期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于RIME-VMD-LSTM法的流固耦合作用下叶片裂纹特征
1
作者 朱敏 段娟 +2 位作者 钱晶 曾云 单蓉 《排灌机械工程学报》 北大核心 2025年第8期786-794,共9页
为及时检测水轮机转轮叶片的裂纹,监测机组健康状况并保障机组安全,提出了利用计算流体动力学(computational fluid dynamics,CFD)软件来模拟获得流固耦合振动信号,采用霜冰优化算法(RIME)、变分模态分解(variational mode decompositio... 为及时检测水轮机转轮叶片的裂纹,监测机组健康状况并保障机组安全,提出了利用计算流体动力学(computational fluid dynamics,CFD)软件来模拟获得流固耦合振动信号,采用霜冰优化算法(RIME)、变分模态分解(variational mode decomposition,VMD)和长短时记忆(long short-term memory,LSTM)神经网络的智能故障诊断方法,实现对水轮机转轮叶片裂纹的高效检测和预测.首先,使用CFD计算流场信息,并通过流固耦合将其结果导入有限元分析(finite element analysis,FEA)软件中,从而获得健康和含裂纹叶片转轮的时域振动信号;接着,运用RIME对VMD的模态分量K值和惩罚因子α进行参数优化.优化后的VMD用于处理振动信号并分解为多个模态分量;最后,将这些模态分量作为输入,通过LSTM神经网络进行特征学习和识别.研究结果显示,此方法避免了获取叶片裂纹样本的经济损耗,大幅缩短了研发周期,并成功实现了精确的叶片裂纹故障识别.对于径向和轴向振动信号的裂纹故障诊断,总体识别准确率分别达到了93.0330%和92.8939%. 展开更多
关键词 叶片裂纹检测 CFD 流固耦合 rime-vmd LSTM神经网络
在线阅读 下载PDF
RIME-VMD-LSSVM在气体绝缘电器局放故障识别的应用 被引量:2
2
作者 张超 张运 +2 位作者 张士勇 高鹏 刘虹 《电工技术》 2024年第19期178-183,共6页
气体绝缘组合电器中存在多种绝缘故障,准确识别GIS的故障类型对保障电力安全具有重要意义。为此,提出一种基于霜冰优化算法(Rime optimization algorithm,RIME)优化变分模态分解(VMD)与最小二乘支持向量机(LSSVM)的GIS局部放电分类识别... 气体绝缘组合电器中存在多种绝缘故障,准确识别GIS的故障类型对保障电力安全具有重要意义。为此,提出一种基于霜冰优化算法(Rime optimization algorithm,RIME)优化变分模态分解(VMD)与最小二乘支持向量机(LSSVM)的GIS局部放电分类识别方法。首先引入RIME以最小包络熵作为目标函数对VMD中K和α两参数进行优化。然后对IMFs进行选取,并采用峭度、裕度、波形提取特征。最后将提取的特征向量输入RIME-LSSVM进行识别诊断。经过对4种局放特高频信号进行处理分析,表明相比于传统算法,该方法的RIME-VMD-LSSVM诊断效果更好,能有效识别不同的绝缘缺陷故障,识别正确率相较于其他传统算法最高可提升约16%,对GIS等高压电力设备故障识别有进步意义。 展开更多
关键词 GIS 局部放电 VMD 霜冰优化算法 最小二乘支持向量机
在线阅读 下载PDF
基于RIME-IAOA的混合模型短期光伏功率预测 被引量:2
3
作者 王仁明 魏逸明 席磊 《三峡大学学报(自然科学版)》 CAS 北大核心 2025年第1期81-88,共8页
光伏发电在如今的新能源发展中逐渐成为重点,其中光伏功率预测成为研究的主要方向.为了提升光伏功率预测的精度和效率,提出了RIME-VMD-IAOA-LSTM模型.该模型通过霜冰优化算法(RIME)优化变分模态分解(VMD)的参数来提升分解效率;引入余弦... 光伏发电在如今的新能源发展中逐渐成为重点,其中光伏功率预测成为研究的主要方向.为了提升光伏功率预测的精度和效率,提出了RIME-VMD-IAOA-LSTM模型.该模型通过霜冰优化算法(RIME)优化变分模态分解(VMD)的参数来提升分解效率;引入余弦控制因子的动态边界策略来控制算数优化算法(AOA)数值的增长速率从而提升算法的精度和稳定性;利用自适应T分布变异策略来改进AOA的局部搜索能力和全局开发能力,更好地避免局部最优解.两种智能优化算法的加入使得整体模型的预测效率和速度都有很大提升,实验结果表明组合模型RIMEVMD-IAOA-LSTM相比于其他预测模型有较高的光伏功率预测精度. 展开更多
关键词 霜冰优化算法 变分模态分解 算术优化算法 余弦控制因子策略 自适应T分布策略 短期光伏功率预测
在线阅读 下载PDF
基于RIME优化VMD-HHT的轴承故障特征提取方法 被引量:1
4
作者 李奕宏 王燕 《北京印刷学院学报》 2024年第12期29-36,共8页
为解决目前滚动轴承故障特征提取困难和在进行变分模态分解(VMD)时,盲目选取模态数和惩罚因子,以及相较于HHT边际谱,傅里叶分析频谱只反映某一个频率在信号中的存在可能性的问题,本文提出一种基于RIME优化VMD-HHT的轴承故障特征提取方... 为解决目前滚动轴承故障特征提取困难和在进行变分模态分解(VMD)时,盲目选取模态数和惩罚因子,以及相较于HHT边际谱,傅里叶分析频谱只反映某一个频率在信号中的存在可能性的问题,本文提出一种基于RIME优化VMD-HHT的轴承故障特征提取方法。首先,利用霜冰优化算法(RIME)对滚动轴承信号进行分析,采用样本熵作为适应度函数,计算出最佳分解层数和惩罚因子;然后基于得到的最优分解参数,对轴承信号进行分解得到各模态分量,随后根据中心频率验证有效性,并将其与北方苍鹰优化算法(NGO)优化VMD方法进行对比,随后使用希尔伯特变换获得各模态分量的频谱特性;最后计算各模态分量的特征参数,构成特征量集合,用于识别轴承故障信号。实验结果表明该方法得到的参数合理有效且参数最优,所提出的特征提取方法能有效分解滚动轴承故障信号并构建相应特征量集合。 展开更多
关键词 轴承故障 变分模态分解(VMD) 霜冰优化算法(RIME) 希尔伯特边际谱(HHT) 特征提取
在线阅读 下载PDF
强化数据预处理的BLSTNet-CBAM短期电力负荷预测 被引量:6
5
作者 陈万志 张思维 王天元 《计算机系统应用》 2024年第5期47-56,共10页
针对负荷数据复杂性、非平稳性以及负荷预测误差较大等问题,提出一种综合特征构建和模型优化的短期电力负荷预测新方法.首先采用最大信息系数(MIC)分析特征变量的相关性,选取与电力负荷序列相关的特征变量,同时,考虑变分模态分解(VMD)... 针对负荷数据复杂性、非平稳性以及负荷预测误差较大等问题,提出一种综合特征构建和模型优化的短期电力负荷预测新方法.首先采用最大信息系数(MIC)分析特征变量的相关性,选取与电力负荷序列相关的特征变量,同时,考虑变分模态分解(VMD)方法容易受主观因素的影响,采用霜冰优化算法(RIME)优化VMD,完成原始电力负荷序列的分解.然后改进长短期时间序列网络(LSTNet)作为预测模型,将其递归层LSTM更新为BiLSTM,并引入卷积块注意力机制(CBAM)进行预测.通过对比实验和消融实验的结果表明:经RIME-VMD优化后,LSTM、GRU、LSTNet模型预测的均方根误差(RMSE)均降低20%以上,显著提高模型预测精度,且能够适应于不同预测模型.所提出的BLSTNet-CBAM模型与LSTM、GRU、LSTNet相比,RMSE分别降低了35.54%、6.78%、1.46%,提高了短期电力负荷预测的准确性. 展开更多
关键词 短期电力负荷预测 霜冰优化算法 变分模态分解 长短期时间序列网络 卷积块注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部