qi-shuai YAN Xin-ye +6 位作者 ZHU Hong CHEN Ke-jin YANG Jin LIU Lu-yao GAO Bing-zhen GUO Ying-ying MA Yong-qi 《China Ocean Engineering》 2025年第5期917-927,共11页
Steel catenary riser represents the pioneering riser technology implemented in China’s deep-sea oil and gas opera-tions.Given the complex mechanical conditions of the riser,extensive research has been conducted on it... Steel catenary riser represents the pioneering riser technology implemented in China’s deep-sea oil and gas opera-tions.Given the complex mechanical conditions of the riser,extensive research has been conducted on its dynamic analysis and structural design.This study investigates a deep-sea oil and gas field by developing a coupled model of a semi-submersible platform and steel catenary riser to analyze it mechanical behavior under extreme marine condi-tions.Through multi-objective optimization methodology,the study compares and analyzes suspension point tension and touchdown point stress under various conditions by modifying the suspension position,suspension angle,and catenary length.The optimal configuration parameters were determined:a suspension angle of 12°,suspension position in the southwest direction of the column,and a catenary length of approximately 2000 m.These findings elucidate the impact of configuration parameters on riser dynamic response and establish reasonable parameter layout ranges for adverse sea conditions,offering valuable optimization strategies for steel catenary riser deployment in domestic deep-sea oil and gas fields. 展开更多
关键词 steel catenary riser(SCR) multi-objective optimization riser configuration parameters harsh condi-tions dynamic analysis South China Sea
在线阅读 下载PDF
Knowledge Maps from Scientometric Review on Composite Marine Risers
2
作者 Chiemela Victor Amaechi Ahmed Reda +8 位作者 Salmia Binti Beddu Daud Bin Mohamed Agusril Syamsir Idris Ahmed Ja’e Bo Huang Chunguang Wang Xuanze Ju Jelson Cassavela Abiodun Kolawole Oyetunji 《Sustainable Marine Structures》 2025年第1期1-20,共20页
With the increasing exploration of oil and gas into deep waters,the necessity for material development increases for lighter conduits such as composite marine risers,in the oil and gas industry.To understand the resea... With the increasing exploration of oil and gas into deep waters,the necessity for material development increases for lighter conduits such as composite marine risers,in the oil and gas industry.To understand the research knowledge on this novel area,there is a need to have a bibliometric analysis on composite marine risers.A research methodology was developed whereby the data retrieval was from SCOPUS database from 1977–2023.Then,VOSviewer was used to visualize the knowledge maps.This study focuses on the progress made by conducting knowledge mapping and scientometric review on composite marine risers.This scientometric analysis on the subject shows current advances,geographical activities by countries,authorship records,collaborations,funders,affiiliations,co‑occurrences,and future research areas.It was observed that the research trends recorded the highest publication volume in the U.S.A.,but less cluster affiiliated,as it was followed by countries like the U.K.,China,Nigeria,Australia and Singapore.Also,thisfiield has more conference papers than journal papers due to the challenge of adaptability,acceptance,qualifiication,and application of composite marine risers in the marine industry.Hence,there is a need for more collaborations on composite marine risers and more funding to enhance the research trend. 展开更多
关键词 Composite risers Marine risers Marine Structure Scientometric Review Bibliometric Analysis Composite Material Knowledge Map
在线阅读 下载PDF
Dynamic Analysis of the Interaction Between Catenary Riser and Soft Seabed
3
作者 YU Jian-xing LIU Peng-fei +3 位作者 YU Yang JIA Lu-sheng LIU Yi LIU Xin 《China Ocean Engineering》 2025年第1期73-85,共13页
This study proposed a novel experimental platform to conduct dynamic loading tests of a truncated model steel catenary riser(SCR)within the touchdown zone(TDZ).The facilities of the platform,including a soil tank,a lo... This study proposed a novel experimental platform to conduct dynamic loading tests of a truncated model steel catenary riser(SCR)within the touchdown zone(TDZ).The facilities of the platform,including a soil tank,a loading system,and a soil stirring system,are introduced in detail.A steel pipe with the same diameter as the in situ SCR has been used in the laboratory tests to investigate the vertical motion of the pipe and the effect of the trench on the lateral motion.As the amplitude of the vertical motion increases,the depth of the trench deepens,the bending moment range increases,and the excess pore water pressure at the bottom of the pipeline first accumulates and then dissipates during loading.The development trend of the trench depth and the influence of the soil strength on the SCR bending moment are also studied.During the test,a seabed trench develops,and its shape is similar to that of the in situ trench. 展开更多
关键词 steel catenary riser(SCR) clay seabed steel pipe riser-seabed interaction touchdown zone(TDZ)
在线阅读 下载PDF
Investigation on Fatigue Damage of Offshore Risers Due to Slug-Induced Vibrations Based on Arbitrary Lagrangian-Eulerian(ALE)-Absolute Nodal Coordinate Formulation(ANCF) 被引量:1
4
作者 LIU De-peng ZHANG Yu AI Shang-mao 《China Ocean Engineering》 2025年第5期941-955,共15页
This study examines the slug-induced vibration(SIV)response and fatigue behavior of offshore risers subjected to internal slug flow.A structural model incorporating internal slug flow dynamics is developed using the A... This study examines the slug-induced vibration(SIV)response and fatigue behavior of offshore risers subjected to internal slug flow.A structural model incorporating internal slug flow dynamics is developed using the Absolute Nodal Coordinate Formulation(ANCF)and a spatial-temporal density variation equation to analyze how slug flow parameters affect the SIV response of risers.Structural displacement,stress,and fatigue responses are systematically evaluated to characterize the structural behavior under SIV conditions.Longer slugs induce more pronounced traveling wave characteristics,while shorter slugs facilitate a mixed traveling-standing wave mode.Moreover,higher slug frequencies lead to increased fatigue accumulation,especially over an extended touchdown zone,thereby compromising the structural integrity of the riser.The findings yield valuable insights into the dynamic interactions between slug flow and riser response.This research advances the understanding of SIV mechanisms and provides a theoretical foundation for fatigue assessment and structural optimization,contributing to the safe and efficient design of offshore risers in deepwater environments. 展开更多
关键词 slug flow offshore riser fatigue damage dynamic analysis
在线阅读 下载PDF
Experimental Investigation of the Slug-Induced Vibration of a Flexible Catenary Riser at Variable Gas-Liquid Ratios and Mixture Velocities 被引量:1
5
作者 GAO Yue ZHU Hong-jun +2 位作者 XU Bing WANG Min-hao ZHOU Mai 《China Ocean Engineering》 2025年第5期839-854,共16页
An experimental analysis of the slug-induced vibration(SIV)of a flexible catenary riser with an aspect ratio of 130 is reported in this work.The vibration responses and internal slug flow details at different gas-liqu... An experimental analysis of the slug-induced vibration(SIV)of a flexible catenary riser with an aspect ratio of 130 is reported in this work.The vibration responses and internal slug flow details at different gas-liquid ratios(Q_(g)/Q_(l))and mixture velocities(vm)are non-intrusively and simultaneously captured by high-speed cameras.Both the in-plane and out-of-plane responses of the catenary riser are excited in all considered cases.The slug flow characteristics,including translational velocities,slug lengths,recurrence frequencies,and pressure variations,are analyzed and dis-cussed,as are the dynamic responses of the riser in terms of the amplitudes,space-varying frequency,and modal weight.The dominant modal response based on the root-mean-square amplitude profiles does not match that based on the dominant frequency.Three mode switching types are identified based on the RMS amplitude profiles and the dominant frequency.When vm is small,no mode switching(NMS)is observed in either the in-plane or out-of-plane responses.For mode switching I(MS I),the switching between the first and second modes in the in-plane response is induced by slug flow with different recurrence frequencies in cases of large Q_(g)/Q_(l).However,there is no mode switching in the out-of-plane response.The switching between the first and third modes for the in-plane response and the second and fourth modes for the out-of-plane response(MS II)occurs in cases of relatively high vm and low Q_(g)/Q_(l). 展开更多
关键词 slug-induced vibration slug characteristics mode switching flexible catenary riser
在线阅读 下载PDF
Adaptive Vibration Control of Flexible Marine Riser with Internal Flow Coupling 被引量:1
6
作者 ZHOU Li WANG Guo-rong +1 位作者 WAN Min ZHONG Lin 《China Ocean Engineering》 2025年第5期928-940,共13页
This study examines the adaptive boundary control problem of flexible marine riser with internal flow coupling.The dynamic model of the flexible marine riser system with internal flow coupling is derived using the Ham... This study examines the adaptive boundary control problem of flexible marine riser with internal flow coupling.The dynamic model of the flexible marine riser system with internal flow coupling is derived using the Hamiltonian principle.An analysis of internal flow’s influence on the vibration characteristics of flexible marine risers is conducted.Then,for the uncertain environmental disturbance,the adaptive fuzzy logic system is introduced to dynamically approximate the boundary disturbance,and a robust adaptive fuzzy boundary control is proposed.The uniform boundedness of the closed-loop system is proved based on Lyapunov theory.The well-posedness of the closed-loop system is proved by operator semigroup theory.The proposed control’s effectiveness is validated through comparison with existing control methods. 展开更多
关键词 flexible marine riser internal flow adaptive control fuzzy logic system vibration control
在线阅读 下载PDF
Study on the Carcass Layer Multi-Pass Roll Forming of Deepwater Flexible Risers 被引量:1
7
作者 LU Hai-long LI Wen-bo +2 位作者 YAN Jun ZHANG Heng-rui YANG Zhi-xun 《China Ocean Engineering》 2025年第5期866-877,共12页
The carcass layer is the innermost structure of flexible marine risers and is responsible for resisting external pressure.It has an“S”section with a spiral interlocking feature.After the multi-pass roll forming of a... The carcass layer is the innermost structure of flexible marine risers and is responsible for resisting external pressure.It has an“S”section with a spiral interlocking feature.After the multi-pass roll forming of a flat steel strip,a carcass layer is formed by lock forming.During roll forming,the steel strip undergoes significant plastic deformation,and its local area accumulates residual stress owing to multiple loading and unloading cycles.These phenomena complicate the design and analysis of the carcass layer multi-pass roll forming(CLMRF)process and cause issues in the carcass layer during manufacturing,such as strip fracture and low forming quality.Thus,herein,CLMRF was investigated to clarify the stress distribution,and a parameter analysis was performed.First,the CLMRF process was designed on the basis of classical roll-forming design theory.Second,a finite element model was established,and CLMRF was simulated.Third,the distributions of the forming stress and residual stress of the strip during CLMRF were investigated.Finally,the influences of the strip thickness,roll gap,roll distance,and angular increment were investigated.The conclusions of this study can be used to provide technical guidance in the manufacturing of flexible risers. 展开更多
关键词 flexible riser carcass layer multi-pass roll forming finite element analysis residual stress
在线阅读 下载PDF
Data-Driven Prediction of Maximum Displacement of Flexible Riser Based on Movement of Platform 被引量:1
8
作者 SONG Jin-ze WU Yu-ze +3 位作者 HE Yu-fa ZHOU Shui-gen ZHU Hong-jun DENG Kai-rui 《China Ocean Engineering》 2025年第5期793-805,共13页
Mitigating vortex-induced vibrations(VIV)in flexible risers represents a critical concern in offshore oil and gas production,considering its potential impact on operational safety and efficiency.The accurate predictio... Mitigating vortex-induced vibrations(VIV)in flexible risers represents a critical concern in offshore oil and gas production,considering its potential impact on operational safety and efficiency.The accurate prediction of displacement and position of VIV in flexible risers remains challenging under actual marine conditions.This study presents a data-driven model for riser displacement prediction that corresponds to field conditions.Experimental data analysis reveals that the XGBoost algorithm predicts the maximum displacement and position with superior accuracy compared with Support vector regression(SVR),considering both computational efficiency and precision.Platform displacement in the Y-direction demonstrates a significant positive correlation with both axial depth and maximum displacement magnitude.The fourth point displacement exhibits the highest contribution to model prediction outcomes,showing a positive influence on maximum displacement while negatively affecting the axial depth of maximum displacement.Platform displacement in the X-and Y-directions exhibits competitive effects on both the riser’s maximum displacement and its axial depth.Through the implementation of XGBoost algorithm and SHapley Additive exPlanation(SHAP)analysis,the model effectively estimates the riser’s maximum displacement and its precise location.This data-driven approach achieves predictions using minimal,readily available data points,enhancing its practical field applications and demonstrating clear relevance to academic and professional communities. 展开更多
关键词 data-driven method flexible riser vortex-induced vibration(VIV) platform displacement
在线阅读 下载PDF
Vortex-Induced Vibration Response Characteristics of Deep-Sea Mining Risers Considering Abrasion Damage 被引量:1
9
作者 LIU Yu WANG Chang-zi +1 位作者 JIANG Yu-feng ZHU Yan 《China Ocean Engineering》 2025年第5期806-821,共16页
A deep-sea mining riser is a crucial component of the system used to lift seafloor mineral resources to the vessel.It is prone to damage and failure because of harsh environmental conditions and internal fluid erosion... A deep-sea mining riser is a crucial component of the system used to lift seafloor mineral resources to the vessel.It is prone to damage and failure because of harsh environmental conditions and internal fluid erosion.Furthermore,damage can impact the response characteristics of the riser,but varying environmental loadings easily mask it.Thus,distin-guishing between riser damage and environmental effects poses a considerable challenge.To address this issue,a cantilevered model is created for a deep-sea mining riser via the concentrated mass method,and a time-domain analytical strategy is developed.The vortex-induced vibration(VIV)response characteristics of the riser are initially examined,considering various damage conditions and flow velocities.The study results revealed four primary observations:(a)effective tension can serve as a reliable indicator for identifying damage at lower velocities;(b)there are noticeable differences in displacement between the healthy and damaged risers in the in-line direction rather than the cross-flow direction;(c)frequency characteristics can more effectively distinguish the damage conditions at high flow velocities,with the mean square frequency and frequency variance being more effective than the centroid frequency and root variance frequency;(d)displacement differences are more sensitive to damage occurring near the top and bottom of the riser,while both velocity variations and structural damage can influence displacements,especially in regions between modal nodes.The vibrational behavior and damage indicators are clarified for structural health monitoring of deep-sea mining risers during lifting operations. 展开更多
关键词 deep-sea mining riser vortex-induced vibration(VIV) response characteristics abrasion damage effective tension
在线阅读 下载PDF
Nonlinear Dynamic Modeling of Steel Catenary Risers with Varying Curvatures Under Internal Flow and External Current Excitation 被引量:1
10
作者 LI Fang-qiu CHENG Hao +4 位作者 LIU Miao-er LI Xin-xin AN Chen LU Hai-long LU Zhao-kuan 《China Ocean Engineering》 2025年第5期904-916,共13页
As oil and gas exploration moves into deeper waters,marine risers are subjected to increasingly complex service conditions,including vessel motions,ocean currents,seabed-soil interactions,and internal flow effects.Thi... As oil and gas exploration moves into deeper waters,marine risers are subjected to increasingly complex service conditions,including vessel motions,ocean currents,seabed-soil interactions,and internal flow effects.This work establishes a dynamic behavior model of steel catenary risers(SCRs)with varying curvatures subjected to internal flow and external currents and considers the effects of pipe-soil interactions on the curvature profile.The governing equation is solved via the generalized integral transform technique(GITT),which yields a semi-analytical solution of a high-order nonlinear partial differential equation.Parametric studies are then performed to analyze the effects of varying curvature on the vibration frequency and amplitude of SCRs.The vibration frequency and amplitude increase with the touchdown angle and hang-off angle,although the effect of the hang-off angle is negligible.Additionally,as the curvature increases along the centerline axis,the position of the maximum amplitude of the SCR moves upward. 展开更多
关键词 steel catenary riser(SCR) CURVATURE generalized integral transform technique(GITT) dynamic behav-ior internal flow and external current
在线阅读 下载PDF
Pressure characterization study in the jet influence zone of riser based on HHT analysis
11
作者 Zhi-Hang Zheng Jun-Nan Ma +1 位作者 Zi-Han Yan Chun-Xi Lu 《Petroleum Science》 2025年第7期3056-3067,共12页
By large-scale cold mold experiments,pressure pulsation signals within the jet influence zone of riser reactor are processed by using Hilbert-Huang analysis(HHT)in this study.Effects of different jet forms and operati... By large-scale cold mold experiments,pressure pulsation signals within the jet influence zone of riser reactor are processed by using Hilbert-Huang analysis(HHT)in this study.Effects of different jet forms and operating conditions on the intrinsic mode function(IMF)energy and Hilbert-Huang spectrum are compared.Results show that the IMF energy and Hilbert-Huang spectrum of pressure pulsation signals show significant differences under the influence of upward and downward jets.Moreover,the change of jet velocity will also lead to significant changes in IMF energy and Hilbert-Huang spectrum.Among them,energy values and energy proportions corresponding to high-frequency pressure pulsations show a good correlation with the jet velocity.On this basis,energy value and energy proportion data in the high frequency range of the original pressure signal are clustered and analyzed by using the K-means clustering algorithm.Based on clustering results,the jet influence zone of riser can be defined into three regions.From partitioning results,it is found that the introduction of downward inclined jets could effectively improve the gas-solid mixing in the feed injection zone of riser. 展开更多
关键词 Fluidized bed riser Jet influence zone Pressure pulsation Hilbert-Huang transform Distribution
原文传递
Dynamic Response Analyses and Experimental Research into Deep-Sea Mining Systems Based on Flexible Risers
12
作者 Jianyu Xiao Zhuang Kang +3 位作者 Ming Chen Yijun Shen Yanlian Du Jing Leng 《哈尔滨工程大学学报(英文版)》 2025年第4期789-804,共16页
The deep seabed is known for its abundant reserves of various mineral resources.Notably,the Clarion Clipperton(C-C)mining area in the northeast Pacific Ocean,where China holds exploration rights,is particularly rich i... The deep seabed is known for its abundant reserves of various mineral resources.Notably,the Clarion Clipperton(C-C)mining area in the northeast Pacific Ocean,where China holds exploration rights,is particularly rich in deep-sea polymetallic nodules.These nodules,which are nodular and unevenly distributed in seafloor sediments,have significant industrial exploitation value.Over the decades,the deep-sea mining industry has increasingly adopted systems that combine rigid and flexible risers supported by large surface mining vessels.However,current systems face economic and structural stability challenges,hindering the development of deep-sea mining technology.This paper proposes a new structural design for a deep-sea mining system based on flexible risers,validated through numerical simulations and experimental research.The system composition,function and operational characteristics are comprehensively introduced.Detailed calculations determine the production capacity of the deep-sea mining system and the dimensions of the seabed mining subsystem.Finite element numerical simulations analyze the morphological changes of flexible risers and the stress conditions at key connection points under different ocean current incident angles.Experimental research verifies the feasibility of collaborative movement between two tethered underwater devices.The proposed deep-sea mining system,utilizing flexible risers,significantly advances the establishment of a commercial deep-sea mining system.The production calculations and parameter determinations provide essential references for the system’s future detailed design.Furthermore,the finite element simulation model established in this paper provides a research basis,and the method established in this paper offers a foundation for subsequent research under more complex ocean conditions.The control strategy for the collaborative movement between two tethered underwater devices provides an effective solution for deep-sea mining control systems. 展开更多
关键词 Deep-sea mining Flexible riser Underwater mineral resources Dynamic response analyses Collaborative movement
在线阅读 下载PDF
Numerical simulation of vortex-induced vibration of deepwater drilling riser based on discrete vortex method
13
作者 Yan-Bin Wang Hong-Chuan Zhao +1 位作者 De-Li Gao Rui Li 《Petroleum Science》 2025年第5期2042-2061,共20页
Deepwater drilling riser is the key equipment connecting the subsea wellhead and floating drilling platform.Due to complex marine environment,vortex-induced vibration(ViV)will be generated on riser,which will induce f... Deepwater drilling riser is the key equipment connecting the subsea wellhead and floating drilling platform.Due to complex marine environment,vortex-induced vibration(ViV)will be generated on riser,which will induce fatigue failure and even cause unpredictable drilling accidents.Therefore,it is important to study the ViV characteristics of deepwater drilling riser and reveal the main controlling factors for ensuring the safe and efficient operation of deepwater drilling engineering.In this paper,the ViV of deepwater drilling riser is numerically simulated in time domain based on the discrete vortex method(DvM).A hydrodynamic analysis model and governing equation of VIV is proposed with considering the effect of riser motion using DVM and slice method,where the governing equation is solved by Runge-Kutta method.Model validation is performed,which verified the correctness and accuracy of the mechanical model and the solution method.On this basis,the influence of the number of control points,current velocity,riser outer diameter,shear flow and top tension on the ViV characteristics of deepwater drilling risers are discussed in detail.The results show that with the increase of current velocity,the vibration amplitude of deepwater drilling riser decreases obviously,while the vibration frequency increases gradually.However,if the outer diameter of riser increases,the vibration amplitude increases,while the vibration frequency decreases gradually.The top tension also has great influence on the VIV of riser.When the top tension is 1.25 G,the VIV is suppressed to a certain extent.This study has guiding significance for optimal design and engineering control of deepwater drilling riser. 展开更多
关键词 Deepwater drilling riser Vortex-induced vibration Discrete vortex method Numerical simulation VIV suppression
原文传递
Multi-stage and multi-objective optimization of anti-typhoon evacuation strategy for riser with new hang-off system
14
作者 Yan-Wei Li Xiu-Quan Liu +3 位作者 Peng-Ji Hu Xiao-Yu Hu Yuan-Jiang Chang Guo-Ming Chen 《Petroleum Science》 2025年第1期457-471,共15页
A new hang-off system has been proposed to improve the security of risers in hang-off modes during typhoons.However,efficient anti-typhoon evacuation strategies have not been investigated.Optimiza-tion model and metho... A new hang-off system has been proposed to improve the security of risers in hang-off modes during typhoons.However,efficient anti-typhoon evacuation strategies have not been investigated.Optimiza-tion model and method for the anti-typhoon evacuation strategies should be researched.Therefore,multi-objective functions are proposed based on operation time,evacuation speed stability,and steering stability.An evacuation path model and a dynamic model of risers with the new hang-off system are developed for design variables and constraints.A multi-objective optimization model with high-dimensional variables and complex constraints is established.Finally,a three-stage optimization method based on genetic algorithm,least square method,and the penalty function method is proposed to solve the multi-objective optimization model.Optimization results show that the operation time can be reduced through operation parameter optimization,especially evacuation heading optimization.The optimal anti-typhoon strategy is evacuation with all risers suspended along a variable path when the direction angle is large,while evacuation with all risers suspended along a straight path at another di-rection angle.Besides,the influencing factors on anti-typhoon evacuation strategies indicate that the proposed optimization model and method have strong applicability to working conditions and remarkable optimization effects. 展开更多
关键词 Anti-typhoon evacuation strategy riser Multi-stage and multi-objective Optimization Genetic algorithm Least square method
原文传递
Influence of the Buoyancy Section on the Mechanical Behavior of Deepwater Steel Lazy-Wave Risers
15
作者 XU Pu HU Yi-ming +2 位作者 RUAN Wei-dong ZHENG Ji-xiang Ahad JAVANMARDI 《China Ocean Engineering》 2025年第2期354-364,共11页
Steel lazy-wave riser(SLWR)is one of the key technical components of offshore oil-gas production systems and is widely utilized in deepwater areas.On the basis of the vector form intrinsic finite element(VFIFE)method,... Steel lazy-wave riser(SLWR)is one of the key technical components of offshore oil-gas production systems and is widely utilized in deepwater areas.On the basis of the vector form intrinsic finite element(VFIFE)method,this study develops a reasonable numerical model for the SLWR to investigate the effects of the buoyancy section on its mechanical characteristics.In the SLWR model,the buoyancy section is simulated using an equivalent riser segment with the same outer diameter and unit weight.The riser is considered to be composed of a series of space vector particles connected by elements,and virtual reverse motions are applied to establish the fundamental equations of forces and displacements.The explicit central difference technique is used to solve the governing equations for particle motion within the riser through programming implementation.To provide a detailed explanation of the process by which the SLWR achieves a stable lazy-wave configuration,a numerical model of a 2800-m-long riser is established at a water depth of 1600 m,and the feasibility of this model for riser behavior analysis is validated.The remarkable influences of the position,length,number and spacing of the buoyancy section on the mechanical behavior of the SLWR are observed,which provides a theoretical foundation for the optimal design of the SLWR in deepwaters. 展开更多
关键词 steel lazy-wave riser(SLWR) buoyancy section vector form intrinsic finite element(VFIFE) DEEPWATER mechanical behavior
在线阅读 下载PDF
Vibration Control of A Flexible Marine Riser System Subject to Input Dead Zone and Extraneous Disturbances 被引量:2
16
作者 ZHOU Li WANG Guo-rong WAN Min 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期271-284,共14页
An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control... An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control algorithm can update the control law online through real-time data to make the controller adapt to the environment and improve the control precision.Specifically,based on the adaptive backstepping framework,virtual control laws and Lyapunov functions are designed for each subsystem.Three direction interference observers are designed to track the timevarying boundary disturbance.On this basis,the inverse of the dead zone and linear state transformation are used to compensate for the original system and eliminate the adverse effects of the dead zone.In addition,the stability of the closed-loop system is proven by Lyapunov stability theory.All the system states are bounded,and the vibration offset of the riser converges to a small area of the initial position.Finally,four examples of flexible marine risers are simulated in MATLAB to verify the effectiveness of the proposed controller. 展开更多
关键词 adaptive backstepping control disturbance observer flexible marine riser input dead zone vibration control
在线阅读 下载PDF
Sparse Modal Decomposition Method Addressing Underdetermined Vortex-Induced Vibration Reconstruction Problem for Marine Risers 被引量:1
17
作者 DU Zun-feng ZHU Hai-ming YU Jian-xing 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期285-296,共12页
When investigating the vortex-induced vibration(VIV)of marine risers,extrapolating the dynamic response on the entire length based on limited sensor measurements is a crucial step in both laboratory experiments and fa... When investigating the vortex-induced vibration(VIV)of marine risers,extrapolating the dynamic response on the entire length based on limited sensor measurements is a crucial step in both laboratory experiments and fatigue monitoring of real risers.The problem is conventionally solved using the modal decomposition method,based on the principle that the response can be approximated by a weighted sum of limited vibration modes.However,the method is not valid when the problem is underdetermined,i.e.,the number of unknown mode weights is more than the number of known measurements.This study proposed a sparse modal decomposition method based on the compressed sensing theory and the Compressive Sampling Matching Pursuit(Co Sa MP)algorithm,exploiting the sparsity of VIV in the modal space.In the validation study based on high-order VIV experiment data,the proposed method successfully reconstructed the response using only seven acceleration measurements when the conventional methods failed.A primary advantage of the proposed method is that it offers a completely data-driven approach for the underdetermined VIV reconstruction problem,which is more favorable than existing model-dependent solutions for many practical applications such as riser structural health monitoring. 展开更多
关键词 motion reconstruction vortex-induced vibration(VIV) marine riser modal decomposition method compressed sensing
在线阅读 下载PDF
Experimental Study on Vortex-Induced Vibration of Rough Risers Coupling with Interference Effect in Tandem Arrangement
18
作者 HU Ze-bo LIU Zhen +4 位作者 LI Peng GUO Hai-yan REN Xiao-hui HOU Hao HAO Lian-hong 《China Ocean Engineering》 SCIE EI CSCD 2024年第3期394-407,共14页
In order to study the response law of vortex-induced vibration(VIV)of marine risers under the combined action of roughness and interference effects,and to reveal the coupling mechanism of roughness and interference ef... In order to study the response law of vortex-induced vibration(VIV)of marine risers under the combined action of roughness and interference effects,and to reveal the coupling mechanism of roughness and interference effects on the riser,a VIV experiment of rough risers in tandem arrangement was conducted in a wave−current combined flume.The experiment characterized the risers’roughness by arranging different specifications of attachments on the surface of the risers.Three rough risers with different roughness and smooth risers were arranged in tandem arrangement,with the rough risers arranged downstream.The experimental results indicate that the suppression of the attachments on the downstream risers’vibration are more significant both in the CF and IL directions as the reduced velocity increases.For the downstream riser,the amplitude response of rough riser is more significantly weakened compared with the smooth one at high reduced velocity.For the upstream risers,changes in the roughness and spacing ratio have an impact on their‘lock-in’region.When the roughness of downstream risers is relatively large(0.1300)and the spacing between risers is small(S/D=4.0),the reduced velocity range of‘lock-in’region in the CF direction of upstream risers is obviously expanded,and the displacement in the‘lock-in’region is severer. 展开更多
关键词 marine riser vortex-induced vibration tandem arrangement ROUGHNESS interference effect
在线阅读 下载PDF
Experimental Study on Vortex-Induced Vibration of Rough Risers with Coupling Interference Effect Under Side-by-Side Arrangement
19
作者 HU Ze-bo LIU Zhen +5 位作者 LI Peng GUO Hai-yan WANG Shu-bing REN Xiao-hui HOU Hao WANG Ye-shuo 《China Ocean Engineering》 SCIE EI CSCD 2024年第1期18-28,共11页
A vortex-induced vibration(VIV)experiment of rough risers with coupling interference effect under a side-by-side arrangement was carried out in a wave-current combined flume.The roughness of the riser was characterize... A vortex-induced vibration(VIV)experiment of rough risers with coupling interference effect under a side-by-side arrangement was carried out in a wave-current combined flume.The roughness of the riser was characterized by arranging different specifications of surface attachments on the surface of the riser.Rough risers with three different roughnesses were arranged side by side with smooth risers to explore the VIV response of the riser under the combined action of roughness and interference effect,and to reveal the coupling mechanism between roughness and interference effect.The experimental results show that,compared with that of a smooth riser,the VIV of a rough riser under the coupling interference effect has a wider"lock-in"region,and the displacement decreases more significantly at a high reduced velocity,which is more likely to excite higher-order modes and frequency responses.In addition,the displacement response and frequency response of the smooth riser are not significantly affected by wake interference from the rough riser,which is caused by the decrease of the wake region due to the delay of the boundary layer separation point of the rough riser. 展开更多
关键词 marine riser vortex-induced vibration side-by-side arrangement ROUGHNESS interference effect
在线阅读 下载PDF
Study on Free-Standing Riser Under Different Working Conditions Based on 3D Co-Rotational Beam Element
20
作者 HUANG Chen GU Ji-jun +3 位作者 JIA Ji-chuan CHEN Lei-lei WANG Shu-jiang GAO Lei 《China Ocean Engineering》 SCIE EI CSCD 2024年第5期725-738,共14页
When the free standing riser(FSR)is in service in the ocean,its mechanical properties are affected by various factors,including complex ocean current forces,buoyancy of the buoyancy can,and torque caused by the deflec... When the free standing riser(FSR)is in service in the ocean,its mechanical properties are affected by various factors,including complex ocean current forces,buoyancy of the buoyancy can,and torque caused by the deflection of the upper floating body.These loads have a great influence on the deformation and internal force of the FSR.The static performance of FSR is investigated in this research under various working conditions.The finite element model of FSR is established based on the co-rotational method.The arc length approach is used to solve the model.The load is exerted in increments.The current load on the riser changes with the configuration of the riser.The accuracy of the numerical method is verified by Abaqus software.The calculation time is also compared.Then,the effects of uniform current,actual current and floating body yaw motion on FSR are studied by parameter analysis.Additionally,the influence of the FSR on the ocean current after the failure of part of the buoyancy can chamber is analyzed.The results show that the numerical model based on the co-rotational method can effectively simulate the large rotation and torsion behavior of FSR.This method has high computational efficiency and precision,and this method can quickly improve the efficiency of numerical calculation of static analysis of deep-water riser.The proposed technology may serve as an alternative to the existing proprietary commercial software,which uses a complex graphical user interface. 展开更多
关键词 free standing riser(FSR) co-rotational method finite element method ocean current nonlinear analysis TORSION
在线阅读 下载PDF
上一页 1 2 150 下一页 到第
使用帮助 返回顶部