期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
Airborne Investigation of Riming:Cloud and Precipitation Microphysics within a Weak Convective System in North China
1
作者 Xiangfeng HU Hao HUANG +9 位作者 Shaoyu HOU Kun ZHAO Chuanfeng ZHAO Yinghui LU Jiefang YANG Rong ZHANG Delong ZHAO Weiguo LIU Dan ZHANG Haixia XIAO 《Advances in Atmospheric Sciences》 2025年第3期515-526,共12页
The process of riming significantly impacts the microphysical characteristics of clouds.This study uses aircraft and radar observation data in stratiform clouds with convection embedded that occurred in the central an... The process of riming significantly impacts the microphysical characteristics of clouds.This study uses aircraft and radar observation data in stratiform clouds with convection embedded that occurred in the central and southern regions of North China on 22 May 2017.The microphysical structural characteristics and processes near the embedded convection core and in the stratiform cloud are analyzed comparatively.Particular attention is given to the effect of riming on the microphysical properties near the upper boundary of the melting layer and to the factors influencing riming efficiency.The collaborative observations reveal that the particle size distributions observed near the convection core and in the stratiform region are close,while the particle properties like habit and riming degree are quite different.Above the melting layer,larger plate-like ice particles and supercooled water droplets(D>50μm)are more abundant near the convective core,leading to higher collision efficiencies between ice particles and supercooled water droplets.Larger fluctuation amplitudes of vertical airflow near the convective core also contribute to the increased riming activity and the formation of more heavily rimed particles,such as graupel.Furthermore,in situ measurements from airborne probes also revealed that above the melting layer,the riming process involves two stages:the mass of snow crystals grows as supercooled droplets merge internally without changing size,followed by external freezing that significantly enlarges the crystals. 展开更多
关键词 riming collision efficiency airflow fluctuation particle habit aircraft measurement
在线阅读 下载PDF
基于CLSRIME-XGBOOST的带式输送机托辊故障诊断方法
2
作者 江帆 程舒曼 +4 位作者 朱真才 周公博 李强 刘全辉 宋鸿炎 《振动.测试与诊断》 北大核心 2025年第4期666-673,840,共9页
针对声音信号分析在诊断带式输送机托辊故障中的高维特征存在信息冗余、计算量大和诊断效果不理想等问题,笔者构建了声音信号特征精简策略,基于Circle混沌映射、Levy飞行策略和正弦因子改进了霜冰优化算法(rime optimization algorithm... 针对声音信号分析在诊断带式输送机托辊故障中的高维特征存在信息冗余、计算量大和诊断效果不理想等问题,笔者构建了声音信号特征精简策略,基于Circle混沌映射、Levy飞行策略和正弦因子改进了霜冰优化算法(rime optimization algorithm,简称RIME),记作CLSRIME。再结合极致梯度提升模型(extreme gradient boosting,简称XGBOOST),构建了CLSRIME-XGBOOST带式输送机托辊轴承故障诊断方法。首先,利用梅尔倒谱系数(Melscale frequency cepstral coefficient,简称MFCC)融合方法提取信号关键特征,并通过t-分布领域嵌入算法(t-distributed stochastic neighbor embedding,简称tSNE)进行降维,构建了基于MFCC和tSNE的精简特征提取策略;其次,针对RIME存在初始种群分布不均、霜冰粒子搜索能力弱、收敛速度较慢的问题,引入Circle混沌映射、Levy飞行策略和正弦因子,设计了CLSRIME;最后,利用CLSRIME优化XGBOOST中树的深度、迭代次数及学习率等参数,构建了基于CLSRIME-XGBOOST的诊断模型。结果表明,所提方法能够精简表征托辊轴承故障状态的特性信息,改善了RIME的优化性能,提高了传统XGBOOST诊断模型的准确率,为带式输送机托辊故障诊断提供了新思路。 展开更多
关键词 带式输送机 改进RIME算法 MFCC XGBOOST 故障诊断
在线阅读 下载PDF
基于RIME优化VMD与TCN-Crossformer多尺度融合的短期电力负荷预测
3
作者 黄宇 胡怡然 +3 位作者 马金杰 梁博彦 崔玉雷 张浩 《电力科学与工程》 2025年第8期48-57,共10页
针对电力负荷序列的多尺度非平稳性与跨维度动态关联特征导致的协同建模难题,提出了一种基于霜冰优化算法(Rime optimization algorithm,RIME)改进的变分模态分解(Variational mode decomposition,VMD)与时间卷积网络(Temporal convolut... 针对电力负荷序列的多尺度非平稳性与跨维度动态关联特征导致的协同建模难题,提出了一种基于霜冰优化算法(Rime optimization algorithm,RIME)改进的变分模态分解(Variational mode decomposition,VMD)与时间卷积网络(Temporal convolutional network,TCN)-Crossformer多尺度融合的预测模型。首先,利用RIME算法以样本熵均值为适应度函数,自适应优化VMD的惩罚系数与模态数,抑制模态混叠并提升分解质量;其次,通过TCN的因果卷积与膨胀卷积结构提取各模态分量的局部时序波动特征,捕捉短期波动规律;最后,采用结合Crossformer的跨维度注意力机制,显式建模时间与特征维度的动态关联性,实现局部时序特征与全局依赖关系的多尺度协同融合。在南方某城市半小时级电力负荷数据集上的实验验证结果表明,相较于Informer等模型,所提模型的决定系数提升2.49%,平均绝对误差降低73.07%,且在四季预测中均表现出强鲁棒性。 展开更多
关键词 变分模态分解 跨维度注意力 RIME优化算法 时间卷积网络 Crossformer
在线阅读 下载PDF
X射线荧光光谱结合红外光谱对茶油三元体系掺伪的研究
4
作者 钟晴议 袁孟韬 +4 位作者 李开开 姜红 田红丽 刘晓静 韩玮 《中国粮油学报》 北大核心 2025年第5期197-203,共7页
采用X射线荧光光谱(XRF)技术结合红外光谱技术对茶油与玉米油、大豆油的三元体系进行元素和特征脂肪酸定量检测分析。研究通过支持向量机(SVM)模型,并结合RIME雾凇优化算法对数据进行建模和优化,建立高效的油茶籽油掺伪检测模型。结果表... 采用X射线荧光光谱(XRF)技术结合红外光谱技术对茶油与玉米油、大豆油的三元体系进行元素和特征脂肪酸定量检测分析。研究通过支持向量机(SVM)模型,并结合RIME雾凇优化算法对数据进行建模和优化,建立高效的油茶籽油掺伪检测模型。结果表明,Mn元素在模型中的决定系数R 2达到0.88247,而Fe元素的R 2则高达0.97729,表明这些元素在模型中具有较高的解释力和预测能力,计算皮尔逊指数,通过Kruskal-Wallis检验,确定了Mn、Cr、Fe、Cl等元素可以作为最佳区分掺伪的元素,这些元素在不同掺伪梯度下表现出显著的差异性。制备74个样品,分为低、中、高掺伪梯度,在低、中、高3个掺伪梯度中均有元素展现区分能力。利用红外光谱技术检测掺伪样品,由于脂肪酸在3种油中的含量不同,通过研究其中油酸,亚油酸,亚麻酸等特征脂肪酸的出峰位置,比较掺伪样品与纯山茶油样品的差异,从而印证掺伪样品在特定波数(如2925、1200、1096 cm^(-1))的吸光度明显不同于纯山茶油。 展开更多
关键词 X射线荧光光谱 红外光谱 食用油掺伪 支持向量机 RIME算法优化
在线阅读 下载PDF
基于模态分解和RIME-CNN-BiLSTM-AM的风速预测方法
5
作者 朱婷 颜七笙 《科学技术与工程》 北大核心 2025年第20期8514-8525,共12页
作为一种清洁的可再生能源,风能在缓解日益严重的能源危机方面充当着重要作用。然而,风速的波动性和随机性给电力系统的稳定运行带来了严峻的挑战。针对该问题,提出一种基于自适应噪声完备集合经验模态分解(complete ensemble empirical... 作为一种清洁的可再生能源,风能在缓解日益严重的能源危机方面充当着重要作用。然而,风速的波动性和随机性给电力系统的稳定运行带来了严峻的挑战。针对该问题,提出一种基于自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)与霜冰优化算法(rime optimization algorithm,RIME)-卷积神经网络(convolutional neural network,CNN)-双向长短期记忆网络(bidirectional long short-term memory network,BiLSTM)-注意力机制(attention mechanism,AM)的短期风速预测组合模型CEEMDAN-RIME-CNN-BiLSTM-AM。首先,对初始风速序列采用CEEMDAN算法,得到一系列较平稳的子模态,以降低风速序列的波动性;然后,采用RIME霜冰优化算法优化CNN超参数,建立CNN-RIME模型,对风速数据进行自适应提取和挖掘;接着,采用BiLSTM-AM模型对处理后的数据进行预测;最后,将各子序列的预测结果叠加,得到最终预测结果。以某地实际风速数据集进行对比试验,该模型在单步与多步预测中均展现出良好的预测性能,可以为制定调度计划提供参考,以最大程度地提高能源利用率和供电。 展开更多
关键词 风速预测 自适应噪声完备集合经验模态分解(CEEMDAN) 霜冰优化算法(RIME) 卷积神经网络(CNN) 双向长短期记忆网络(BiLSTM) 注意力机制(AM)
在线阅读 下载PDF
Dynamic Prediction Model of Crop Canopy Temperature Based on VMD-LSTM
6
作者 WANG Yuxi HUANG Lyuwen DUAN Xiaolin 《智慧农业(中英文)》 2025年第3期143-159,共17页
[Objective]Accurate prediction of crop canopy temperature is essential for comprehensively assessing crop growth status and guiding agricultural production.This study focuses on kiwifruit and grapes to address the cha... [Objective]Accurate prediction of crop canopy temperature is essential for comprehensively assessing crop growth status and guiding agricultural production.This study focuses on kiwifruit and grapes to address the challenges in accurately predicting crop canopy temperature.[Methods]A dynamic prediction model for crop canopy temperature was developed based on Long Short-Term Memory(LSTM),Variational Mode Decomposition(VMD),and the Rime Ice Morphology-based Optimization Algorithm(RIME)optimization algorithm,named RIME-VMD-RIME-LSTM(RIME2-VMDLSTM).Firstly,crop canopy temperature data were collected by an inspection robot suspended on a cableway.Secondly,through the performance of multiple pre-test experiments,VMD-LSTM was selected as the base model.To reduce crossinterference between different frequency components of VMD,the K-means clustering algorithm was applied to cluster the sample entropy of each component,reconstructing them into new components.Finally,the RIME optimization algorithm was utilized to optimize the parameters of VMD and LSTM,enhancing the model's prediction accuracy.[Results and Discussions]The experimental results demonstrated that the proposed model achieved lower Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)(0.3601 and 0.2543°C,respectively)in modeling different noise environments than the comparator model.Furthermore,the R2 value reached a maximum of 0.9947.[Conclusions]This model provides a feasible method for dynamically predicting crop canopy temperature and offers data support for assessing crop growth status in agricultural parks. 展开更多
关键词 canopy temperature temperature prediction LSTM RIME VMD
在线阅读 下载PDF
TERIME:An Improved RIME Algorithm With Enhanced Exploration and Exploitation for Robust Parameter Extraction of Photovoltaic Models
7
作者 Shi-Shun Chen Yu-Tong Jiang +1 位作者 Wen-Bin Chen Xiao-Yang Li 《Journal of Bionic Engineering》 2025年第3期1535-1556,共22页
Parameter extraction of photovoltaic(PV)models is crucial for the planning,optimization,and control of PV systems.Although some methods using meta-heuristic algorithms have been proposed to determine these parameters,... Parameter extraction of photovoltaic(PV)models is crucial for the planning,optimization,and control of PV systems.Although some methods using meta-heuristic algorithms have been proposed to determine these parameters,the robustness of solutions obtained by these methods faces great challenges when the complexity of the PV model increases.The unstable results will affect the reliable operation and maintenance strategies of PV systems.In response to this challenge,an improved rime optimization algorithm with enhanced exploration and exploitation,termed TERIME,is proposed for robust and accurate parameter identification for various PV models.Specifically,the differential evolution mutation operator is integrated in the exploration phase to enhance the population diversity.Meanwhile,a new exploitation strategy incorporating randomization and neighborhood strategies simultaneously is developed to maintain the balance of exploitation width and depth.The TERIME algorithm is applied to estimate the optimal parameters of the single diode model,double diode model,and triple diode model combined with the Lambert-W function for three PV cell and module types including RTC France,Photo Watt-PWP 201 and S75.According to the statistical analysis in 100 runs,the proposed algorithm achieves more accurate and robust parameter estimations than other techniques to various PV models in varying environmental conditions.All of our source codes are publicly available at https://github.com/dirge1/TERIME. 展开更多
关键词 Photovoltaic modeling RIME algorithm Optimization problems Meta-heuristic algorithms STABILITY
在线阅读 下载PDF
In-depth Ice and Snow 6-Day Trip in Changbai Mountain
8
《China & The World Cultural Exchange》 2025年第2期28-31,共4页
This is an in-depth journey to experience the ice and snow of Changbai Mountain.In these few days,you will explore Changbai Mountain and enjoy powder skiing;gallop on the ski trail;watch the stunning wonders of snow r... This is an in-depth journey to experience the ice and snow of Changbai Mountain.In these few days,you will explore Changbai Mountain and enjoy powder skiing;gallop on the ski trail;watch the stunning wonders of snow rime on thousands of trees;conquer the ice and snow wilderness on a snowmobile and start an in depth magical mystery tour in lilin Province. 展开更多
关键词 Changbai Mountain ice snow powder skiinggallop snow rime changbai mountain powder skiing ICE SNOW
在线阅读 下载PDF
Magic Jilin 7-Day Trip of Ice and Snow Carnival & Folk Culture Feast
9
《China & The World Cultural Exchange》 2025年第2期22-27,共6页
In the vast tand of Northeast China,we are slowly starting an ultimate journey of the ice and snow carnival and exploration of folk customs.This is a magic kingdom of ice and snow ,from the meticulously crafted wonder... In the vast tand of Northeast China,we are slowly starting an ultimate journey of the ice and snow carnival and exploration of folk customs.This is a magic kingdom of ice and snow ,from the meticulously crafted wonders of the ice city to the snowcovered wonderland of rime ice. 展开更多
关键词 folk culture ice snow carnival northeast china rime ice exploration folk customsthis ice city
在线阅读 下载PDF
Case Studies of the Microphysical and Kinematic Structure of Summer Mesoscale Precipitation Clouds over the Eastern Tibetan Plateau
10
作者 Shuo JIA Jiefan YANG Hengchi LEI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第1期97-114,共18页
Three cases of microphysical characteristics and kinematic structures in the negative temperature region of summer mesoscale cloud systems over the eastern Tibetan Plateau(TP)were investigated using X-band dual-polari... Three cases of microphysical characteristics and kinematic structures in the negative temperature region of summer mesoscale cloud systems over the eastern Tibetan Plateau(TP)were investigated using X-band dual-polarization radar.The time-height series of radar physical variables and mesoscale horizontal divergenceδderived by quasi-vertical profiles(QVPs)indicated that the dendritic growth layer(DGL,-20°C to-10°C)was ubiquitous,with large-value zones of K_(DP)(specific differential phase),Z_(DR)(differential reflectivity),or both,and corresponded to various dynamic fields(ascent or descent).Ascents in the DGL of cloud systems with vigorous vertical development were coincident with large-value zones of Z_(DR),signifying ice crystals with a large axis ratio,but with no obvious large values of K_(DP),which differs from previous findings.It is speculated that ascent in the DGL promoted ice crystals to undergo further growth before sinking.If there was descent in the DGL,a high echo top corresponded to large values of K_(DP),denoting a large number concentration of ice crystals;but with the echo top descending,small values of K_(DP)formed.This is similar to previous results and reveals that a high echo top is conducive to the generation of ice crystals.When ice particles fall to low levels(-10℃to 0℃),they grow through riming,aggregation,or deposition,and may not be related to the kinematic structure.It is important to note that this study was only based on a limited number of cases and that further research is therefore needed. 展开更多
关键词 Tibetan Plateau polarimetric variables MICROPHYSICS dendritic growth layer kinematic structure aggregation riming
在线阅读 下载PDF
建筑结构火灾下倒塌应急监测技术研究 被引量:2
11
作者 靳晓 王东升 +4 位作者 王立娟 马国超 唐尧 刘欢 黄昌萍 《安全与环境学报》 CAS CSCD 北大核心 2024年第10期3847-3853,共7页
建筑火灾已经成为威胁城市公众安全的主要灾害之一。为了保护消防救援人员的人身安全,综合运用红外热成像、测量机器人和近景摄影测量等技术构建了一种建筑结构火灾下倒塌应急监测方法,对火灾下建筑的温度场和形变场进行监测,辅助开展... 建筑火灾已经成为威胁城市公众安全的主要灾害之一。为了保护消防救援人员的人身安全,综合运用红外热成像、测量机器人和近景摄影测量等技术构建了一种建筑结构火灾下倒塌应急监测方法,对火灾下建筑的温度场和形变场进行监测,辅助开展建筑倒塌风险分析。该方法采用红外热成像技术获取建筑火灾的温度场数据;利用测量机器人和近景摄影测量技术分别获取关键点位高精度形变数据和多方位立体形变数据;建立了雾凇优化算法(Rime Optimization Algorithm,RIME)与极限学习机(Extreme Learning Machine,ELM)相结合的协同校正模型RIME-ELM,利用关键点位高精度形变数据对近景摄影测量的监测结果进行校正,提高立体形变监测数据的精度。为了验证该方法的有效性,搭建建筑结构实体模型,模拟开展火灾应急监测。结果表明,该方法所获取的火场温度和形变数据符合建筑火灾一般规律,利用RIME-ELM模型所获取的形变校正结果与ELM模型相比,平均相对误差明显降低。这验证了该方法的有效性和可行性,能够为消防应急救援提供全面、可靠的数据支撑。 展开更多
关键词 安全工程 建筑火灾 倒塌应急监测 雾凇优化算法(RIME) 极限学习机(ELM)
原文传递
An Imbalanced Data Classification Method Based on Hybrid Resampling and Fine Cost Sensitive Support Vector Machine 被引量:2
12
作者 Bo Zhu Xiaona Jing +1 位作者 Lan Qiu Runbo Li 《Computers, Materials & Continua》 SCIE EI 2024年第6期3977-3999,共23页
When building a classification model,the scenario where the samples of one class are significantly more than those of the other class is called data imbalance.Data imbalance causes the trained classification model to ... When building a classification model,the scenario where the samples of one class are significantly more than those of the other class is called data imbalance.Data imbalance causes the trained classification model to be in favor of the majority class(usually defined as the negative class),which may do harm to the accuracy of the minority class(usually defined as the positive class),and then lead to poor overall performance of the model.A method called MSHR-FCSSVM for solving imbalanced data classification is proposed in this article,which is based on a new hybrid resampling approach(MSHR)and a new fine cost-sensitive support vector machine(CS-SVM)classifier(FCSSVM).The MSHR measures the separability of each negative sample through its Silhouette value calculated by Mahalanobis distance between samples,based on which,the so-called pseudo-negative samples are screened out to generate new positive samples(over-sampling step)through linear interpolation and are deleted finally(under-sampling step).This approach replaces pseudo-negative samples with generated new positive samples one by one to clear up the inter-class overlap on the borderline,without changing the overall scale of the dataset.The FCSSVM is an improved version of the traditional CS-SVM.It considers influences of both the imbalance of sample number and the class distribution on classification simultaneously,and through finely tuning the class cost weights by using the efficient optimization algorithm based on the physical phenomenon of rime-ice(RIME)algorithm with cross-validation accuracy as the fitness function to accurately adjust the classification borderline.To verify the effectiveness of the proposed method,a series of experiments are carried out based on 20 imbalanced datasets including both mildly and extremely imbalanced datasets.The experimental results show that the MSHR-FCSSVM method performs better than the methods for comparison in most cases,and both the MSHR and the FCSSVM played significant roles. 展开更多
关键词 Imbalanced data classification Silhouette value Mahalanobis distance RIME algorithm CS-SVM
在线阅读 下载PDF
基于RIME优化VMD-HHT的轴承故障特征提取方法 被引量:1
13
作者 李奕宏 王燕 《北京印刷学院学报》 2024年第12期29-36,共8页
为解决目前滚动轴承故障特征提取困难和在进行变分模态分解(VMD)时,盲目选取模态数和惩罚因子,以及相较于HHT边际谱,傅里叶分析频谱只反映某一个频率在信号中的存在可能性的问题,本文提出一种基于RIME优化VMD-HHT的轴承故障特征提取方... 为解决目前滚动轴承故障特征提取困难和在进行变分模态分解(VMD)时,盲目选取模态数和惩罚因子,以及相较于HHT边际谱,傅里叶分析频谱只反映某一个频率在信号中的存在可能性的问题,本文提出一种基于RIME优化VMD-HHT的轴承故障特征提取方法。首先,利用霜冰优化算法(RIME)对滚动轴承信号进行分析,采用样本熵作为适应度函数,计算出最佳分解层数和惩罚因子;然后基于得到的最优分解参数,对轴承信号进行分解得到各模态分量,随后根据中心频率验证有效性,并将其与北方苍鹰优化算法(NGO)优化VMD方法进行对比,随后使用希尔伯特变换获得各模态分量的频谱特性;最后计算各模态分量的特征参数,构成特征量集合,用于识别轴承故障信号。实验结果表明该方法得到的参数合理有效且参数最优,所提出的特征提取方法能有效分解滚动轴承故障信号并构建相应特征量集合。 展开更多
关键词 轴承故障 变分模态分解(VMD) 霜冰优化算法(RIME) 希尔伯特边际谱(HHT) 特征提取
在线阅读 下载PDF
边缘计算在输电线路监测通信组网中的应用分析 被引量:3
14
作者 康宇昊 《技术与市场》 2024年第11期50-53,60,共5页
输电线路监测是保障电网安全、高效运行的关键环节。传统的输电线路监测系统主要依赖中心化的数据传输和处理方式,存在实时性差、传输延迟、带宽受限等问题。为解决上述难点,研究从边缘节点选择与部署、数据预处理、开发Rime协议栈、多... 输电线路监测是保障电网安全、高效运行的关键环节。传统的输电线路监测系统主要依赖中心化的数据传输和处理方式,存在实时性差、传输延迟、带宽受限等问题。为解决上述难点,研究从边缘节点选择与部署、数据预处理、开发Rime协议栈、多跳级联链路拓扑结构设计等多个方面,提出了基于边缘计算的输电线路监测通信组网方案。仿真试验结果显示:相较于传统的中心化处理方式,不同操作场景下,该方案在数据处理时延、实时故障检测率以及分布式计算效率方面均显示出明显的优势。旨在为输电线路监测通信组网优化提供理论依据和实践参考。 展开更多
关键词 边缘节点 数据预处理 Rime协议栈
在线阅读 下载PDF
Double Enhanced Solution Quality Boosted RIME Algorithm with Crisscross Operations for Breast Cancer Image Segmentation
15
作者 Mengjun Sun Yi Chen +3 位作者 Ali Asghar Heidari Lei Liu Huiling Chen Qiuxiang He 《Journal of Bionic Engineering》 CSCD 2024年第6期3151-3178,共28页
The persistently high incidence of breast cancer emphasizes the need for precise detection in its diagnosis.Computer-aided medical systems are designed to provide accurate information and reduce human errors,in which ... The persistently high incidence of breast cancer emphasizes the need for precise detection in its diagnosis.Computer-aided medical systems are designed to provide accurate information and reduce human errors,in which accurate and effective segmentation of medical images plays a pivotal role in improving clinical outcomes.Multilevel Threshold Image Segmentation(MTIS)is widely favored due to its stability and straightforward implementation.Especially when dealing with sophisticated anatomical structures,high-level thresholding is a crucial technique in identifying fine details.To enhance the accuracy of complex breast cancer image segmentation,this paper proposes an improved version of RIME optimizer EECRIME,denoted as the double Enhanced solution quality Crisscross RIME algorithm.The original RIME initially conducts an efficient optimization to target promising solutions.The double-enhanced solution quality(EESQ)mechanism is proposed for thorough exploitation without falling into local optimum.In contrast,the crisscross operations perform a further local exploration of the generated feasible solutions.The performance of EECRIME is verified with basic and advanced algorithms on IEEE CEC2017 benchmark functions.Furthermore,an EECRIME-based MTIS method in combination with Kapur’s entropy is applied to segment breast Infiltrating Ductal Carcinoma(IDC)histology images.The results demonstrate that the developed model significantly surpasses its competitors,establishing it as a practical approach for complex medical image processing. 展开更多
关键词 Rime optimization algorithm Double-enhanced solution quality mechanism Crisscross optimization algorithm Image segmentation Breast cancer
在线阅读 下载PDF
RIME模型在医学生临床实践评价中的应用
16
作者 陆悦 陆小燕 +1 位作者 周璐瑶 黎佳思 《中国高等医学教育》 2024年第3期55-56,共2页
如何对教学质量进行有效评价仍然是目前医学教育的难点。“汇报者—解读者—管理者—教育者(RIME)”模型是一种有效的医学教育评价方法。但RIME模型目前在我国知晓度不高,相关研究很少,因此对其由来及发展,在临床医学实践评价中的应用进... 如何对教学质量进行有效评价仍然是目前医学教育的难点。“汇报者—解读者—管理者—教育者(RIME)”模型是一种有效的医学教育评价方法。但RIME模型目前在我国知晓度不高,相关研究很少,因此对其由来及发展,在临床医学实践评价中的应用进展,优缺点及应用前景等进行综述,以期为临床教学评价提供一种新的方法和途径。 展开更多
关键词 RIME模型 医学生 临床实践 教学评价
在线阅读 下载PDF
考虑季节变化对负荷特征影响的电力系统短期负荷预测
17
作者 赵艺然 张茗可 《电力与能源》 2024年第4期455-459,473,共6页
随着微电网用电设备的复杂化,产生的环保、经济效益问题日益突出,电力负荷的短期预测对于区域的精细化调度至关重要。当前的负荷预测方法缺乏对不同区域季节性变化因素的表征,导致预测精度较低。提出了一种基于改进的自适应噪声完备集... 随着微电网用电设备的复杂化,产生的环保、经济效益问题日益突出,电力负荷的短期预测对于区域的精细化调度至关重要。当前的负荷预测方法缺乏对不同区域季节性变化因素的表征,导致预测精度较低。提出了一种基于改进的自适应噪声完备集合经验模态分解一霜冰优化算法——双向循环神经网络(ICEEMDAN-RIME-BiGRU)考虑季节差异的短期负荷预测方法。首先,采用ICEEMDAN方法对四季的电力负荷进行分解;其次,结合RIME算法的软霜搜索策略、硬霜穿刺机制和正向贪婪选择机制,分别学习不同季节下电力负荷的分量特征,实现对BiGRU模型的参数寻优,并将特征分量输入网络模型,所得结果相加得到时间序列预测值;最后,以某地区微电网的负荷数据为例进行算例分析。结果显示,所提出的方法相较于其他3种典型相关预测方法,对于区域季节性差异对负荷的影响具有显著的表征能力,可以提升负荷预测精度。 展开更多
关键词 微电网负荷 季节性变化 ICEEMDAN算法 BiGRU算法 RIME算法
在线阅读 下载PDF
PREDICTION OF RIME ICE ACCRETION AND RESULTING EFFECT ON AIRFOIL PERFORMANCE 被引量:3
18
作者 陈维建 张大林 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2005年第1期9-15,共7页
The roughness effect based on the wall function method is introduced into the numerical simulation of the rime ice accretion and the resulting effect on the aerodynamic performance of the airfoil. Incorporating the tw... The roughness effect based on the wall function method is introduced into the numerical simulation of the rime ice accretion and the resulting effect on the aerodynamic performance of the airfoil. Incorporating the two-phase model of air/super-cooled droplets in the Eulerian coordinate system, this paper presents the simulation of the rime ice accretion on the NACA 0012 airfoil. The predicted rime ice shape is compared with those results of measurements and simulations by other icing codes. Also the resulting effects of rime ice on airfoil aerodynamic performance are discussed. Results indicate that the rime ice accretion leads to the loss of the maximum lift coefficient by 26%, the decrease of the stall angle by about 3° and the considerable increase of the drag coefficient. 展开更多
关键词 numerical simulation anti/de-icing rime ice ROUGHNESS aerodynamic performance
在线阅读 下载PDF
Simulations of Microphysics and Precipitation in a Stratiform Cloud Case over Northern China:Comparison of Two Microphysics Schemes 被引量:6
19
作者 Tuanjie HOU Hengchi LEI +2 位作者 Zhaoxia HU Jiefan YANG Xingyu LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2020年第1期117-129,共13页
Using the Weather Research and Forecasting(WRF)model with two different microphysics schemes,the Predicted Particle Properties(P3)and the Morrison double-moment parameterizations,we simulated a stratiform rainfall eve... Using the Weather Research and Forecasting(WRF)model with two different microphysics schemes,the Predicted Particle Properties(P3)and the Morrison double-moment parameterizations,we simulated a stratiform rainfall event on 20–21 April 2010.The simulation output was compared with precipitation and aircraft observations.The aircraft-observed moderate-rimed dendrites and plates indicated that riming contributed significantly to ice particle growth at the mature precipitation stage.Observations of dendrite aggregation and capped columns suggested that aggregation coexisted with deposition or riming and played an important role in producing many large particles.The domain-averaged values of the 24-h surface precipitation accumulation from the two schemes were quite close to each other.However,differences existed in the temporal and spatial evolutions of the precipitation distribution.An analysis of the surface precipitation temporal evolution indicated faster precipitation in Morrison,while P3 indicated slower rainfall by shifting the precipitation pattern eastward toward what was observed.The differences in precipitation values between the two schemes were related to the cloud water content distribution and fall speeds of rimed particles.P3 simulated the stratiform precipitation event better as it captured the gradual transition in the mass-weighted fall speeds and densities from unrimed to rimed particles. 展开更多
关键词 stratiform cloud riming Weather Research and Forecasting model fall speed
在线阅读 下载PDF
VB.NET中Time控件的应用 被引量:1
20
作者 张秀爱 《科技信息》 2007年第35期80-80,60,共2页
在计算机系统中有三种定时器控件。当前线程启动事件forms.timer,临时线程处理事件timers.timer,临时线程中调用指定的回调函数threading.timer。本文主要主要探讨了timers.timer计时器的应用场合和使用技巧。
关键词 rime控件 INTERVAL 属性
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部