Parameter extraction of photovoltaic(PV)models is crucial for the planning,optimization,and control of PV systems.Although some methods using meta-heuristic algorithms have been proposed to determine these parameters,...Parameter extraction of photovoltaic(PV)models is crucial for the planning,optimization,and control of PV systems.Although some methods using meta-heuristic algorithms have been proposed to determine these parameters,the robustness of solutions obtained by these methods faces great challenges when the complexity of the PV model increases.The unstable results will affect the reliable operation and maintenance strategies of PV systems.In response to this challenge,an improved rime optimization algorithm with enhanced exploration and exploitation,termed TERIME,is proposed for robust and accurate parameter identification for various PV models.Specifically,the differential evolution mutation operator is integrated in the exploration phase to enhance the population diversity.Meanwhile,a new exploitation strategy incorporating randomization and neighborhood strategies simultaneously is developed to maintain the balance of exploitation width and depth.The TERIME algorithm is applied to estimate the optimal parameters of the single diode model,double diode model,and triple diode model combined with the Lambert-W function for three PV cell and module types including RTC France,Photo Watt-PWP 201 and S75.According to the statistical analysis in 100 runs,the proposed algorithm achieves more accurate and robust parameter estimations than other techniques to various PV models in varying environmental conditions.All of our source codes are publicly available at https://github.com/dirge1/TERIME.展开更多
The roughness effect based on the wall function method is introduced into the numerical simulation of the rime ice accretion and the resulting effect on the aerodynamic performance of the airfoil. Incorporating the tw...The roughness effect based on the wall function method is introduced into the numerical simulation of the rime ice accretion and the resulting effect on the aerodynamic performance of the airfoil. Incorporating the two-phase model of air/super-cooled droplets in the Eulerian coordinate system, this paper presents the simulation of the rime ice accretion on the NACA 0012 airfoil. The predicted rime ice shape is compared with those results of measurements and simulations by other icing codes. Also the resulting effects of rime ice on airfoil aerodynamic performance are discussed. Results indicate that the rime ice accretion leads to the loss of the maximum lift coefficient by 26%, the decrease of the stall angle by about 3° and the considerable increase of the drag coefficient.展开更多
基金supported by the National Natural Science Foundation of China[grant number 51775020]the Science Challenge Project[grant number.TZ2018007]+2 种基金the National Natural Science Foundation of China[grant number 62073009]the Postdoctoral Fellowship Program of CPSF[grant number GZC20233365]the Fundamental Research Funds for Central Universities[grant number JKF-20240559].
文摘Parameter extraction of photovoltaic(PV)models is crucial for the planning,optimization,and control of PV systems.Although some methods using meta-heuristic algorithms have been proposed to determine these parameters,the robustness of solutions obtained by these methods faces great challenges when the complexity of the PV model increases.The unstable results will affect the reliable operation and maintenance strategies of PV systems.In response to this challenge,an improved rime optimization algorithm with enhanced exploration and exploitation,termed TERIME,is proposed for robust and accurate parameter identification for various PV models.Specifically,the differential evolution mutation operator is integrated in the exploration phase to enhance the population diversity.Meanwhile,a new exploitation strategy incorporating randomization and neighborhood strategies simultaneously is developed to maintain the balance of exploitation width and depth.The TERIME algorithm is applied to estimate the optimal parameters of the single diode model,double diode model,and triple diode model combined with the Lambert-W function for three PV cell and module types including RTC France,Photo Watt-PWP 201 and S75.According to the statistical analysis in 100 runs,the proposed algorithm achieves more accurate and robust parameter estimations than other techniques to various PV models in varying environmental conditions.All of our source codes are publicly available at https://github.com/dirge1/TERIME.
文摘The roughness effect based on the wall function method is introduced into the numerical simulation of the rime ice accretion and the resulting effect on the aerodynamic performance of the airfoil. Incorporating the two-phase model of air/super-cooled droplets in the Eulerian coordinate system, this paper presents the simulation of the rime ice accretion on the NACA 0012 airfoil. The predicted rime ice shape is compared with those results of measurements and simulations by other icing codes. Also the resulting effects of rime ice on airfoil aerodynamic performance are discussed. Results indicate that the rime ice accretion leads to the loss of the maximum lift coefficient by 26%, the decrease of the stall angle by about 3° and the considerable increase of the drag coefficient.