Purpose–This study aims to propose a novel identification method to accurately estimate linear and nonlinear dynamics in permanent magnet synchronous linear motor(PMSLM)based on the time-domain analysis of relay feed...Purpose–This study aims to propose a novel identification method to accurately estimate linear and nonlinear dynamics in permanent magnet synchronous linear motor(PMSLM)based on the time-domain analysis of relay feedback.Design/methodology/approach–A mathematical model of the PMSLM-based servo-mechanical system was first established,incorporating the aforementioned nonlinearities.The model’s velocity response was derived by analyzing its behavior as a first-order system under arbitrary input.To induce oscillatory dynamics,an ideal relay with artificially introduced dead-time components was then integrated into the servo-mechanism.Depending on the oscillations and the time-domain analysis,nonlinear formulas were deduced according to the velocity response of the servo-mechanism.Afterwards,the unknown model parameters can be solved on account of the cost function which utilizes the discrepancy between nominal position characteristics and temporary position characteristics,both of which are extracted from the oscillations.The proposed recognition method was validated through a twostage process:(1)numerical simulation and calculation,followed by(2)real-time experimental verification on a direct-drive servo platform.Subsequently,leveraging the identification results,a novel control strategy was developed and its tracking performance was benchmarked against conventional control schemes.Findings–Simulation results demonstrate that the proposed method achieves estimation accuracy within 8%.Building on this,a novel control strategy is developed by incorporating both friction pulsation and force pulsation identification results into the feedforward compensator.Comparative experiments reveal that this strategy significantly enhances tracking and positioning performance over traditional control schemes.In a word,this new identification method can be used in different process control and servo control systems.Moreover,parameter auto-tuning,feed forward compensation or disturbance observer can be investigated based on the obtained information to improve the system stability and control accuracy.Originality/value–It is of great significance for the performance improvement of rail transit motor control equipment,such as electro-mechanical braking systems.By enhancing the efficiency of motor control,the performance of the product will be more outstanding.展开更多
Linear flux-switching permanent magnet motors(LFSPMs) have been proposed for long stator applications such as rail transit. However, the conventional linear permanent magnet synchronous motor(LPMSM) suffers from thrus...Linear flux-switching permanent magnet motors(LFSPMs) have been proposed for long stator applications such as rail transit. However, the conventional linear permanent magnet synchronous motor(LPMSM) suffers from thrust ripple, which degrades the motor performance. The thrust ripple in LFSPMs is mainly caused by detent force and asymmetric electromagnetic parameters, excluding external disturbances. Moreover, the 12/13 slot-pole LFSPM exhibits unique inductance characteristics, which lead to different effects on thrust ripple. First, the detent force in the LFSPM is analyzed through finite element method(FEM). In addition, new finite element(FE) models are proposed for further analysis of the cogging force in LFSPMs. Second, the unique inductance characteristics of the 12/13 slot-pole LFSPM are investigated, and then the thrust ripple caused by asymmetric electromagnetic parameters is calculated by the virtual displacement method. Third, the mathematical model considering the thrust ripple is established for the LFSPM, which provides a foundation for subsequent research on thrust ripple suppression control strategies. Finally, the thrust ripple analysis is validated by comparing FEM results, modeling simulations, and experimental data.展开更多
The flow ripple caused by an axial piston pump may lead to pipe vibrations and lower hydraulic component reliability,which are of particular concern in hydraulic systems.The valve plate of the pump is considered the p...The flow ripple caused by an axial piston pump may lead to pipe vibrations and lower hydraulic component reliability,which are of particular concern in hydraulic systems.The valve plate of the pump is considered the part most related to flow ripple,and its structural design is an important topic.In this study,an analytical model for the axial piston pump flow ripple was established and verified using a numerical analysis with computational fluid dynamics(CFD)calculations.Moreover,a parametric analysis of the valve plate was performed to investigate the critical parameters and their ranges.A fast optimization method,the rotation vector optimization method(RVOM),was proposed for the valve plate design and compared with the currently used optimization methods to prove its efficiency.As a constant-pressure pump works in different states of swashplate angle,outlet pressure,and pump speed,an optimization principle for the entire working status was proposed to achieve the overall reduction performance.A test rig for an aircraft hydraulic pump was established,and validation experiments were conducted.It was determined that the optimized pump could achieve reduction at multiple working statuses,and the largest pressure pulsation reduction ratios for the typical speed and speed sweep tests reached 64.7%and 71.7%,respectively.The model and method proposed in this study are proven to be effective and accurate.展开更多
This study investigates the bifurcation dynamics underlying rhythmic transitions in a biophysical hippocampal–cortical neural network model.We specifically focus on the membrane potential dynamics of excitatory neuro...This study investigates the bifurcation dynamics underlying rhythmic transitions in a biophysical hippocampal–cortical neural network model.We specifically focus on the membrane potential dynamics of excitatory neurons in the hippocampal CA3 region and examine how strong coupling parameters modulate memory consolidation processes.Employing bifurcation analysis,we systematically characterize the model's complex dynamical behaviors.Subsequently,a characteristic waveform recognition algorithm enables precise feature extraction and automated detection of hippocampal sharp-wave ripples(SWRs).Our results demonstrate that neuronal rhythms exhibit a propensity for abrupt transitions near bifurcation points,facilitating the emergence of SWRs.Critically,temporal rhythmic analysis reveals that the occurrence of a bifurcation is not always sufficient for SWR formation.By integrating one-parameter bifurcation analysis with extremum analysis,we demonstrate that large-amplitude membrane potential oscillations near bifurcation points are highly conducive to SWR generation.This research elucidates the mechanistic link between changes in neuronal self-connection parameters and the evolution of rhythmic characteristics,providing deeper insights into the role of dynamical behavior in memory consolidation.展开更多
Hydrodynamic instability growth at the deuterium-tritium(DT)fuel-ablator interface plays a critical role in determining the performance of inertial confinement fusion implosions.During the late stages of implosion,ins...Hydrodynamic instability growth at the deuterium-tritium(DT)fuel-ablator interface plays a critical role in determining the performance of inertial confinement fusion implosions.During the late stages of implosion,insufficient doping of the ablator material can result in highenergy X-ray preheat,which may trigger the development of a classical-like Rayleigh-Taylor instability(RTI)at the fuel-ablator interface.In implosion experiments at the Shenguang 100 kJ-level laser facility,the primary source of perturbation is the roughness of the inner DT ice interface.In this study,we propose an analytical model to describe the feed-out process of the initial roughness of the inner DT ice interface.The perturbation amplitude derived from this model serves as the initial seed for the late-time RTI during the acceleration phase.Our findings confirm the presence of classical-like RTI at the fuel-ablator interface.Numerical simulations conducted using a radiation hydrodynamic code validate the proposed analytical model and demonstrate the existence of a peak mode number in both the feed-out process and the classical-like RTI.It provides an alternative bridge between the current target fabrication limitations and the unexpected implosion performance.展开更多
In the direct drive inertial confinement fusion(ICF)scheme,a rippled interface between the ablator and the deuterium–tritium ice fuel can feed out and form perturbation seeds for the ablative Rayleigh–Taylor instabi...In the direct drive inertial confinement fusion(ICF)scheme,a rippled interface between the ablator and the deuterium–tritium ice fuel can feed out and form perturbation seeds for the ablative Rayleigh–Taylor instability,with undesirable effects.However,the evolution of this instability remains insufficiently studied,and the effects of high-Z dopant on this instability remain unclear.In this paper,we develop a theoretical model to calculate the feedout seeds and describe this instability.Our theory suggests that the feedout seeds are determined by the ablation pressure and the adiabatic index,while the subsequent growth depends mainly on the ablation velocity.Two-dimensional radiation hydrodynamic simulations confirm our theory.It is shown that targets with high-Z dopant in the outer ablator exhibit more severe feedout seeds,because of their higher ionization compared with undoped targets.The X-ray pre-ablation in high-Z doped targets significantly suppresses subsequent growth,leading to suppression of short-wavelength perturbations.However,for long-wavelength perturbations,this suppression is weakened,resulting in increased instability in high-Z doped targets.The results are helpful for understanding the innerinterface-initiated instability and the influence of high-Z dopant on it,providing valuable insights for target design and instability control in ICF.展开更多
Tune ripple has a significant influence on beam spill ripple in RF-knockout(RF-KO)slow extraction.In this study,a model was proposed to explain how the tune ripple affects the beam spill in RF-KO slow extraction;conse...Tune ripple has a significant influence on beam spill ripple in RF-knockout(RF-KO)slow extraction.In this study,a model was proposed to explain how the tune ripple affects the beam spill in RF-KO slow extraction;consequently,a simulation was performed using the lattice of the Xi’an Proton Application Facility(XiPAF)synchrotron to verify the model.The simulation demonstrates that the tune ripple influences the beam spill in two ways.On the one hand,the tune ripple causes a direct fluctuation in the separatrix area,which induces beam spill ripple.On the other hand,the tune ripple influences the emittance growth rate in RF-knockout slow extraction.These two aspects simultaneously contribute to the beam spill ripple.展开更多
Vector-controlled AC motor drives utilize pulse width modulation(PWM)to synthesize the desired output voltage of the voltage source inverter(VSI).In space vector PWM(SVPWM)techniques,the average realization of the spa...Vector-controlled AC motor drives utilize pulse width modulation(PWM)to synthesize the desired output voltage of the voltage source inverter(VSI).In space vector PWM(SVPWM)techniques,the average realization of the space vector applying the volt-sec balance principle results in an instantaneous error voltage that generates high frequency torque ripple.It may lead to an increase in motor vibration and acoustic noise.This article presents a high frequency torque ripple prediction model based on stator flux ripple and proposes a targeted designed variable switching frequency PWM(VSFPWM)strategy to diminish high frequency torque ripple.The switching frequency is dynamically adjusted according to the peak value of the predicted stator flux ripple to mitigate high frequency torque ripple.In contrast to existing strategies,the strategy outlined in this article directly suppresses high frequency torque ripple,thus remaining unaffected by inaccurate motor parameters.Additionally,due to the introduction of the power factor angle,the proposed strategy can better adapt to the full speed range operating conditions of the motor.Detailed simulations and experiments are provided to validate the effectiveness of the proposed strategy.展开更多
Based on the structure of a certain type of aviation axial-piston pump's valve plate which adopts a pre-pressurization fluid path (consisting a damping hole, a buffer chamber, and an orifice) to reduce flow ripple,...Based on the structure of a certain type of aviation axial-piston pump's valve plate which adopts a pre-pressurization fluid path (consisting a damping hole, a buffer chamber, and an orifice) to reduce flow ripple, a single-piston model of the aviation axial-piston pump is presented. This sin- gle-piston model comprehensively considers fluid compressibility, orifice restriction effect, fluid resistance in the capillary tube, and the leakage flow. Besides, the instantaneous discharge areas used in the single-piston model have been calculated in detail. Based on the single-piston model, a multi-piston pump model has been established according to the simple hydraulic circuit. The sin- gle- and multi-piston pump models have been realized by the S-function in Matlab/Simulink. The developed multi-piston pump model has been validated by being compared with the numerical result by computational fluid dynamic (CFD). The effects of the pre-pressurization fluid path on the flow ripple and the instantaneous pressure in the piston chamber have been studied and opti- mized design recommendations for the aviation axial-piston pump have been given out.展开更多
Axial piston pump with pre-compression volume(PCV) has lower flow ripple in large scale of operating condition than the traditional one. However, there is lack of precise simulation model of the axial piston pump wi...Axial piston pump with pre-compression volume(PCV) has lower flow ripple in large scale of operating condition than the traditional one. However, there is lack of precise simulation model of the axial piston pump with PCV, so the parameters of PCV are difticult to be determined. A finite element simulation model for piston pump with PCV is built by considering the piston movement, the fluid characteristic(including fluid compressibility and viscosity) and the leakage flow rate. Then a test of the pump flow ripple called the secondary source method is implemented to validate the simulation model. Thirdly, by comparing results among the simulation results, test results and results from other publications at the same operating condition, the simulation model is validated and used in optimizing the axial piston pump with PCV. According to the pump flow ripples obtained by the simulation model with different PCV parameters, the flow ripple is the smallest when the PCV angle is 13~, the PCV volume is 1.3 ~ I0-4 m3 at such operating condition that the pump suction pressure is 2 MPa, the pump delivery pressure 15 MPa, the pump speed 1 000 r/min, the swash plate angle 13~. At the same time, the flow ripple can be reduced when the pump suction pressure is 2 MPa, the pump delivery pressure is 5 MPa,15 MPa, 22 MPa, pump speed is 400 r/min, 1 000 r/rain, 1 500 r/rain, the swash plate angle is ll~, 13~, 15~ and 17~, respectively. The finite element simulation model proposed provides a method for optimizing the PCV structure and guiding for designing a quieter axial piston pump.展开更多
The current research about the flow ripple of axial piston pump mainly focuses on the effect of the structure of parts on the flow ripple. Therein, the structure of parts are usually designed and optimized at rated wo...The current research about the flow ripple of axial piston pump mainly focuses on the effect of the structure of parts on the flow ripple. Therein, the structure of parts are usually designed and optimized at rated working conditions. However, the pump usually has to work in large-scale and time-variant working conditions. Therefore, the flow ripple characteristics of pump and analysis for its test accuracy with respect to variant steady-state conditions and transient conditions in a wide range of operating parameters are focused in this paper. First, a simulation model has been constructed, which takes the kinematics of oil film within friction pairs into account for higher accuracy. Afterwards, a test bed which adopts Secondary Source Method is built to verify the model. The simulation and tests results show that the angular position of the piston, corresponding to the position where the peak flow ripple is produced, varies with the different pressure. The pulsating amplitude and pulsation rate of flow ripple increase with the rise of pressure and the variation rate of pressure. For the pump working at a constant speed, the flow pulsation rate decreases dramatically with the increasing speed when the speed is less than 27.78% of the maximum speed, subsequently presents a small decrease tendency with the speed further increasing. With the rise of the variation rate of speed, the pulsating amplitude and pulsation rate of flow ripple increase. As the swash plate angle augments, the pulsating amplitude of flow ripple increases, nevertheless the flow pulsation rate decreases. In contrast with the effect of the variation of pressure, the test accuracy of flow ripple is more sensitive to the variation of speed. It makes the test accuracy above 96.20% available for the pulsating amplitude of pressure deviating within a range of ~6% from the mean pressure. However, with a variation of speed deviating within a range of ±2% from the mean speed, the attainable test accuracy of flow ripple is above 93.07%. The model constructed in this research proposes a method to determine the flow ripple characteristics of pump and its attainable test accuracy under the large-scale and time-variant working conditions. Meanwhile, a discussion about the variation of flow ripple and its obtainable test accuracy with the conditions of the pump working in wide operating ranges is given as well.展开更多
文摘Purpose–This study aims to propose a novel identification method to accurately estimate linear and nonlinear dynamics in permanent magnet synchronous linear motor(PMSLM)based on the time-domain analysis of relay feedback.Design/methodology/approach–A mathematical model of the PMSLM-based servo-mechanical system was first established,incorporating the aforementioned nonlinearities.The model’s velocity response was derived by analyzing its behavior as a first-order system under arbitrary input.To induce oscillatory dynamics,an ideal relay with artificially introduced dead-time components was then integrated into the servo-mechanism.Depending on the oscillations and the time-domain analysis,nonlinear formulas were deduced according to the velocity response of the servo-mechanism.Afterwards,the unknown model parameters can be solved on account of the cost function which utilizes the discrepancy between nominal position characteristics and temporary position characteristics,both of which are extracted from the oscillations.The proposed recognition method was validated through a twostage process:(1)numerical simulation and calculation,followed by(2)real-time experimental verification on a direct-drive servo platform.Subsequently,leveraging the identification results,a novel control strategy was developed and its tracking performance was benchmarked against conventional control schemes.Findings–Simulation results demonstrate that the proposed method achieves estimation accuracy within 8%.Building on this,a novel control strategy is developed by incorporating both friction pulsation and force pulsation identification results into the feedforward compensator.Comparative experiments reveal that this strategy significantly enhances tracking and positioning performance over traditional control schemes.In a word,this new identification method can be used in different process control and servo control systems.Moreover,parameter auto-tuning,feed forward compensation or disturbance observer can be investigated based on the obtained information to improve the system stability and control accuracy.Originality/value–It is of great significance for the performance improvement of rail transit motor control equipment,such as electro-mechanical braking systems.By enhancing the efficiency of motor control,the performance of the product will be more outstanding.
基金partly supported by the CAS Project for Young Scientists in Basic Research under Grant YSBR-045the National Natural Science Foundation of China under Grant 52307071。
文摘Linear flux-switching permanent magnet motors(LFSPMs) have been proposed for long stator applications such as rail transit. However, the conventional linear permanent magnet synchronous motor(LPMSM) suffers from thrust ripple, which degrades the motor performance. The thrust ripple in LFSPMs is mainly caused by detent force and asymmetric electromagnetic parameters, excluding external disturbances. Moreover, the 12/13 slot-pole LFSPM exhibits unique inductance characteristics, which lead to different effects on thrust ripple. First, the detent force in the LFSPM is analyzed through finite element method(FEM). In addition, new finite element(FE) models are proposed for further analysis of the cogging force in LFSPMs. Second, the unique inductance characteristics of the 12/13 slot-pole LFSPM are investigated, and then the thrust ripple caused by asymmetric electromagnetic parameters is calculated by the virtual displacement method. Third, the mathematical model considering the thrust ripple is established for the LFSPM, which provides a foundation for subsequent research on thrust ripple suppression control strategies. Finally, the thrust ripple analysis is validated by comparing FEM results, modeling simulations, and experimental data.
基金Supported by National Natural Science Foundation of China(Grant No.51975025)National Key Research and Development Program of China(Grant No.2019YFB2004500)。
文摘The flow ripple caused by an axial piston pump may lead to pipe vibrations and lower hydraulic component reliability,which are of particular concern in hydraulic systems.The valve plate of the pump is considered the part most related to flow ripple,and its structural design is an important topic.In this study,an analytical model for the axial piston pump flow ripple was established and verified using a numerical analysis with computational fluid dynamics(CFD)calculations.Moreover,a parametric analysis of the valve plate was performed to investigate the critical parameters and their ranges.A fast optimization method,the rotation vector optimization method(RVOM),was proposed for the valve plate design and compared with the currently used optimization methods to prove its efficiency.As a constant-pressure pump works in different states of swashplate angle,outlet pressure,and pump speed,an optimization principle for the entire working status was proposed to achieve the overall reduction performance.A test rig for an aircraft hydraulic pump was established,and validation experiments were conducted.It was determined that the optimized pump could achieve reduction at multiple working statuses,and the largest pressure pulsation reduction ratios for the typical speed and speed sweep tests reached 64.7%and 71.7%,respectively.The model and method proposed in this study are proven to be effective and accurate.
基金supported by the National Natural Science Foundation of China(Grant Nos.12272002 and 12372061)the R&D Program of Beijing Municipal Education Commission(Grant No.KM202310009004)+1 种基金the North China University of Technology(Grant No.2023XN075-01)the Youth Research Special Project of the North China University of Technology(Grant No.2025NCUTYRSP051)。
文摘This study investigates the bifurcation dynamics underlying rhythmic transitions in a biophysical hippocampal–cortical neural network model.We specifically focus on the membrane potential dynamics of excitatory neurons in the hippocampal CA3 region and examine how strong coupling parameters modulate memory consolidation processes.Employing bifurcation analysis,we systematically characterize the model's complex dynamical behaviors.Subsequently,a characteristic waveform recognition algorithm enables precise feature extraction and automated detection of hippocampal sharp-wave ripples(SWRs).Our results demonstrate that neuronal rhythms exhibit a propensity for abrupt transitions near bifurcation points,facilitating the emergence of SWRs.Critically,temporal rhythmic analysis reveals that the occurrence of a bifurcation is not always sufficient for SWR formation.By integrating one-parameter bifurcation analysis with extremum analysis,we demonstrate that large-amplitude membrane potential oscillations near bifurcation points are highly conducive to SWR generation.This research elucidates the mechanistic link between changes in neuronal self-connection parameters and the evolution of rhythmic characteristics,providing deeper insights into the role of dynamical behavior in memory consolidation.
基金funded by the National Key R&D Program of China(Grant No.2023YFA1608400)the National Natural Science Foundation of China(Grant No.12302281).
文摘Hydrodynamic instability growth at the deuterium-tritium(DT)fuel-ablator interface plays a critical role in determining the performance of inertial confinement fusion implosions.During the late stages of implosion,insufficient doping of the ablator material can result in highenergy X-ray preheat,which may trigger the development of a classical-like Rayleigh-Taylor instability(RTI)at the fuel-ablator interface.In implosion experiments at the Shenguang 100 kJ-level laser facility,the primary source of perturbation is the roughness of the inner DT ice interface.In this study,we propose an analytical model to describe the feed-out process of the initial roughness of the inner DT ice interface.The perturbation amplitude derived from this model serves as the initial seed for the late-time RTI during the acceleration phase.Our findings confirm the presence of classical-like RTI at the fuel-ablator interface.Numerical simulations conducted using a radiation hydrodynamic code validate the proposed analytical model and demonstrate the existence of a peak mode number in both the feed-out process and the classical-like RTI.It provides an alternative bridge between the current target fabrication limitations and the unexpected implosion performance.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Science(Grant Nos.XDA25050200 and XDA25010100)the National Natural Science Foundation of China(Grant Nos.12175309,12475252,and 12275356)+2 种基金the Defense Industrial Technology Development Program(Grant No.JCKYS2023212807)the Natural Science Foundation of Hunan Province,China(Grant No.2025JJ20007)the Postgraduate Scientific Research Innovation Project of Hunan Province,China(Grant No.CX20230005).
文摘In the direct drive inertial confinement fusion(ICF)scheme,a rippled interface between the ablator and the deuterium–tritium ice fuel can feed out and form perturbation seeds for the ablative Rayleigh–Taylor instability,with undesirable effects.However,the evolution of this instability remains insufficiently studied,and the effects of high-Z dopant on this instability remain unclear.In this paper,we develop a theoretical model to calculate the feedout seeds and describe this instability.Our theory suggests that the feedout seeds are determined by the ablation pressure and the adiabatic index,while the subsequent growth depends mainly on the ablation velocity.Two-dimensional radiation hydrodynamic simulations confirm our theory.It is shown that targets with high-Z dopant in the outer ablator exhibit more severe feedout seeds,because of their higher ionization compared with undoped targets.The X-ray pre-ablation in high-Z doped targets significantly suppresses subsequent growth,leading to suppression of short-wavelength perturbations.However,for long-wavelength perturbations,this suppression is weakened,resulting in increased instability in high-Z doped targets.The results are helpful for understanding the innerinterface-initiated instability and the influence of high-Z dopant on it,providing valuable insights for target design and instability control in ICF.
基金supported by the National Natural Science Foundation of China(No.12075131)。
文摘Tune ripple has a significant influence on beam spill ripple in RF-knockout(RF-KO)slow extraction.In this study,a model was proposed to explain how the tune ripple affects the beam spill in RF-KO slow extraction;consequently,a simulation was performed using the lattice of the Xi’an Proton Application Facility(XiPAF)synchrotron to verify the model.The simulation demonstrates that the tune ripple influences the beam spill in two ways.On the one hand,the tune ripple causes a direct fluctuation in the separatrix area,which induces beam spill ripple.On the other hand,the tune ripple influences the emittance growth rate in RF-knockout slow extraction.These two aspects simultaneously contribute to the beam spill ripple.
基金supported in part by the National Key Laboratory of Electromagnetic Energy Foundation under Grant 614221722050501 and 61422172220503。
文摘Vector-controlled AC motor drives utilize pulse width modulation(PWM)to synthesize the desired output voltage of the voltage source inverter(VSI).In space vector PWM(SVPWM)techniques,the average realization of the space vector applying the volt-sec balance principle results in an instantaneous error voltage that generates high frequency torque ripple.It may lead to an increase in motor vibration and acoustic noise.This article presents a high frequency torque ripple prediction model based on stator flux ripple and proposes a targeted designed variable switching frequency PWM(VSFPWM)strategy to diminish high frequency torque ripple.The switching frequency is dynamically adjusted according to the peak value of the predicted stator flux ripple to mitigate high frequency torque ripple.In contrast to existing strategies,the strategy outlined in this article directly suppresses high frequency torque ripple,thus remaining unaffected by inaccurate motor parameters.Additionally,due to the introduction of the power factor angle,the proposed strategy can better adapt to the full speed range operating conditions of the motor.Detailed simulations and experiments are provided to validate the effectiveness of the proposed strategy.
基金the support of the National Natural Science Foundation of China (No. 51235002)the National Science Foundation for Distinguished Young Scholars (No. 50825502)
文摘Based on the structure of a certain type of aviation axial-piston pump's valve plate which adopts a pre-pressurization fluid path (consisting a damping hole, a buffer chamber, and an orifice) to reduce flow ripple, a single-piston model of the aviation axial-piston pump is presented. This sin- gle-piston model comprehensively considers fluid compressibility, orifice restriction effect, fluid resistance in the capillary tube, and the leakage flow. Besides, the instantaneous discharge areas used in the single-piston model have been calculated in detail. Based on the single-piston model, a multi-piston pump model has been established according to the simple hydraulic circuit. The sin- gle- and multi-piston pump models have been realized by the S-function in Matlab/Simulink. The developed multi-piston pump model has been validated by being compared with the numerical result by computational fluid dynamic (CFD). The effects of the pre-pressurization fluid path on the flow ripple and the instantaneous pressure in the piston chamber have been studied and opti- mized design recommendations for the aviation axial-piston pump have been given out.
基金supported by National Key Technology R&D Program of the Eleventh Five-year Plan of China(Grant No.2011BAF09B03)National Natural Science Foundation of China(Grant No.51075360)
文摘Axial piston pump with pre-compression volume(PCV) has lower flow ripple in large scale of operating condition than the traditional one. However, there is lack of precise simulation model of the axial piston pump with PCV, so the parameters of PCV are difticult to be determined. A finite element simulation model for piston pump with PCV is built by considering the piston movement, the fluid characteristic(including fluid compressibility and viscosity) and the leakage flow rate. Then a test of the pump flow ripple called the secondary source method is implemented to validate the simulation model. Thirdly, by comparing results among the simulation results, test results and results from other publications at the same operating condition, the simulation model is validated and used in optimizing the axial piston pump with PCV. According to the pump flow ripples obtained by the simulation model with different PCV parameters, the flow ripple is the smallest when the PCV angle is 13~, the PCV volume is 1.3 ~ I0-4 m3 at such operating condition that the pump suction pressure is 2 MPa, the pump delivery pressure 15 MPa, the pump speed 1 000 r/min, the swash plate angle 13~. At the same time, the flow ripple can be reduced when the pump suction pressure is 2 MPa, the pump delivery pressure is 5 MPa,15 MPa, 22 MPa, pump speed is 400 r/min, 1 000 r/rain, 1 500 r/rain, the swash plate angle is ll~, 13~, 15~ and 17~, respectively. The finite element simulation model proposed provides a method for optimizing the PCV structure and guiding for designing a quieter axial piston pump.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2014CB046403)National Key Technology R&D Program of the Twelfth Five-year Plan of China(Grant No.2013BAF07B01)
文摘The current research about the flow ripple of axial piston pump mainly focuses on the effect of the structure of parts on the flow ripple. Therein, the structure of parts are usually designed and optimized at rated working conditions. However, the pump usually has to work in large-scale and time-variant working conditions. Therefore, the flow ripple characteristics of pump and analysis for its test accuracy with respect to variant steady-state conditions and transient conditions in a wide range of operating parameters are focused in this paper. First, a simulation model has been constructed, which takes the kinematics of oil film within friction pairs into account for higher accuracy. Afterwards, a test bed which adopts Secondary Source Method is built to verify the model. The simulation and tests results show that the angular position of the piston, corresponding to the position where the peak flow ripple is produced, varies with the different pressure. The pulsating amplitude and pulsation rate of flow ripple increase with the rise of pressure and the variation rate of pressure. For the pump working at a constant speed, the flow pulsation rate decreases dramatically with the increasing speed when the speed is less than 27.78% of the maximum speed, subsequently presents a small decrease tendency with the speed further increasing. With the rise of the variation rate of speed, the pulsating amplitude and pulsation rate of flow ripple increase. As the swash plate angle augments, the pulsating amplitude of flow ripple increases, nevertheless the flow pulsation rate decreases. In contrast with the effect of the variation of pressure, the test accuracy of flow ripple is more sensitive to the variation of speed. It makes the test accuracy above 96.20% available for the pulsating amplitude of pressure deviating within a range of ~6% from the mean pressure. However, with a variation of speed deviating within a range of ±2% from the mean speed, the attainable test accuracy of flow ripple is above 93.07%. The model constructed in this research proposes a method to determine the flow ripple characteristics of pump and its attainable test accuracy under the large-scale and time-variant working conditions. Meanwhile, a discussion about the variation of flow ripple and its obtainable test accuracy with the conditions of the pump working in wide operating ranges is given as well.