Banana fruit ripening is a highly regulatory process involving various layers consisting of transcriptional regulation,epigenetic factor,and post-translational modification.Previously,we reported that MaERF11 cooperat...Banana fruit ripening is a highly regulatory process involving various layers consisting of transcriptional regulation,epigenetic factor,and post-translational modification.Previously,we reported that MaERF11 cooperated with MaHDA1 to precisely regulate the transcription of ripening-associated genes via histone deacetylation.However,whether MaERF11 is subjected to post-translational modification during banana ripening is largely unknown.In this study,we found that MaERF11 targeted a subset of starch degradation-related genes using the DNA affinity purification sequence(DAP-Seq)approach.Electrophoretic mobility shift assay(EMSA)and dual-luciferase reporter assay(DLR)demonstrated that MaERF11 could specifically bind and repress the expression of the starch degradation-related genes MaAMY3,MaBAM2 and MaGWD1.Further analyses of yeast two-hybrid(Y2H),bimolecular fluorescence complementation(BiFC)and Luciferase complementation imaging(LCI)assays indicated that MaERF11 interacted with the ubiquitin E3 ligase MaRFA1,and this interaction weakened the MaERF11-mediated transcriptional repression capacity.Collectively,our results suggest an additional regulatory layer in which MaERF11 regulates banana fruit ripening and expands the regulatory network in fruit ripening at the post-translational modification level.展开更多
Autophagy is a universal cellular process in eukaryotes that plays a critical role in plant growth and stress response.However,the role of autophagy in fruit ripening is largely unknown.Here,we demonstrated that most ...Autophagy is a universal cellular process in eukaryotes that plays a critical role in plant growth and stress response.However,the role of autophagy in fruit ripening is largely unknown.Here,we demonstrated that most autophagy-related genes(ATGs)were up-regulated during tomato(Solanum lycopersicum L.)fruit ripening.By using mutants of different autophagy pathway genes(ATG6,ATG10,ATG18a),we revealed that the deficiency of autophagy delayed the ripening of fruit.Compared with wild-type(WT),the production of ethylene was significantly reduced and the accumulation of lycopene was delayed in atg mutants during fruit ripening.We also observed the contents of glucose and fructose were both significantly decreased in atg mutants compared with WT,while the content of organic acids showed the opposite trend.Additionally,the negative regulator of ethylene production,APETALA2a(AP2a),interacted with ATG8 through a specific ATG8-interacting motif(AIM)and could be degraded through the autophagy pathway.These results demonstrate that autophagy plays a critical role in fruit ripening by regulating ethylene production and the accumulation of pigments,sugars and organic acids in tomato.展开更多
Fruit ripening,which is modulated by the up-and downregulation of numerous genes,is a sophisticated physiological event determining consumer acceptability.While many positive regulators have been known to regulate fru...Fruit ripening,which is modulated by the up-and downregulation of numerous genes,is a sophisticated physiological event determining consumer acceptability.While many positive regulators have been known to regulate fruit ripening,relatively less information is associated with the negative regulators in the process.Here,a negative regulator,MaMADS31,was characterized according to the banana fruit ripening transcriptome,which displayed nuclear localization and inhibitory transactivation activity.MaMADS31 suppresses the transcription of the cell wall modification gene MaPL15 and the ethylene biosynthesis-related gene MaACO13 by directly recognizing the CArG-box element in their promoters.Transient expression of MaMADS31 in banana fruit brought about downregulation of MaPL15 and MaACO13,thereby delaying fruit ripening.Importantly,MaMADS31 interacts with MaBZR2 to synergistically strengthen the transcriptional inhibition of MaPL15 and MaACO13.Overall,MaMADS31-MaBZR2 plays a negative role in fruit ripening by downregulating the MaPL15 and MaACO13 transcription,which provides new insights for innovating approaches for prolonging the postharvest life of horticultural plants.展开更多
Melon(Cucumis melo)is an economically important horticultural crop cultivated worldwide.NAC(NAM/ATAC/CUC)transcription factors play crucial roles in the transcriptional regulation of various developmental stages in pl...Melon(Cucumis melo)is an economically important horticultural crop cultivated worldwide.NAC(NAM/ATAC/CUC)transcription factors play crucial roles in the transcriptional regulation of various developmental stages in plant growth and fruit development,but their gene functions in melon remain largely unknown.Here,we identified 78 CmNAC family genes with an integrated and conserved no apical meristem(NAM)domain in the melon genome by performing genome-wide identification and bioinformatics analysis.Transcriptome data analysis and qRTPCR results showed that most CmNACs are specifically enriched in either the vegetative or reproductive organs of melon.Through genetic transformation,we found that overexpression of CmNAC34 in melons led to early ripening fruits,suggesting its positive role in promoting fruit maturation.Using yeast two-hybrid and bimolecular fluorescence complementation assays,we verified the direct protein interaction between CmNAC34 and CmNACNOR.The expression patterns of CmNAC34 and CmNAC-NOR were similar in melon tissues,and subcellular localization revealed their nuclear protein characteristics.We transformed CmNAC-NOR in melon and found that its overexpression resulted in early ripening fruits.Then,the yeast one-hybrid and dual luciferase reporter gene assays showed that the CmNAC34 protein can bind to the promoters of two glyoxalase(GLY)genes,which are involved in the abscisic acid signal pathway and associated with fruit regulation.These findings revealed the molecular characteristics,expression profiles,and functional patterns of the NAC family genes and provide new insights into the molecular mechanism by which CmNAC34 regulates climacteric fruit ripening.展开更多
Nowadays, ultrafine explosives are widely used in military fields. Ultrafine 2,2',4,4',6,6'-hexanitrostilbene(HNS) has emerged as an optimal primer for explosion foil initiators due to its excellent therma...Nowadays, ultrafine explosives are widely used in military fields. Ultrafine 2,2',4,4',6,6'-hexanitrostilbene(HNS) has emerged as an optimal primer for explosion foil initiators due to its excellent thermal stability and high-voltage short-pulse initiation performance. However, the solid phase ripening of ultrafine HNS leads to a degradation in its impact detonation performance. Previous studies have indicated that residual dimethyl formamide(DMF), which is present in ultrafine HNS prepared using the recrystallization method, affects ultrafine HNS ripening. The mechanism of residual solvent effects on solid phase ripening of ultrafine HNS is unclear. In this work, the specific surface area(SSA) derived from small angle X-ray scattering(SAXS) was utilized for kinetic fitting analysis to explore the mechanism by which residual solvents enhance the solid phase ripening of ultrafine HNS. The results of the SSA measured by insitu SAXS under conditions of 150℃ for 40 h revealed that the sample with 0.2% residual DMF exhibited a 21.51% decrease in SSA, whereas the sample with only 0.04% residual DMF showed a decrease of 15.66%.Furthermore, the higher amounts of residual DMF accelerated the reduction in SSA with time. Kinetic fitting analysis demonstrated that reducing residual DMF would lower both the activation energy and the pre-exponential factor, consequently decreasing the rate constant of solid phase ripening. The mechanism was speculated that it primarily facilitated the Ostwald ripening(OR). Additionally, contrast variation small angle X-ray scattering(CV-SAXS) confirmed that coating of ultrafine HNS particles is an effective method for inhibiting ripening, significantly reducing both the rate and extent of ripening of ultrafine HNS. This study predicts how residual solvents impact the solid phase ripening process of ultrafine HNS and proposes strategies for enhancing the long-term stability of ultrafine explosives.展开更多
Background: Labor induction has a low success rate, especially in primiparas with unruptured membranes. Previous studies focused on pregnant women with unruptured membranes, but none specifically targeted primiparas. ...Background: Labor induction has a low success rate, especially in primiparas with unruptured membranes. Previous studies focused on pregnant women with unruptured membranes, but none specifically targeted primiparas. Aims: To compare the effectiveness of a controlled-release dinoprostone vaginal delivery system for cervical dilatation (PROPESS) with that of mechanical dilation for labor induction in primiparous women with unruptured membranes. Materials and Methods: We retrospectively analyzed the data of 90 primiparas with unruptured membranes (41 and 49 in the PROPESS and mechanical dilation groups, respectively). The primary outcome was the cesarean section (CS) rate. The secondary outcomes were the prevalence of vaginal delivery within 12 or 24 h after the initial insertion, oxytocin usage rate, chorioamnionitis, additional use of mechanical dilation in the PROPESS group, and neonatal outcomes. Results: The CS rate was significantly lower in the PROPESS group than in the mechanical dilation group (p = 0.02). A total of 13 patients (31.7%) delivered within 24 h with PROPESS alone, indicating a significantly higher rate of delivery within 24 h in the PROPESS group (p = 0.02). Fewer patients required additional oxytocin in the PROPESS group than in the mechanical dilation group (p = 0.001). However, 14 (34%) patients in the PROPESS group required additional mechanical cervical dilation, resulting in a longer time to delivery than mechanical dilation. Conclusions: PROPESS significantly reduced CS rates and increased delivery rates 24 h after the initial insertion in primiparas with unruptured membranes compared to mechanical dilatation. However, failure to respond to PROPESS resulted in an overall longer delivery time than that of the conventional mechanical dilation group;therefore, identifying predictors of response to PROPESS is necessary.展开更多
Kiwifruit (Actinidia deliciosa (A. Chev.) C. F. Liang et A. R. Ferguson cv. Bruno) was used toinvestigate the effects of acetylsalicylic acid (ASA, 1.0 mmol/L, pH 3.5) and ethylene (100 mL/L) treat-ments on changes at...Kiwifruit (Actinidia deliciosa (A. Chev.) C. F. Liang et A. R. Ferguson cv. Bruno) was used toinvestigate the effects of acetylsalicylic acid (ASA, 1.0 mmol/L, pH 3.5) and ethylene (100 mL/L) treat-ments on changes at endogenous salicylic acid (SA) levels and other senescence-related factors duringfruit ripening and softening at 20 ℃. The level of endogenous SA in ripening fruits declined and a closerelationship was observed between the change at endogenous SA level and the rate of fruit ripening andsoftening. ASA treatment elevated SA level in the fruit, slowed down the increases in lipoxygenase (LOX)and allene oxide synthase (AOS) activities, decreased the O22-. production in the preclimacteric phase andthe early phase of ethylene climacteric rise, maintained the stability of cell membrane, inhibited ethylenebiosynthesis, postponed the onset of the ethylene climacteric, and delayed the process of fruit ripeningand softening. On the contrary, application of ethylene to ripening kiwifruit resulted at a lower SA level, anaccelerated increases in the activities of LOX and AOS and the rate of O22-. production, an elevated relativeelectric conductivity and an advanced onset of ethylene climacteric, and a quicker fruit ripening andsoftening. It is suggested that the effects of ASA on ripening kiwifruit can be attributed to its ability toscavenge O22-. and/or to maintain stability of cell membrane.展开更多
Two preselected plant growth promoting rhizobacteria(PGPR) containing 1-aminocyclopropane-1-carboxylate(ACC) -deaminase(EC 4.1.99.4) were used to investigate their potential to ameliorate the effects of drought stress...Two preselected plant growth promoting rhizobacteria(PGPR) containing 1-aminocyclopropane-1-carboxylate(ACC) -deaminase(EC 4.1.99.4) were used to investigate their potential to ameliorate the effects of drought stress on growth,yield,and ripening of pea(Pisum sativum L.) . Inoculated and uninoculated(control) seeds of pea cultivar 2000 were sown in pots(four seeds pot-1) and placed in a wire house. The plants were exposed to drought stress at different stages of growth(vegetative,flowering,and pod formation) by skipping the respective irrigation. Results revealed that inoculation of peas with PGPR containing ACC-deaminase significantly decreased the "drought stress imposed effects" on the growth and yield of peas. Exposure of plants to drought stress at vegetative growth stage significantly decreased shoot growth by 41% in the case of uninoculated plants,whereas,by only 18% in the case of inoculated plants compared to nonstressed uninoculated control. Grain yield was decreased when plants were exposed to drought stress at the flowering and pod formation stage,but inoculation resulted in better grain yield(up to 62% and 40% higher,respectively) than the respective uninoculated nonstressed control. Ripening of pods was also delayed in plants inoculated with PGPR,which may imply decreased endogenous ethylene production in inoculated plants. This premise is further supported by the observation that inoculation with PGPR reduced the intensity of classical "triple" response in etiolated pea seedlings,caused by externally applied ACC. It is very probable that the drought stress induced inhibitory effects of ethylene could be partially or completely eliminated by inoculation with PGPR containing ACC-deaminase.展开更多
The regulation of apple(Malus domestica)fruit texture during ripening is complex and a fundamental determinant of its commercial quality.In climacteric fruit,ripening-related processes are regulated by ethylene(ET),an...The regulation of apple(Malus domestica)fruit texture during ripening is complex and a fundamental determinant of its commercial quality.In climacteric fruit,ripening-related processes are regulated by ethylene(ET),and jasmonate(JA)is also involved in the ethylene biosynthesis pathway,mainly through the transcription factor MYC2.However,the molecular genetic mechanism for fruit ripening processes between the JA and ET signaling pathways still needs to be elucidated.In order to explore how JA regulates apple fruit ripening through ERF4,we used’Gala’and’Ralls Janet’fruit at different developmental stages as experimental materials to determine the fruit firmness and related gene expression analysis.Meanwhile,we carried out different hormone treatments on’Gala’fruit at ripening stage.Here,we show that ERF4 is a core JA signaling hub protein JASMONATE ZIM-DOMAIN(JAZ)interactor that affects ethylene signaling pathways.During fruit development,ERF4 represses the expression of ACS1 and ACO1 by interacting with JAZ,as well as with the JA-activated transcription factor MYC2.Ripening is promoted in JAZ-suppressed apples.Thus,ERF4 acts as a molecular link between ethylene and JA hormone signals,and the natural variation of the ERF4Ethylene-responsive binding factor-associated amphiphilic repression(EAR)motif decreases repression of ethylene biosynthesis genes.展开更多
Watermelon fruit undergoes distinct development stages with dramatic changes during fruit ripening.To date,the molecular mechanics of watermelon ripening remain unclear.Genetic and transcriptome evidences suggested th...Watermelon fruit undergoes distinct development stages with dramatic changes during fruit ripening.To date,the molecular mechanics of watermelon ripening remain unclear.Genetic and transcriptome evidences suggested that the ethylene response factor(ERF)gene ClERF069 may be an important candidate factor affecting watermelon fruit ripening.To dissect the roles of ClERF069 in fruit ripening,structure and phylogenetic analysis were performed using the amplified full-length sequence.Normal-ripening watermelon 97103,non-ripening watermelon PI296341-FR and the RIL population were used to analyze ClERF069 expression dynamics and the correlation with fruit ripening indexs.The results indicated that ClERF069 belongs to ERF family group VI and show high homology(83%identity)to melon ERF069-like protein.ClERF069 expression in watermelon flesh was negatively correlated with fruit lycopene content and sugar content during fruit ripening progress.Further transgenic evidences indicated that overexpression of 35S:ClERF069 in tomato noticeably delayed the ripening process up to 5.2 days.Lycopene,β-carotenoid accumulation patterns were altered and ethylene production patterns in transgenic fruits was significantly delayed during fruit ripening.Taken together,watermelon ethylene response factor ClERF069 was concluded to be a negative regulator of fruit ripening.展开更多
Background: Nitrogen(N), phosphorous(P), and potassium(K) are critical nutrient elements necessary for crop plant growth and development. However, excessive inputs will lead to inefficient usage and cause exces...Background: Nitrogen(N), phosphorous(P), and potassium(K) are critical nutrient elements necessary for crop plant growth and development. However, excessive inputs will lead to inefficient usage and cause excessive nutrient losses in the field environment, and also adversely affect the soil, water and air quality, human health, and biodiversity. Methods: Field experiments were conducted to study the effects of controlled-release fertilizer(CRF) on seed yield, plant growth, nutrient uptake, and fertilizer usage efficiency for early ripening rapeseed(Xiangzayou 1613) in the red-yellow soil of southern China during 2011–2013. It was grown using a soluble fertilizer(SF) and the same amounts of CRF, such as SF1/CRF1(3750 kg/hm^2), SF2/CRF2(3000 kg/hm^2), SF3/CRF3(2250 kg/hm^2), SF4/CRF4(1500 kg/hm^2), SF5/CRF5(750 kg/hm^2), and also using no fertilizer(CK). Results: CRF gave higher seed yields than SF in both seasons by 14.51%. CRF4 and SF3 in each group achieved maximum seed yield(2066.97 and 1844.50 kg/hm^2, respectively), followed by CRF3(1929.97 kg/hm^2) and SF4(1839.40 kg/hm^2). There were no significant differences in seed yield among CK, SF1, and CRF1(P0.05). CRF4 had the highest profit(7126.4 CNY/hm2) and showed an increase of 12.37% in seed yield, and it decreased by 11.01% in unit fertilizer rate compared with SF4. The branch number, pod number, and dry matter weight compared with SF increased significantly under the fertilization of CRF(P0.05). The pod number per plant was the major contributor to seed yield. On the other hand, the N, P, and K uptakes increased at first and then decreased with increasing the fertilizer rate at maturity, and the N, P, and K usage efficiency decreased with increasing the fertilizer rate. The N, P, and K uptakes and usage efficiencies of the CRF were significantly higher than those of SF(P0.05). The N accumulation and N usage efficiency of CRF increased by an average of 13.66% and 9.74 percentage points, respectively, compared to SF. In conclusion, CRF significantly promoted the growth of rapeseed with using total N as the base fertilizer, by providing sufficient N in the later growth stages, and last by reducing the residual N in the soil and increasing the N accumulation and N usage efficiency.展开更多
Tomato is one of the most important vegetable crops in the world and is a model plant used to study the ripening of climacteric fleshy fruit.During the ripening process of tomato fruit,flavor and aroma metabolites,col...Tomato is one of the most important vegetable crops in the world and is a model plant used to study the ripening of climacteric fleshy fruit.During the ripening process of tomato fruit,flavor and aroma metabolites,color,texture and plant hormones undergo significant changes.However,low temperatures delayed the ripening process of tomato fruit,inhibiting flavor compounds and ethylene production.Metabolomics and transcriptomics analyses of tomato fruit stored under low temperature(LT,5°C)and room temperature(RT,25°C)were carried out to investigate the effects of storage temperature on the physiological changes in tomato fruit after harvest.The results of transcriptomics changes revealed that the differentially expressed genes(DEGs)involved in tomato fruit ripening,including several kinds of transcription factors(TFs)(TCP,WRKY,MYB and bZIP),enzymes involved in cell wall metabolism[beta-galactosidase(β-GAL),pectinesterase(PE)and pectate lyase(PL),cellulose and cellulose synthase(CESA)],enzymes associated with fruit flavor and aroma[acetyltransferase(AT),malic enzyme(ME),lipoxygenase(LOX),aldehyde dehydrogenase(ALDH),alcohol dehydrogenase(ADH)and hexokinase(HK)],genes associated with heat stress protein 70 and genes involved in the production of plant hormones such as Ethylene responsive factor 1(ERF1),Auxin/indoleacetic acids protein(AUX/IAA),gibberellin regulated protein.Based on the above results,we constructed a regulatory network model of the effects of different temperatures during the fruit ripening process.According to the analysis of the metabolomics results,it was found that the contents of many metabolites in tomato fruit were greatly affected by storage temperature,including,organic acids(L-tartaric acid,a-hydroxyisobutyric acid and 4-acetamidobutyric acid),sugars(melezitose,beta-Dlactose,D-sedoheptulose 7-phosphate,2-deoxyribose 1-phosphate and raffinose)and phenols(coniferin,curcumin and feruloylputrescine).This study revealed the effects of storage temperature on postharvest tomato fruit and provided a basis for further understanding of the molecular biology and biochemistry of fruit ripening.展开更多
Proteolysis is one of the most important biochemical reactions during cheese ripening.Studies on the secondary structure of proteins during ripening would be helpful for characterizing protein changes for assessing ch...Proteolysis is one of the most important biochemical reactions during cheese ripening.Studies on the secondary structure of proteins during ripening would be helpful for characterizing protein changes for assessing cheese quality.Fourier transform infrared spectroscopy(FTIR),with self-deconvolution,second derivative analysis and band curve-fitting,was used to characterize the secondary structure of proteins in Cheddar cheese during ripening.The spectra of the amide I region showed great similarity,while the relative contents of the secondary structures underwent a series of changes.As ripening progressed,the α-helix content decreased and the β-sheet content increased.This structural shift was attributed to the strengthening of hydrogen bonds that resulted from hydrolysis of caseins.In summary,FTIR could provide the basis for rapid characterization of cheese that is undergoing ripening.展开更多
The fruits of peach cultivar Yuhua 3 were used as materials to investigate the changes of active oxygen and related enzymes in mitochondria respiratory metabolism during ripening of peach fruit, involving their influe...The fruits of peach cultivar Yuhua 3 were used as materials to investigate the changes of active oxygen and related enzymes in mitochondria respiratory metabolism during ripening of peach fruit, involving their influence on the proceeding of peach fruit senescence. The results showed that the large decrease in firmness occurred between maturity II and IV. The decrease in firmness coincided with an increase in respiratory intensity. Obvious peaks of respiratory intensity lagging to the rapid change of fruit firmness could be shown during peach ripening. Reactive oxygen species (ROS) had a cumulative process and positively correlated with respiratory intensity. During peach ripening, the content of Ca^2+ increased, the activities of succinic dehydrogenase (SDH), cytochrome C oxidase (CCO), H+-ATPase, and Ca^2+-ATPase decreased varying in different degree at the later step of ripening. These suggested a close relationship existed between ROS metabolism and mitochondrial respiration, namely, both ROS metabolism and mitochondrial respiration probably played important roles in ripening and senescing of peach fruit.展开更多
The processes involved in the major steps of successful revegetation of bauxite residues are examined.The first phase is the natural physical,chemical and microbial ripening of the profile.This involves allowing the p...The processes involved in the major steps of successful revegetation of bauxite residues are examined.The first phase is the natural physical,chemical and microbial ripening of the profile.This involves allowing the profile to drain,dry,shrink and crack to depth,leaching of soluble salts,alkalinity and Na down out of the surface layers,acidification by direct carbonation and natural seeding of tolerant vegetation with an accumulation of organic matter near the surface and an attendant development of an active microbial community.Following ripening,the surface layer can be tilled and gypsum and organic matter(e.g.manures,composts,biosolids)incorporated.These amendments result in a further decrease in pH,increase in Ca and other exchangeable cations,increased leaching of Na(with a reduction in exchangeable Na and ESP),improved physical properties,particularly aggregation,and a large increase in microbial activity.Other important considerations include the choice of suitable plant species tolerant to salinity/sodicity and local environmental conditions and the addition of balanced fertilizer applications.展开更多
Salicylic acid(SA) plays a pivotal role in delaying fruit ripening and senescence. However, little is known about its underlying mechanism of action. In this study, RNA sequencing was conducted to analyze and compare ...Salicylic acid(SA) plays a pivotal role in delaying fruit ripening and senescence. However, little is known about its underlying mechanism of action. In this study, RNA sequencing was conducted to analyze and compare the transcriptome profiles of SA-treated and control pear fruits. We found a total of 159 and 419 genes differentially expressed between the SA-treated and control pear fruits after 12 and 24 h of treatment, respectively. Among these differentially expressed genes(DEGs), 125 genes were continuously differentially expressed at both treatment times, and they were identified as candidate genes that might be associated with SA-regulated fruit ripening and senescence. Bioinformatics analysis results showed that 125 DEGs were mainly associated with plant hormone biosynthesis and metabolism, cell wall metabolism and modification, antioxidant systems, and senescence-associated transcription factors. Additionally, the expression of several candidate DEGs in ripening and senescent pear fruits after SA treatments were further validated by quantitative real-time PCR(qRT-PCR). This study provides valuable information and enhances the understanding of the comprehensive mechanisms of SA-meditated pear fruit ripening and senescence.展开更多
Abscisic acid(ABA)is a major regulator of non-climacteric fruit ripening;however,the role of ABA in the ripening of climacteric fruit is not clear.Here,as a typical climacteric fruit,apricots were used to investigate ...Abscisic acid(ABA)is a major regulator of non-climacteric fruit ripening;however,the role of ABA in the ripening of climacteric fruit is not clear.Here,as a typical climacteric fruit,apricots were used to investigate the role of ABA in fruit ripening.Based on weighted gene coexpression network analysis(WGCNA)of our previous transcriptome data,we treated‘Danxing’fruit with exogenous ABA and obtained ABA receptor genes,genes related to ABA biosynthesis and signal transduction,and analyzed the response of these candidate genes to exogenous ABA during fruit ripening.Subsequently,the full length of candidate PYLs genes were cloned,and their putative function were analyzed by phylogenetic analysis and protein structure domain analysis.And then the function of one candidate gene PaPYL9 was verified by using transgenic tomato.Furthermore,the response genes in transgenic tomato were screened by transcriptome sequencing,and ultimately the related regulatory network was proposed.The results showed that the injection of exogenous 1.89 mmol·L^(-1) ABA remarkably promoted fruit coloration,and increased the color index for red grapes(CIRG)and the total soluble solids(TSS)content,but significantly decreased the firmness and titratable acid(TA)content(p<0.01).Nordihydroguaiaretic acid(NDGA),the inhibitor of ABA,appeared to have the converse role in TA,TSS,CIRG and firmness,during the ripening process.One NCED(9-cis-epoxycarotenoiddioxygenase)and five ABA receptor genes related to signal transduction were mined from the transcriptome data of apricot fruit through WGCNA.Compared with the control,the expression levels of NCED1,PYL9(PYR/PYL/RCAR),SnRK2(SUCROSE NON-FERMENTING1(SNF1)-RELATED PROTEIN KINASE 2S),and ABF2(ABRE-binding bZIP transcription)were induced dramatically by ABA treatment(p<0.01),while NDGA treatment significantly inhibited their expression.Based on gene expression and protein domain analysis,we inferred that PaPYL9 is putatively involved in apricot fruit ripening.Overexpression of PaPYL9 in Micro-TOM tomatoes resulted in the promotion of early ripening.Simultaneously,the expression levels of genes related ethylene biosynthesis,chlorophyll degradation,fruit softening,flavor formation,pigment synthesis,and metabolism were all significantly induced in overexpression of PaPYL9 tomatoes.This indicates the central role of ABA in climacteric fruit ripening.A regulatory network was tentatively proposed,laying the foundation to unveil the molecular mechanism of the regulatory role of PaPYL9 in fruit ripening.展开更多
Activities of NAD kinase(NADK)and NADP phosphatase and relationship between the two enzymes and temperature, respiration, ethylene production and trifluoperazine(TFP) were studied during ripening and senescence of str...Activities of NAD kinase(NADK)and NADP phosphatase and relationship between the two enzymes and temperature, respiration, ethylene production and trifluoperazine(TFP) were studied during ripening and senescence of strawberry and tomato fruits after harvest at 4℃ and 20℃. The activity of NAD kinase in strawberry decreased slowly during first four days, then increased gradually. The NADP phosphatase activity increased at the second day, decreased the next day,then increased again. In tomato fruit, the activities of NAD kinase and NADP phosphatase increased at the second day, decreased with the ripening and senescence of the fruit. The change trend of NAD kinase and respiration in the two fruits were similar, the same were NADP phosphatase and ethylene production. TFP enhanced the activity of NAD kinase and had little effect on NADP phosphatase. Low temperature(4℃) activated the NAD kinase and reduced the activity of NADP phosphatase. These results indicated that the NAD kinase and NADP phosphatase were related to the ripening and senescence of strawberry and tomato fruits. The activation of NAD kinase probably postponed the ripening and senescence of the fruits.展开更多
BACKGROUND Term pregnancy-induced labor refers to the use of artificial methods to induce uterine contractions and terminate pregnancy after 37 wk.It is a common method to prevent overdue pregnancy and to deal with hi...BACKGROUND Term pregnancy-induced labor refers to the use of artificial methods to induce uterine contractions and terminate pregnancy after 37 wk.It is a common method to prevent overdue pregnancy and to deal with high-risk pregnancies.In addition,it can alleviate maternal complications and cause the fetus to leave the adverse intrauterine environment early,which is beneficial to the outcome of pregnancy.AIM To explore the effect of a birthing ball on labor by inducing cervical ripening and its influence on labor and the neonatal blood gas index.METHODS Twenty-two women who were scheduled to undergo labor induction and delivery in the obstetrics department of our hospital were randomly divided into two groups:the delivery ball group(childbirth ball combined with COOK balloon induction)and the conventional group(COOK balloon induction alone).The cervical Bishop score before and after intervention,duration of labor at each stage,mode of delivery,neonatal umbilical venous blood pH,oxygen partial pressure(PO_(2)),carbon dioxide partial pressure(PCO_(2)),and the 1-min Apgar score were recorded.RESULTS After the intervention,the cervical Bishop score of the delivery ball group(7.84±1.52)was significantly higher than that of the conventional group(7.32±1.29)(P<0.05),and the cervical Bishop scores of the two groups after intervention were significantly higher than those before intervention(P<0.05).After the intervention,the first stage of labor(510.9±98.7 min),the second stage of labor(43.0±8.5 min),and the total duration of labor(560.0±120.9 min)in the delivery ball group were lower than those in the routine group,with a first stage of labor of 602.1±133.2 min,a second stage of labor of 48.4±9.1 min,and a total duration of labor of 656.8±148.5 min(P<0.05).There was no significant difference in the time of the third stage of labor between the two groups(P>0.05).There was no significant difference in the pH,PO_(2),and PCO_(2) values of newborns between the delivery ball group and the conventional group(P>0.05).The 1-min Apgar score of the delivery ball group was higher than that of the conventional group(9.10±0.38 points vs 8.94±0.31 points,P<0.05).The natural delivery rate of the delivery ball group was higher than that of the conventional group(91.00%vs 78.00%,P<0.05).CONCLUSION The use of a birthing ball combined with a COOK balloon for inducing labor has a better effect on promoting cervical ripening,shortening the time of labor,and improving the Apgar score of newborns.展开更多
Fruit ripening is a complex process and is regulated by many factors. Ethylene and polygalacturonase (PG), lipoxygenase (LOX), expansin (EXP) are all critical regulating factors in fruit ripening and softening p...Fruit ripening is a complex process and is regulated by many factors. Ethylene and polygalacturonase (PG), lipoxygenase (LOX), expansin (EXP) are all critical regulating factors in fruit ripening and softening process. With antisense ACS tomato, Nr mutant tomato and cultivated tomato as materials, Northern blot hybridization showed that PG, LeEXP1 and LOXexpressed differently in different parts of cultivated tomato fruit during ripening, which was related to fruit ripening. The ripening process of columella and radial pericarp was faster than pericarp. In both Nr mutant and antisense ACS transgenic tomato fruit, expression levels ofPG, LeEXPI and LOXwere generally lower than those in cultivated fruit but still related to fruit ripening. The expression levels ofPG, LeEXP1 and LOX increased in the mature green tomato fruits after 0.5 h treatment with ethylene (100 μL/L). These results indicate that gene expression ofPG, LeEXP1 and LOXwere positively regulated by ethylene. The time and cumulative effect of the concentration exists in the expression of PG regulated by ethylene. The regulation of LOX expression mainly depended on the fruit development after great amount of ethylene was produced. PG played a major role in ripening and softening of tomato fruit, and cooperated with the regulation of EXP and LOX.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.31830071,32202561)the earmarked fund for CARS(Grant No.CARS-31)。
文摘Banana fruit ripening is a highly regulatory process involving various layers consisting of transcriptional regulation,epigenetic factor,and post-translational modification.Previously,we reported that MaERF11 cooperated with MaHDA1 to precisely regulate the transcription of ripening-associated genes via histone deacetylation.However,whether MaERF11 is subjected to post-translational modification during banana ripening is largely unknown.In this study,we found that MaERF11 targeted a subset of starch degradation-related genes using the DNA affinity purification sequence(DAP-Seq)approach.Electrophoretic mobility shift assay(EMSA)and dual-luciferase reporter assay(DLR)demonstrated that MaERF11 could specifically bind and repress the expression of the starch degradation-related genes MaAMY3,MaBAM2 and MaGWD1.Further analyses of yeast two-hybrid(Y2H),bimolecular fluorescence complementation(BiFC)and Luciferase complementation imaging(LCI)assays indicated that MaERF11 interacted with the ubiquitin E3 ligase MaRFA1,and this interaction weakened the MaERF11-mediated transcriptional repression capacity.Collectively,our results suggest an additional regulatory layer in which MaERF11 regulates banana fruit ripening and expands the regulatory network in fruit ripening at the post-translational modification level.
基金supported by the National Natural Science Foundation of China(Grant Nos.32302642,32272790)the Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study(Grant No.SN-ZJU-SIAS-0011)+1 种基金Collaborative Promotion Program of Zhejiang Provincial Agricultural Technology of China(Grant No.2023ZDXT05)the Fundamental Research Funds for the Central Universities(Grant No.226-2022-00122).
文摘Autophagy is a universal cellular process in eukaryotes that plays a critical role in plant growth and stress response.However,the role of autophagy in fruit ripening is largely unknown.Here,we demonstrated that most autophagy-related genes(ATGs)were up-regulated during tomato(Solanum lycopersicum L.)fruit ripening.By using mutants of different autophagy pathway genes(ATG6,ATG10,ATG18a),we revealed that the deficiency of autophagy delayed the ripening of fruit.Compared with wild-type(WT),the production of ethylene was significantly reduced and the accumulation of lycopene was delayed in atg mutants during fruit ripening.We also observed the contents of glucose and fructose were both significantly decreased in atg mutants compared with WT,while the content of organic acids showed the opposite trend.Additionally,the negative regulator of ethylene production,APETALA2a(AP2a),interacted with ATG8 through a specific ATG8-interacting motif(AIM)and could be degraded through the autophagy pathway.These results demonstrate that autophagy plays a critical role in fruit ripening by regulating ethylene production and the accumulation of pigments,sugars and organic acids in tomato.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFD2100102)China Agriculture Research System of Ministry of Finance(MOF)and Ministry of Agriculture and Rural Affairs(MARA)(Grant No.CARS-31)。
文摘Fruit ripening,which is modulated by the up-and downregulation of numerous genes,is a sophisticated physiological event determining consumer acceptability.While many positive regulators have been known to regulate fruit ripening,relatively less information is associated with the negative regulators in the process.Here,a negative regulator,MaMADS31,was characterized according to the banana fruit ripening transcriptome,which displayed nuclear localization and inhibitory transactivation activity.MaMADS31 suppresses the transcription of the cell wall modification gene MaPL15 and the ethylene biosynthesis-related gene MaACO13 by directly recognizing the CArG-box element in their promoters.Transient expression of MaMADS31 in banana fruit brought about downregulation of MaPL15 and MaACO13,thereby delaying fruit ripening.Importantly,MaMADS31 interacts with MaBZR2 to synergistically strengthen the transcriptional inhibition of MaPL15 and MaACO13.Overall,MaMADS31-MaBZR2 plays a negative role in fruit ripening by downregulating the MaPL15 and MaACO13 transcription,which provides new insights for innovating approaches for prolonging the postharvest life of horticultural plants.
基金funded by the National Natural Science Foundation of China(32202513)the Applied Technology Research and Development Foundation of Inner Mongolia Autonomous Region,China(2021PT0001)+3 种基金the Natural Science Foundation of Inner Mongolia Autonomous Region,China(2021BS03002)the Inner Mongolia Autonomous Region Universities“Young Science and Technology Talent Support Project”,China(NJYT24067)the Inner Mongolia University High-Level Talent Research Program,China(10000-21311201/056)the Inner Mongolia Autonomous Region Department of Education First-class Scientific Research Project,China(YLXKZX-ND-030)。
文摘Melon(Cucumis melo)is an economically important horticultural crop cultivated worldwide.NAC(NAM/ATAC/CUC)transcription factors play crucial roles in the transcriptional regulation of various developmental stages in plant growth and fruit development,but their gene functions in melon remain largely unknown.Here,we identified 78 CmNAC family genes with an integrated and conserved no apical meristem(NAM)domain in the melon genome by performing genome-wide identification and bioinformatics analysis.Transcriptome data analysis and qRTPCR results showed that most CmNACs are specifically enriched in either the vegetative or reproductive organs of melon.Through genetic transformation,we found that overexpression of CmNAC34 in melons led to early ripening fruits,suggesting its positive role in promoting fruit maturation.Using yeast two-hybrid and bimolecular fluorescence complementation assays,we verified the direct protein interaction between CmNAC34 and CmNACNOR.The expression patterns of CmNAC34 and CmNAC-NOR were similar in melon tissues,and subcellular localization revealed their nuclear protein characteristics.We transformed CmNAC-NOR in melon and found that its overexpression resulted in early ripening fruits.Then,the yeast one-hybrid and dual luciferase reporter gene assays showed that the CmNAC34 protein can bind to the promoters of two glyoxalase(GLY)genes,which are involved in the abscisic acid signal pathway and associated with fruit regulation.These findings revealed the molecular characteristics,expression profiles,and functional patterns of the NAC family genes and provide new insights into the molecular mechanism by which CmNAC34 regulates climacteric fruit ripening.
基金the Presidential Foundation of CAEP(Grant No.YZJJZQ2023005)the National Natural Science Foundation of China(Grant No.22375191).
文摘Nowadays, ultrafine explosives are widely used in military fields. Ultrafine 2,2',4,4',6,6'-hexanitrostilbene(HNS) has emerged as an optimal primer for explosion foil initiators due to its excellent thermal stability and high-voltage short-pulse initiation performance. However, the solid phase ripening of ultrafine HNS leads to a degradation in its impact detonation performance. Previous studies have indicated that residual dimethyl formamide(DMF), which is present in ultrafine HNS prepared using the recrystallization method, affects ultrafine HNS ripening. The mechanism of residual solvent effects on solid phase ripening of ultrafine HNS is unclear. In this work, the specific surface area(SSA) derived from small angle X-ray scattering(SAXS) was utilized for kinetic fitting analysis to explore the mechanism by which residual solvents enhance the solid phase ripening of ultrafine HNS. The results of the SSA measured by insitu SAXS under conditions of 150℃ for 40 h revealed that the sample with 0.2% residual DMF exhibited a 21.51% decrease in SSA, whereas the sample with only 0.04% residual DMF showed a decrease of 15.66%.Furthermore, the higher amounts of residual DMF accelerated the reduction in SSA with time. Kinetic fitting analysis demonstrated that reducing residual DMF would lower both the activation energy and the pre-exponential factor, consequently decreasing the rate constant of solid phase ripening. The mechanism was speculated that it primarily facilitated the Ostwald ripening(OR). Additionally, contrast variation small angle X-ray scattering(CV-SAXS) confirmed that coating of ultrafine HNS particles is an effective method for inhibiting ripening, significantly reducing both the rate and extent of ripening of ultrafine HNS. This study predicts how residual solvents impact the solid phase ripening process of ultrafine HNS and proposes strategies for enhancing the long-term stability of ultrafine explosives.
文摘Background: Labor induction has a low success rate, especially in primiparas with unruptured membranes. Previous studies focused on pregnant women with unruptured membranes, but none specifically targeted primiparas. Aims: To compare the effectiveness of a controlled-release dinoprostone vaginal delivery system for cervical dilatation (PROPESS) with that of mechanical dilation for labor induction in primiparous women with unruptured membranes. Materials and Methods: We retrospectively analyzed the data of 90 primiparas with unruptured membranes (41 and 49 in the PROPESS and mechanical dilation groups, respectively). The primary outcome was the cesarean section (CS) rate. The secondary outcomes were the prevalence of vaginal delivery within 12 or 24 h after the initial insertion, oxytocin usage rate, chorioamnionitis, additional use of mechanical dilation in the PROPESS group, and neonatal outcomes. Results: The CS rate was significantly lower in the PROPESS group than in the mechanical dilation group (p = 0.02). A total of 13 patients (31.7%) delivered within 24 h with PROPESS alone, indicating a significantly higher rate of delivery within 24 h in the PROPESS group (p = 0.02). Fewer patients required additional oxytocin in the PROPESS group than in the mechanical dilation group (p = 0.001). However, 14 (34%) patients in the PROPESS group required additional mechanical cervical dilation, resulting in a longer time to delivery than mechanical dilation. Conclusions: PROPESS significantly reduced CS rates and increased delivery rates 24 h after the initial insertion in primiparas with unruptured membranes compared to mechanical dilatation. However, failure to respond to PROPESS resulted in an overall longer delivery time than that of the conventional mechanical dilation group;therefore, identifying predictors of response to PROPESS is necessary.
文摘Kiwifruit (Actinidia deliciosa (A. Chev.) C. F. Liang et A. R. Ferguson cv. Bruno) was used toinvestigate the effects of acetylsalicylic acid (ASA, 1.0 mmol/L, pH 3.5) and ethylene (100 mL/L) treat-ments on changes at endogenous salicylic acid (SA) levels and other senescence-related factors duringfruit ripening and softening at 20 ℃. The level of endogenous SA in ripening fruits declined and a closerelationship was observed between the change at endogenous SA level and the rate of fruit ripening andsoftening. ASA treatment elevated SA level in the fruit, slowed down the increases in lipoxygenase (LOX)and allene oxide synthase (AOS) activities, decreased the O22-. production in the preclimacteric phase andthe early phase of ethylene climacteric rise, maintained the stability of cell membrane, inhibited ethylenebiosynthesis, postponed the onset of the ethylene climacteric, and delayed the process of fruit ripeningand softening. On the contrary, application of ethylene to ripening kiwifruit resulted at a lower SA level, anaccelerated increases in the activities of LOX and AOS and the rate of O22-. production, an elevated relativeelectric conductivity and an advanced onset of ethylene climacteric, and a quicker fruit ripening andsoftening. It is suggested that the effects of ASA on ripening kiwifruit can be attributed to its ability toscavenge O22-. and/or to maintain stability of cell membrane.
文摘Two preselected plant growth promoting rhizobacteria(PGPR) containing 1-aminocyclopropane-1-carboxylate(ACC) -deaminase(EC 4.1.99.4) were used to investigate their potential to ameliorate the effects of drought stress on growth,yield,and ripening of pea(Pisum sativum L.) . Inoculated and uninoculated(control) seeds of pea cultivar 2000 were sown in pots(four seeds pot-1) and placed in a wire house. The plants were exposed to drought stress at different stages of growth(vegetative,flowering,and pod formation) by skipping the respective irrigation. Results revealed that inoculation of peas with PGPR containing ACC-deaminase significantly decreased the "drought stress imposed effects" on the growth and yield of peas. Exposure of plants to drought stress at vegetative growth stage significantly decreased shoot growth by 41% in the case of uninoculated plants,whereas,by only 18% in the case of inoculated plants compared to nonstressed uninoculated control. Grain yield was decreased when plants were exposed to drought stress at the flowering and pod formation stage,but inoculation resulted in better grain yield(up to 62% and 40% higher,respectively) than the respective uninoculated nonstressed control. Ripening of pods was also delayed in plants inoculated with PGPR,which may imply decreased endogenous ethylene production in inoculated plants. This premise is further supported by the observation that inoculation with PGPR reduced the intensity of classical "triple" response in etiolated pea seedlings,caused by externally applied ACC. It is very probable that the drought stress induced inhibitory effects of ethylene could be partially or completely eliminated by inoculation with PGPR containing ACC-deaminase.
基金supported by the National Key Research and Development Program [Grant No.2018YFD1000200]the National Natural Science Foundation of China [Grant Nos.31872941,32072543]+2 种基金the Construction of Beijing Science and Technology Innovation and Service Capacity in Top Subjects [Grant No.CEFFPXM2019_014207_000032]the 111 Project [Grant No.B17043]the Engineering Research Center of Breeding and Propagation of Horticultural Crops,Ministry of Education。
文摘The regulation of apple(Malus domestica)fruit texture during ripening is complex and a fundamental determinant of its commercial quality.In climacteric fruit,ripening-related processes are regulated by ethylene(ET),and jasmonate(JA)is also involved in the ethylene biosynthesis pathway,mainly through the transcription factor MYC2.However,the molecular genetic mechanism for fruit ripening processes between the JA and ET signaling pathways still needs to be elucidated.In order to explore how JA regulates apple fruit ripening through ERF4,we used’Gala’and’Ralls Janet’fruit at different developmental stages as experimental materials to determine the fruit firmness and related gene expression analysis.Meanwhile,we carried out different hormone treatments on’Gala’fruit at ripening stage.Here,we show that ERF4 is a core JA signaling hub protein JASMONATE ZIM-DOMAIN(JAZ)interactor that affects ethylene signaling pathways.During fruit development,ERF4 represses the expression of ACS1 and ACO1 by interacting with JAZ,as well as with the JA-activated transcription factor MYC2.Ripening is promoted in JAZ-suppressed apples.Thus,ERF4 acts as a molecular link between ethylene and JA hormone signals,and the natural variation of the ERF4Ethylene-responsive binding factor-associated amphiphilic repression(EAR)motif decreases repression of ethylene biosynthesis genes.
基金This work was financially supported by the National Key R&D Program of China(Grant No.2018YFD0100703)the Beijing Municipal Science and Technology Project(Grant No.D171100007617001)+4 种基金the Beijing Academy of Agricultural and Forestry Sciences(Grant Nos.QNJJ201733,KJCX20200202)the Ministry of Agriculture and Rural Affairs of China(Grant No.CARS-25)the Beijing Scholar Program(Grant No.BSP026)Beijing Innovation Consortium of Agriculture Research System(Grant No.BAIC10-2020)the Bagui Scholar Program(Grant No.2016A11).
文摘Watermelon fruit undergoes distinct development stages with dramatic changes during fruit ripening.To date,the molecular mechanics of watermelon ripening remain unclear.Genetic and transcriptome evidences suggested that the ethylene response factor(ERF)gene ClERF069 may be an important candidate factor affecting watermelon fruit ripening.To dissect the roles of ClERF069 in fruit ripening,structure and phylogenetic analysis were performed using the amplified full-length sequence.Normal-ripening watermelon 97103,non-ripening watermelon PI296341-FR and the RIL population were used to analyze ClERF069 expression dynamics and the correlation with fruit ripening indexs.The results indicated that ClERF069 belongs to ERF family group VI and show high homology(83%identity)to melon ERF069-like protein.ClERF069 expression in watermelon flesh was negatively correlated with fruit lycopene content and sugar content during fruit ripening progress.Further transgenic evidences indicated that overexpression of 35S:ClERF069 in tomato noticeably delayed the ripening process up to 5.2 days.Lycopene,β-carotenoid accumulation patterns were altered and ethylene production patterns in transgenic fruits was significantly delayed during fruit ripening.Taken together,watermelon ethylene response factor ClERF069 was concluded to be a negative regulator of fruit ripening.
基金supported by the National Natural Science Foundation of China(No.31372310)the Youth Fund of Orient Science and Technology College of Hunan Agricultural University(No.14QNZ09)+1 种基金the Cultivation Physiology Station of National Technical System in Rapeseed Industry(No.CARS-13)the National Key Technology R&D Program of China(Nos.2012BAD15B04,2014BAC09B01-01,and 2014BAD14B01)
文摘Background: Nitrogen(N), phosphorous(P), and potassium(K) are critical nutrient elements necessary for crop plant growth and development. However, excessive inputs will lead to inefficient usage and cause excessive nutrient losses in the field environment, and also adversely affect the soil, water and air quality, human health, and biodiversity. Methods: Field experiments were conducted to study the effects of controlled-release fertilizer(CRF) on seed yield, plant growth, nutrient uptake, and fertilizer usage efficiency for early ripening rapeseed(Xiangzayou 1613) in the red-yellow soil of southern China during 2011–2013. It was grown using a soluble fertilizer(SF) and the same amounts of CRF, such as SF1/CRF1(3750 kg/hm^2), SF2/CRF2(3000 kg/hm^2), SF3/CRF3(2250 kg/hm^2), SF4/CRF4(1500 kg/hm^2), SF5/CRF5(750 kg/hm^2), and also using no fertilizer(CK). Results: CRF gave higher seed yields than SF in both seasons by 14.51%. CRF4 and SF3 in each group achieved maximum seed yield(2066.97 and 1844.50 kg/hm^2, respectively), followed by CRF3(1929.97 kg/hm^2) and SF4(1839.40 kg/hm^2). There were no significant differences in seed yield among CK, SF1, and CRF1(P0.05). CRF4 had the highest profit(7126.4 CNY/hm2) and showed an increase of 12.37% in seed yield, and it decreased by 11.01% in unit fertilizer rate compared with SF4. The branch number, pod number, and dry matter weight compared with SF increased significantly under the fertilization of CRF(P0.05). The pod number per plant was the major contributor to seed yield. On the other hand, the N, P, and K uptakes increased at first and then decreased with increasing the fertilizer rate at maturity, and the N, P, and K usage efficiency decreased with increasing the fertilizer rate. The N, P, and K uptakes and usage efficiencies of the CRF were significantly higher than those of SF(P0.05). The N accumulation and N usage efficiency of CRF increased by an average of 13.66% and 9.74 percentage points, respectively, compared to SF. In conclusion, CRF significantly promoted the growth of rapeseed with using total N as the base fertilizer, by providing sufficient N in the later growth stages, and last by reducing the residual N in the soil and increasing the N accumulation and N usage efficiency.
基金supported by the Young Investigator Fund of Beijing Academy of Agricultural and Forestry Sciences(Grant No.202016)the Special innovation ability construction fund of Beijing Academy of Agricultural and Forestry Sciences(Grant Nos.20210437,20210402 and 20200427)+4 种基金the Collaborative innovation center of Beijing Academy of Agricultural and Forestry Sciences(Grant No.201915)Special innovation ability construction fund of Beijing Vegetable Research Center,Beijing Academy of Agriculture and Forestry Sciences(Grant No.2020112)the National Natural Science Foundation of China(Grant Nos.31772022 and 32072284)the China Agriculture Research System of MOF and MARA(Grant No.CARS-23)Beijing Municipal Science and Technology Commission(Grant Nos.Z191100008619004,Z191100004019010 and Z181100009618033)。
文摘Tomato is one of the most important vegetable crops in the world and is a model plant used to study the ripening of climacteric fleshy fruit.During the ripening process of tomato fruit,flavor and aroma metabolites,color,texture and plant hormones undergo significant changes.However,low temperatures delayed the ripening process of tomato fruit,inhibiting flavor compounds and ethylene production.Metabolomics and transcriptomics analyses of tomato fruit stored under low temperature(LT,5°C)and room temperature(RT,25°C)were carried out to investigate the effects of storage temperature on the physiological changes in tomato fruit after harvest.The results of transcriptomics changes revealed that the differentially expressed genes(DEGs)involved in tomato fruit ripening,including several kinds of transcription factors(TFs)(TCP,WRKY,MYB and bZIP),enzymes involved in cell wall metabolism[beta-galactosidase(β-GAL),pectinesterase(PE)and pectate lyase(PL),cellulose and cellulose synthase(CESA)],enzymes associated with fruit flavor and aroma[acetyltransferase(AT),malic enzyme(ME),lipoxygenase(LOX),aldehyde dehydrogenase(ALDH),alcohol dehydrogenase(ADH)and hexokinase(HK)],genes associated with heat stress protein 70 and genes involved in the production of plant hormones such as Ethylene responsive factor 1(ERF1),Auxin/indoleacetic acids protein(AUX/IAA),gibberellin regulated protein.Based on the above results,we constructed a regulatory network model of the effects of different temperatures during the fruit ripening process.According to the analysis of the metabolomics results,it was found that the contents of many metabolites in tomato fruit were greatly affected by storage temperature,including,organic acids(L-tartaric acid,a-hydroxyisobutyric acid and 4-acetamidobutyric acid),sugars(melezitose,beta-Dlactose,D-sedoheptulose 7-phosphate,2-deoxyribose 1-phosphate and raffinose)and phenols(coniferin,curcumin and feruloylputrescine).This study revealed the effects of storage temperature on postharvest tomato fruit and provided a basis for further understanding of the molecular biology and biochemistry of fruit ripening.
基金financially supported by Beijing Municipal Commission of Education Co-Constructed Programand Chinese Universities Scientific Fund(2009-4-25)
文摘Proteolysis is one of the most important biochemical reactions during cheese ripening.Studies on the secondary structure of proteins during ripening would be helpful for characterizing protein changes for assessing cheese quality.Fourier transform infrared spectroscopy(FTIR),with self-deconvolution,second derivative analysis and band curve-fitting,was used to characterize the secondary structure of proteins in Cheddar cheese during ripening.The spectra of the amide I region showed great similarity,while the relative contents of the secondary structures underwent a series of changes.As ripening progressed,the α-helix content decreased and the β-sheet content increased.This structural shift was attributed to the strengthening of hydrogen bonds that resulted from hydrolysis of caseins.In summary,FTIR could provide the basis for rapid characterization of cheese that is undergoing ripening.
基金supported by the National Natural Science Fundation of China (30840016,30570134)the Key Technologies R&D Program of China during the 11th Five-Year Plan period (2006BAD22B01)the Natural Science Fundation of Jiangsu Province,China(BK 2007076)
文摘The fruits of peach cultivar Yuhua 3 were used as materials to investigate the changes of active oxygen and related enzymes in mitochondria respiratory metabolism during ripening of peach fruit, involving their influence on the proceeding of peach fruit senescence. The results showed that the large decrease in firmness occurred between maturity II and IV. The decrease in firmness coincided with an increase in respiratory intensity. Obvious peaks of respiratory intensity lagging to the rapid change of fruit firmness could be shown during peach ripening. Reactive oxygen species (ROS) had a cumulative process and positively correlated with respiratory intensity. During peach ripening, the content of Ca^2+ increased, the activities of succinic dehydrogenase (SDH), cytochrome C oxidase (CCO), H+-ATPase, and Ca^2+-ATPase decreased varying in different degree at the later step of ripening. These suggested a close relationship existed between ROS metabolism and mitochondrial respiration, namely, both ROS metabolism and mitochondrial respiration probably played important roles in ripening and senescing of peach fruit.
文摘The processes involved in the major steps of successful revegetation of bauxite residues are examined.The first phase is the natural physical,chemical and microbial ripening of the profile.This involves allowing the profile to drain,dry,shrink and crack to depth,leaching of soluble salts,alkalinity and Na down out of the surface layers,acidification by direct carbonation and natural seeding of tolerant vegetation with an accumulation of organic matter near the surface and an attendant development of an active microbial community.Following ripening,the surface layer can be tilled and gypsum and organic matter(e.g.manures,composts,biosolids)incorporated.These amendments result in a further decrease in pH,increase in Ca and other exchangeable cations,increased leaching of Na(with a reduction in exchangeable Na and ESP),improved physical properties,particularly aggregation,and a large increase in microbial activity.Other important considerations include the choice of suitable plant species tolerant to salinity/sodicity and local environmental conditions and the addition of balanced fertilizer applications.
基金supported by the National Natural Science Foundation of China (31301761)the China Scholarship Council (201608130248)the Second Round of the Youth Top-Notch Talent Support Programs of Hebei Province, China (2019)。
文摘Salicylic acid(SA) plays a pivotal role in delaying fruit ripening and senescence. However, little is known about its underlying mechanism of action. In this study, RNA sequencing was conducted to analyze and compare the transcriptome profiles of SA-treated and control pear fruits. We found a total of 159 and 419 genes differentially expressed between the SA-treated and control pear fruits after 12 and 24 h of treatment, respectively. Among these differentially expressed genes(DEGs), 125 genes were continuously differentially expressed at both treatment times, and they were identified as candidate genes that might be associated with SA-regulated fruit ripening and senescence. Bioinformatics analysis results showed that 125 DEGs were mainly associated with plant hormone biosynthesis and metabolism, cell wall metabolism and modification, antioxidant systems, and senescence-associated transcription factors. Additionally, the expression of several candidate DEGs in ripening and senescent pear fruits after SA treatments were further validated by quantitative real-time PCR(qRT-PCR). This study provides valuable information and enhances the understanding of the comprehensive mechanisms of SA-meditated pear fruit ripening and senescence.
基金supported by the National Natural Science Foundation of China (Grant No. 31872046)
文摘Abscisic acid(ABA)is a major regulator of non-climacteric fruit ripening;however,the role of ABA in the ripening of climacteric fruit is not clear.Here,as a typical climacteric fruit,apricots were used to investigate the role of ABA in fruit ripening.Based on weighted gene coexpression network analysis(WGCNA)of our previous transcriptome data,we treated‘Danxing’fruit with exogenous ABA and obtained ABA receptor genes,genes related to ABA biosynthesis and signal transduction,and analyzed the response of these candidate genes to exogenous ABA during fruit ripening.Subsequently,the full length of candidate PYLs genes were cloned,and their putative function were analyzed by phylogenetic analysis and protein structure domain analysis.And then the function of one candidate gene PaPYL9 was verified by using transgenic tomato.Furthermore,the response genes in transgenic tomato were screened by transcriptome sequencing,and ultimately the related regulatory network was proposed.The results showed that the injection of exogenous 1.89 mmol·L^(-1) ABA remarkably promoted fruit coloration,and increased the color index for red grapes(CIRG)and the total soluble solids(TSS)content,but significantly decreased the firmness and titratable acid(TA)content(p<0.01).Nordihydroguaiaretic acid(NDGA),the inhibitor of ABA,appeared to have the converse role in TA,TSS,CIRG and firmness,during the ripening process.One NCED(9-cis-epoxycarotenoiddioxygenase)and five ABA receptor genes related to signal transduction were mined from the transcriptome data of apricot fruit through WGCNA.Compared with the control,the expression levels of NCED1,PYL9(PYR/PYL/RCAR),SnRK2(SUCROSE NON-FERMENTING1(SNF1)-RELATED PROTEIN KINASE 2S),and ABF2(ABRE-binding bZIP transcription)were induced dramatically by ABA treatment(p<0.01),while NDGA treatment significantly inhibited their expression.Based on gene expression and protein domain analysis,we inferred that PaPYL9 is putatively involved in apricot fruit ripening.Overexpression of PaPYL9 in Micro-TOM tomatoes resulted in the promotion of early ripening.Simultaneously,the expression levels of genes related ethylene biosynthesis,chlorophyll degradation,fruit softening,flavor formation,pigment synthesis,and metabolism were all significantly induced in overexpression of PaPYL9 tomatoes.This indicates the central role of ABA in climacteric fruit ripening.A regulatory network was tentatively proposed,laying the foundation to unveil the molecular mechanism of the regulatory role of PaPYL9 in fruit ripening.
文摘Activities of NAD kinase(NADK)and NADP phosphatase and relationship between the two enzymes and temperature, respiration, ethylene production and trifluoperazine(TFP) were studied during ripening and senescence of strawberry and tomato fruits after harvest at 4℃ and 20℃. The activity of NAD kinase in strawberry decreased slowly during first four days, then increased gradually. The NADP phosphatase activity increased at the second day, decreased the next day,then increased again. In tomato fruit, the activities of NAD kinase and NADP phosphatase increased at the second day, decreased with the ripening and senescence of the fruit. The change trend of NAD kinase and respiration in the two fruits were similar, the same were NADP phosphatase and ethylene production. TFP enhanced the activity of NAD kinase and had little effect on NADP phosphatase. Low temperature(4℃) activated the NAD kinase and reduced the activity of NADP phosphatase. These results indicated that the NAD kinase and NADP phosphatase were related to the ripening and senescence of strawberry and tomato fruits. The activation of NAD kinase probably postponed the ripening and senescence of the fruits.
基金Science and Technology Project of Municipal Health Commission of Lianyungang,No.QN202010.
文摘BACKGROUND Term pregnancy-induced labor refers to the use of artificial methods to induce uterine contractions and terminate pregnancy after 37 wk.It is a common method to prevent overdue pregnancy and to deal with high-risk pregnancies.In addition,it can alleviate maternal complications and cause the fetus to leave the adverse intrauterine environment early,which is beneficial to the outcome of pregnancy.AIM To explore the effect of a birthing ball on labor by inducing cervical ripening and its influence on labor and the neonatal blood gas index.METHODS Twenty-two women who were scheduled to undergo labor induction and delivery in the obstetrics department of our hospital were randomly divided into two groups:the delivery ball group(childbirth ball combined with COOK balloon induction)and the conventional group(COOK balloon induction alone).The cervical Bishop score before and after intervention,duration of labor at each stage,mode of delivery,neonatal umbilical venous blood pH,oxygen partial pressure(PO_(2)),carbon dioxide partial pressure(PCO_(2)),and the 1-min Apgar score were recorded.RESULTS After the intervention,the cervical Bishop score of the delivery ball group(7.84±1.52)was significantly higher than that of the conventional group(7.32±1.29)(P<0.05),and the cervical Bishop scores of the two groups after intervention were significantly higher than those before intervention(P<0.05).After the intervention,the first stage of labor(510.9±98.7 min),the second stage of labor(43.0±8.5 min),and the total duration of labor(560.0±120.9 min)in the delivery ball group were lower than those in the routine group,with a first stage of labor of 602.1±133.2 min,a second stage of labor of 48.4±9.1 min,and a total duration of labor of 656.8±148.5 min(P<0.05).There was no significant difference in the time of the third stage of labor between the two groups(P>0.05).There was no significant difference in the pH,PO_(2),and PCO_(2) values of newborns between the delivery ball group and the conventional group(P>0.05).The 1-min Apgar score of the delivery ball group was higher than that of the conventional group(9.10±0.38 points vs 8.94±0.31 points,P<0.05).The natural delivery rate of the delivery ball group was higher than that of the conventional group(91.00%vs 78.00%,P<0.05).CONCLUSION The use of a birthing ball combined with a COOK balloon for inducing labor has a better effect on promoting cervical ripening,shortening the time of labor,and improving the Apgar score of newborns.
基金Supported by National Project of Scientific and Technical Supporting Programs Funded by Ministry of Science and Technology of China (No.2006BAD22B01)National Natural Science Foundation of China (No.30800767)Postdoctoral Fund of China (No.20080430725)
文摘Fruit ripening is a complex process and is regulated by many factors. Ethylene and polygalacturonase (PG), lipoxygenase (LOX), expansin (EXP) are all critical regulating factors in fruit ripening and softening process. With antisense ACS tomato, Nr mutant tomato and cultivated tomato as materials, Northern blot hybridization showed that PG, LeEXP1 and LOXexpressed differently in different parts of cultivated tomato fruit during ripening, which was related to fruit ripening. The ripening process of columella and radial pericarp was faster than pericarp. In both Nr mutant and antisense ACS transgenic tomato fruit, expression levels ofPG, LeEXPI and LOXwere generally lower than those in cultivated fruit but still related to fruit ripening. The expression levels ofPG, LeEXP1 and LOX increased in the mature green tomato fruits after 0.5 h treatment with ethylene (100 μL/L). These results indicate that gene expression ofPG, LeEXP1 and LOXwere positively regulated by ethylene. The time and cumulative effect of the concentration exists in the expression of PG regulated by ethylene. The regulation of LOX expression mainly depended on the fruit development after great amount of ethylene was produced. PG played a major role in ripening and softening of tomato fruit, and cooperated with the regulation of EXP and LOX.