1 MHC-I Loss in the Immune Evasion of Cancer Cells Pancreatic ductal adenocarcinoma(PDAC)is a lethal cancer with a poor prognosis due to its aggressive nature and late detection.Recently,new discoveries in PDAC demons...1 MHC-I Loss in the Immune Evasion of Cancer Cells Pancreatic ductal adenocarcinoma(PDAC)is a lethal cancer with a poor prognosis due to its aggressive nature and late detection.Recently,new discoveries in PDAC demonstrated receptor-interacting protein kinase 2(RIPK2)triggering immune evasion.Mechanistically,RIPK2 drives the desmoplastic tumor microenvironment(TME)and restricts the activation and density of tumor-infiltrating effector T cells by impairing the expression of major histocompatibility complex class I(MHC-I)[1].This process might be relevant in different solid cancer entities as illustrated by analyzing publicly available databases.展开更多
研究发现细胞死亡与骨关节炎(osteoarthritis,OA)的发病机制密切相关,除了凋亡、铁死亡、焦亡以外,目前又发现了一种全新的由受体相互作用蛋白激酶1(receptor-interacting protein kinase 1,RIPK1)和受体相互作用蛋白激酶3(receptor-int...研究发现细胞死亡与骨关节炎(osteoarthritis,OA)的发病机制密切相关,除了凋亡、铁死亡、焦亡以外,目前又发现了一种全新的由受体相互作用蛋白激酶1(receptor-interacting protein kinase 1,RIPK1)和受体相互作用蛋白激酶3(receptor-interacting protein kinase 3,RIPK3)介导的细胞死亡方式——程序性坏死。作为一种新型的受调控的细胞死亡方式,细胞的程序性坏死已被证实在部分炎症性疾病中扮演着重要的角色,但其与OA的关系还不够明晰。本文通过对PubMed、Web of Science、中国知网数据库的检索结果进行分析,总结了程序性坏死的特征、分子机制及其与软骨细胞炎症的关系等,期望对阐明软骨细胞程序性坏死在OA疾病进程中的作用有所帮助。展开更多
BACKGROUND Necroptosis has emerged as a novel molecular pathway that can be targeted by chemotherapy agents in the treatment of cancer.OSW-1,which is derived from the bulbs of Ornithogalum saundersiae Baker,exerts a w...BACKGROUND Necroptosis has emerged as a novel molecular pathway that can be targeted by chemotherapy agents in the treatment of cancer.OSW-1,which is derived from the bulbs of Ornithogalum saundersiae Baker,exerts a wide range of pharmaco-logical effects.AIM To explore whether OSW-1 can induce necroptosis in colorectal cancer(CRC)cells,thereby expanding its range of clinical applications.METHODS We performed a sequence of functional experiments,including Cell Counting Kit-8 assays and flow cytometry analysis,to assess the inhibitory effect of OSW-1 on CRC cells.We utilized quantitative proteomics,employing tandem mass tag label-ing combined with liquid chromatography-tandem mass spectrometry,to analyze changes in protein expression.Subsequent bioinformatic analysis was conducted to elucidate the biological processes associated with the identified proteins.Transmission electron microscopy(TEM)and immunofluorescence studies were also performed to examine the effects of OSW-1 on necroptosis.Finally,western blotting,siRNA experiments,and immunoprecipitation were employed to evaluate protein interactions within CRC cells.RESULTS The results revealed that OSW-1 exerted a strong inhibitory effect on CRC cells,and this effect was accompanied by a necroptosis-like morphology that was observable via TEM.OSW-1 was shown to trigger necroptosis via activation of the RIPK1/RIPK3/MLKL pathway.Furthermore,the accumulation of p62/SQSTM1 was shown to mediate OSW-1-induced necroptosis through its interaction with RIPK1.CONCLUSION We propose that OSW-1 can induce necroptosis through the RIPK1/RIPK3/MLKL signaling pathway,and that this effect is mediated by the RIPK1-p62/SQSTM1 complex,in CRC cells.These results provide a theoretical foundation for the use of OSW-1 in the clinical treatment of CRC.展开更多
文摘1 MHC-I Loss in the Immune Evasion of Cancer Cells Pancreatic ductal adenocarcinoma(PDAC)is a lethal cancer with a poor prognosis due to its aggressive nature and late detection.Recently,new discoveries in PDAC demonstrated receptor-interacting protein kinase 2(RIPK2)triggering immune evasion.Mechanistically,RIPK2 drives the desmoplastic tumor microenvironment(TME)and restricts the activation and density of tumor-infiltrating effector T cells by impairing the expression of major histocompatibility complex class I(MHC-I)[1].This process might be relevant in different solid cancer entities as illustrated by analyzing publicly available databases.
文摘研究发现细胞死亡与骨关节炎(osteoarthritis,OA)的发病机制密切相关,除了凋亡、铁死亡、焦亡以外,目前又发现了一种全新的由受体相互作用蛋白激酶1(receptor-interacting protein kinase 1,RIPK1)和受体相互作用蛋白激酶3(receptor-interacting protein kinase 3,RIPK3)介导的细胞死亡方式——程序性坏死。作为一种新型的受调控的细胞死亡方式,细胞的程序性坏死已被证实在部分炎症性疾病中扮演着重要的角色,但其与OA的关系还不够明晰。本文通过对PubMed、Web of Science、中国知网数据库的检索结果进行分析,总结了程序性坏死的特征、分子机制及其与软骨细胞炎症的关系等,期望对阐明软骨细胞程序性坏死在OA疾病进程中的作用有所帮助。
基金Supported by the Natural Science Foundation of Liaoning Province,No.2022-MS-330and Key Projects in Liaoning Province,No.2020JH2/10300046.
文摘BACKGROUND Necroptosis has emerged as a novel molecular pathway that can be targeted by chemotherapy agents in the treatment of cancer.OSW-1,which is derived from the bulbs of Ornithogalum saundersiae Baker,exerts a wide range of pharmaco-logical effects.AIM To explore whether OSW-1 can induce necroptosis in colorectal cancer(CRC)cells,thereby expanding its range of clinical applications.METHODS We performed a sequence of functional experiments,including Cell Counting Kit-8 assays and flow cytometry analysis,to assess the inhibitory effect of OSW-1 on CRC cells.We utilized quantitative proteomics,employing tandem mass tag label-ing combined with liquid chromatography-tandem mass spectrometry,to analyze changes in protein expression.Subsequent bioinformatic analysis was conducted to elucidate the biological processes associated with the identified proteins.Transmission electron microscopy(TEM)and immunofluorescence studies were also performed to examine the effects of OSW-1 on necroptosis.Finally,western blotting,siRNA experiments,and immunoprecipitation were employed to evaluate protein interactions within CRC cells.RESULTS The results revealed that OSW-1 exerted a strong inhibitory effect on CRC cells,and this effect was accompanied by a necroptosis-like morphology that was observable via TEM.OSW-1 was shown to trigger necroptosis via activation of the RIPK1/RIPK3/MLKL pathway.Furthermore,the accumulation of p62/SQSTM1 was shown to mediate OSW-1-induced necroptosis through its interaction with RIPK1.CONCLUSION We propose that OSW-1 can induce necroptosis through the RIPK1/RIPK3/MLKL signaling pathway,and that this effect is mediated by the RIPK1-p62/SQSTM1 complex,in CRC cells.These results provide a theoretical foundation for the use of OSW-1 in the clinical treatment of CRC.