期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Cooperative RISE learning-based circumnavigation of networked unmanned aerial vehicles with collision avoidance and connectivity preservation
1
作者 Jawhar Ghommam Amani Ayeb +1 位作者 Brahim Brahmi Maarouf Saad 《Control Theory and Technology》 2025年第2期266-293,共28页
In this paper, a bearing-based three-dimensional self-localization and distributed circumnavigation with connectivity preservation and collision avoidance are investigated for a group of quadrotor-type unmanned aerial... In this paper, a bearing-based three-dimensional self-localization and distributed circumnavigation with connectivity preservation and collision avoidance are investigated for a group of quadrotor-type unmanned aerial vehicles (UAVs). A leader–follower structure is adopted, wherein the leader moves with reference dynamics (a target). Different from the existing approaches that necessitate full knowledge of the time-varying reference trajectory, in this paper, it is assumed that only some vehicles (at least one) have access to the bearing relative to the target, and all other vehicles are equipped with sensors capable of measuring the bearings relative to neighboring vehicles. In this paper, a consensus estimator is proposed to estimate the global position for each vehicle using relative bearing measurements and an estimate of neighboring vehicles received from a direct communication network. Then, a continuous robust integral of the sign of the error (RISE) control approach is effectively integrated with the distributed vector field approach to ensure UAV formation orbiting around the moving target while avoiding obstacles and maintaining network links within available communication ranges. In contrast to the classical RISE control rule, a \(\tanh (\cdot )\) function is used instead of the \(\text {sgn}(\cdot )\) function to further decrease the high-gain feedback and to obtain a smoother control signal. Furthermore, by using the localized radial basis function (RBF) neural networks (NNs) in a cooperative way, deterministic learning theory is employed to accurately identify/learn model uncertainties resulting from the attitude dynamics. The convergence of the entire closed-loop system is illustrated using the Lyapunov theory and is shown to be uniformly ultimately bounded. Finally, numerical simulations show the effectiveness of the proposed approach. 展开更多
关键词 rise-based backstepping approach Input constraints Auxiliary compensated systems Circumnavigation Distributed localization Collision avoidance Vector-field potential
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部