Zinc-ion batteries(ZIBs)are inexpensive and safe,but side reactions on the Zn anode and Zn dendrite growth hinder their practical applications.In this study,1,3,5-triformylphloroglycerol(Tp)and various diamine monomer...Zinc-ion batteries(ZIBs)are inexpensive and safe,but side reactions on the Zn anode and Zn dendrite growth hinder their practical applications.In this study,1,3,5-triformylphloroglycerol(Tp)and various diamine monomers(p-phenylenediamine(Pa),benzidine(BD),and 4,4"-diamino-p-terphenyl(DATP))were used to synthesize a series of two-dimensional covalent-organic frameworks(COFs).The resulting COFs were named TpPa,TpBD,and TpDATP,respectively,and they showed uniform zincophilic sites,different pore sizes,and high Young's moduli on the Zn anode.Among them,TpPa and TpBD showed lower surface work functions and higher ion transfer numbers,which were conducive to uniform galvanizing/stripping zinc and inhibited dendrite growth.Theoretical calculations showed that TpPa and TpBD had wider negative potential region and greater adsorption capacity for Zn2+than TpDATP,providing more electron donor sites to coordinate with Zn^(2+).Symmetric cells protected by TpPa and TpBD stably cycled for more than 2300 h,whereas TpDATP@Zn and the bare zinc symmetric cells failed after around 150 and200 h.The full cells containing TpPa and TpBD modification layers also showed excellent cycling capacity at 1 A/g.This study provides comprehensive insights into the construction of highly reversible Zn anodes via COF modification layers for advanced rechargeable ZIBs.展开更多
Five cadmium naphthalene-diphosphonates,formulated as[Cd_(1.5)(1,4-ndpaH_(2))2(4,4'-bpyH)(4,4'-bpy)0.5(H_(2)O)_(2)]2(1),[Cd(1,4-ndpaH_(2))(1,4-bib)0.5(H_(2)O)](2),[Cd(1,4-ndpaH3)2(1,2-dpe)(H_(2)O)]·(1,2-d...Five cadmium naphthalene-diphosphonates,formulated as[Cd_(1.5)(1,4-ndpaH_(2))2(4,4'-bpyH)(4,4'-bpy)0.5(H_(2)O)_(2)]2(1),[Cd(1,4-ndpaH_(2))(1,4-bib)0.5(H_(2)O)](2),[Cd(1,4-ndpaH3)2(1,2-dpe)(H_(2)O)]·(1,2-dpe)·7H_(2)O(3),(1,2-bixH)[Cd3(1,4-ndpaH)(1,4-ndpaH_(2))2(H_(2)O)_(2)](4),and[Cd(1,4-ndpaH_(2))(H_(2)O)]·H_(2)O(5),have been synthesized from the selfassembly reactions of 1,4-naphthalenediphosphonic acid(1,4-ndpaH4)with Cd(NO3)2·4H_(2)O by introducing auxiliary ligands with variation of rigidity,such as 4,4'-bipyridine(4,4'-bpy),1,4-bis(1-imidazolyl)benzene(1,4-bib),1,2-di(4-pyridyl)ethylene(1,2-dpe),1,3-di(4-pyridyl)propane(1,3-dpp),and bis(imidazol-1-ylmethyl)benzene(1,2-bix),respectively.Structure resolution by single-crystal X-ray diffraction reveals that compound 1 possesses a layered framework,in which the{Cd3(PO2)2}trimers made up of corner-sharing two{CdO4N2}and one{CdO6}octahedra are connected by phosphonate groups,forming a ribbon,which are cross-linked by 4,4'-bipy ligands,forming a 2D layer.Compound 2 shows a 3D open-framework structure,where chains of corner-sharing{CdO4N}trigonal bipyramids and{PO3C}tetrahedra are cross-linked by 1,4-bib and/or phosphonate groups.A 1D ladder-like chain structure is found in compound 3,where the ladder-like chains made up of corner-sharing{CdO5N}octahedra and{PO3C}tetra hedra are connected by 1,4-ndpaH_(2)^(2-).Both compounds 4 and 5 obtained by the introduction of flexible ligands during the synthesis show a 2D layered structure,which is formed by ligand crosslinking double metal chains.Interestingly,In 4,flexible 1,2-bix was singly protonated,as vip molecules,filled between layer and layer,while flexible ligand 1,3-dpp is absent in 5.Photophysical measurements indicate that compounds 1-5 show ligand-centered emissions.展开更多
From[J.Differential Geom.,1990,31(1):285-299],one can obtain that compact self-shrinking hypersufaces in R^(n+1) with constant scalar curvature must be the standard sphere S^(n)(√n)(cf.[Front.Math.,2023,18(2):417-430...From[J.Differential Geom.,1990,31(1):285-299],one can obtain that compact self-shrinking hypersufaces in R^(n+1) with constant scalar curvature must be the standard sphere S^(n)(√n)(cf.[Front.Math.,2023,18(2):417-430]).This result was generalized by Guo[J.Math.Soc.Japan,2018,70(3):1103-1110]with assumption of a lower or upper scalar curvature bound.In this paper,we will generalize the scalar curvature rigidity theorem of Guo to the case of λ-hypersurfaces.We will also give an alternative proof of the theorem(cf.[2014,arXiv:1410.5302]and[Proc.Amer.Math.Soc.,2018,146(10):4459-4471])that λ-hypersurfaces which are entire graphs must be hyperplanes.展开更多
Two CoⅡ-based complexes,{[Co(dps)_(2)(N_(3))_(2)]·H_(2)O}_n(1)and[Co(dps)_(2)(N_(3))_(2)]_n(2),show a 1D chain and a 3D network,respectively.The central CoⅡions in the complexes have the same coordination envir...Two CoⅡ-based complexes,{[Co(dps)_(2)(N_(3))_(2)]·H_(2)O}_n(1)and[Co(dps)_(2)(N_(3))_(2)]_n(2),show a 1D chain and a 3D network,respectively.The central CoⅡions in the complexes have the same coordination environment with the[Co(dps)_(4)(N_(3))_(2)]unit.Although the differences in crystal parameters are nearly negligible,their magnetic properties are very different.AC susceptibility data show that 1 behaves as a typical field-induced single-ion magnet(SIM)with the out-of-phase(χ_(M)”)signals,while 2 shows ac signals ofχ_(M)”without peaks even under applied dc filed within our measurement window.Far-IR magneto-spectra(FIRMS)show strong spin-phonon couplings at 0 T in 2,likely making the magnetic relaxation in 2 fast,while the couplings are negligible in 1.Small spin-phonon coupling in 1 likely leads to slower magnetic relaxation,making 1 a SIM.The difference in the properties is due to the structural rigidity of 2 in its 3D network,leading to stronger spin-phonon coupling.Combined high-field EPR(HF-EPR)and FIRMS studies give spin-Hamiltonian parameters,including D=64.0(9)cm^(-1),|E|=15.7(2)cm^(-1)for 1 and D=80.0(2)cm^(-1),|E|=19.0(1)cm^(-1)for 2.展开更多
This work reviews models and methods for determining the dynamic response of pavements to moving vehicle loads in the framework of continuum-based three dimensional models and linear theories.This review emphasizes th...This work reviews models and methods for determining the dynamic response of pavements to moving vehicle loads in the framework of continuum-based three dimensional models and linear theories.This review emphasizes the most representative models and methods of analysis in the existing literature and illustrates all of them by numerical examples.Thus,13 such examples are presented here in some detail.Both flexible and rigid(concrete)pavement models involving simple and elaborate cases with respect to geometry and material behavior are considered.Thus,homogeneous or layered half-spaces with isotropic or cross-anisotropic and elastic,viscoelastic or poroelastic properties are considered.The vehicles are modeled as simple point or distributed loads or discrete spring-mass-dashpot system moving with constant or variable velocity.The dynamic response of the above pavement-vehicle systems is obtained by analytical/numerical or purely numerical methods of solution.Analytical/numerical methods have mainly to do with Fourier transforms or complex Fourier series with respect to both space and time.Purely numerical methods involve the finite element method(FEM)and the boundary element method(BEM)working in time or frequency domain.Critical discussions on the advantages and disadvantages of the various pavement-vehicle models and their methods of analysis are provided and the effects of the main parameters on the pavement response are determined through parametric studies and presented in the examples.Finally,conclusions are provided and suggestions for future research are made.展开更多
Objective: To analyze the therapeutic effect of combining dental arch splint intermaxillary traction with rigid internal fixation for the treatment of facial comminuted fractures. Methods: Sixty patients with facial c...Objective: To analyze the therapeutic effect of combining dental arch splint intermaxillary traction with rigid internal fixation for the treatment of facial comminuted fractures. Methods: Sixty patients with facial comminuted fractures admitted for treatment between July 2023 and December 2024 were selected. Using a random number table method, 30 patients were assigned to the observation group, where moderate traction using a dental arch splint combined with rigid internal fixation was applied. Another 30 patients were assigned to the control group and only received dental arch splint traction treatment. The total effective rate, postoperative recovery indicators, periodontal status, complication rate, and quality of life scores were compared between the two groups. Results: The total effective rate in the observation group was higher than that in the control group. The postoperative recovery indicators and periodontal status in the observation group were superior to those in the control group. The complication rate and quality of life score were lower in the observation group compared to the control group, with P < 0.05. Conclusion: Combining dental arch splint intermaxillary traction with rigid internal fixation can improve the periodontal status and quality of life of patients with facial comminuted fractures, shorten postoperative recovery time, reduce various complications, and enhance surgical efficacy.展开更多
The motion of an elliptical rigid particle in a lid-driven cavity flow was numerically simulated using the immersed boundary lattice Boltzmann method(IB-LBM).The effects of the particle's initial orientation angle...The motion of an elliptical rigid particle in a lid-driven cavity flow was numerically simulated using the immersed boundary lattice Boltzmann method(IB-LBM).The effects of the particle's initial orientation angle,initial position,aspect ratio,and size on the motion characteristics were investigated.The computational results indicate that the particle's motion undergoes two distinct stages:a starting stage that involves moving from the release position to a limit cycle,and a periodic stage that involves moving on the limit cycle.The initial orientation of the particle has a minimal impact on both stages of motion.In contrast,the time it takes for the particle to reach the limit cycle may vary depending on the release position.Furthermore,particles with a larger aspect ratio exhibit a greater maximum velocity magnitude;an increase in particle size causes the particle trajectory to contract more toward the center of the cavity,decreasing the centrifugal force experienced by the particle.展开更多
This paper proposes a new approach to eliminate aerodynamic lift oscillation,called the Dominant Sector Individual Blade Control(DS-IBC)method for rigid rotor helicopters.An Advancing Blade Concept(ABC)rotor model for...This paper proposes a new approach to eliminate aerodynamic lift oscillation,called the Dominant Sector Individual Blade Control(DS-IBC)method for rigid rotor helicopters.An Advancing Blade Concept(ABC)rotor model for aerodynamic analysis based on the free-wake method is applied.DS-IBC avoids applying active control on the rotor's retreating side by employing and restricting active control inputs to a sector area of the rotor disc.Outside this sector,only primary collective and cyclic pitch control are used.Each blade takes turns entering the sector,creating a“relay”active control form to ensure continuous control inputs.The method also includes outer-trim and inner-trim iteration modules.Results show that DS-IBC can eliminate aerodynamic lift oscillation using much smaller control inputs than the sine-trim method.By focusing active control on the rotor's advancing side,DS-IBC improves the effective lift-to-drag ratio and reduces the implementation difficulty of active rotor control for aerodynamic oscillation elimination,especially at a large lift-offset.展开更多
The membrane,one of the key components of flow batteries,ideally has high selectivity,conductivity,and stability.However,porous membranes prepared by conventional non-solvent-induced phase separation(NIPS)commonly suf...The membrane,one of the key components of flow batteries,ideally has high selectivity,conductivity,and stability.However,porous membranes prepared by conventional non-solvent-induced phase separation(NIPS)commonly suffer from low selectivity and poor mechanical stability.Here,we used rigid naphthalene-containing polybenzimidazole(NPBI)to prepare a porous membrane with unique egg-shaped pores by adjusting solvent/non-solvent exchange in NIPS.The dense pores with a size of 3.6Åarranged dispersedly between egg-shaped pores.The rigid NPBI and 3.6-Åsmall pores enabled the membrane high mechanical strength.The thickness was thus decreased to 1.4μm,which exhibited an ultrahigh tensile strength of 463.54 MPa.The dense pores were also smaller than hydrated vanadium ions,achieving a low permeability of 2.28×10^(-7)cm^(2)/h,indicating high selectivity.This is the first time to prepare such a highly selective and mechanically stable ultrathin porous membrane by NIPS.Importantly,the ion-transport pathways in the 1.4μm membrane were shortened,decreasing the area resistance to as low as 0.015Ωcm 2.Demonstrated in a vanadium flow battery,its coulombic efficiency was 98.57%and energy efficiency reached 81.72%at 200 mA/cm 2.This study proposes an effective strategy to prepare highperformance ultrathin porous membranes for flow batteries.展开更多
Rigid barrier deflectors can effectively prevent overspilling landslides,and can satisfy disaster prevention requirements.However,the mechanisms of interaction between natural granular flow and rigid barrier deflector...Rigid barrier deflectors can effectively prevent overspilling landslides,and can satisfy disaster prevention requirements.However,the mechanisms of interaction between natural granular flow and rigid barrier deflectors require further investigation.To date,few studies have investigated the impact of deflectors on controlling viscous debris flows for geological disaster prevention.To investigate the effect of rigid barrier deflectors on impact mechanisms,a numerical model using the smoothed particle hydrodynamics(SPH)method with the Herschel–Bulkley model is proposed to simulate the interaction between natural viscous flow and single/dual barriers with and without deflectors.This model was validated using laboratory flume test data from the literature.Then,the model was used to investigate the influence of the deflector angle and multi-barrier arrangements.The optimal configuration of multi-barriers was analyzed with consideration to the barrier height and distance between the barriers,because these metrics have a significant impact on the viscous flow pile-up,run-up,and overflow mechanisms.The investigation considered the energy dissipation process,retention efficiency,and dead-zone formation.Compared with bare barriers with similar geometric characteristics and spatial distribution,rigid barriers with deflectors exhibit superior effectiveness in preventing the overflow and overspilling of viscous debris flow.Recommendations for the rational design of deflectors and the optimal arrangement of multi-barriers are provided to mitigate geological disasters.展开更多
In this paper,we investigate the existence of strange nonchaotic attractors(SNAs)in a slender rigid rocking block under quasi-periodic forcing with two frequencies.We find that an SNA can exist between a quasi-periodi...In this paper,we investigate the existence of strange nonchaotic attractors(SNAs)in a slender rigid rocking block under quasi-periodic forcing with two frequencies.We find that an SNA can exist between a quasi-periodic attractor and a chaotic attractor,or between two chaotic attractors.In particular,we demonstrate that a torus doubling bifurcation of a quasi-periodic attractor can result in SNAs via the fractal route before transforming into chaotic attractors.This phenomenon is rarely reported in quasiperiodically forced discontinuous differential equations and vibro-impact systems.The properties of SNAs are verified by the Lyapunov exponent,rational approximation,phase sensitivity,power spectrum,and separation of nearby trajectories.展开更多
Epoxy resins are cross-linked polymeric materials with typically low thermal conductivity.Currently,the introduction of rigid groups into epoxy resins is the main method to improve their intrinsic thermal conductivity...Epoxy resins are cross-linked polymeric materials with typically low thermal conductivity.Currently,the introduction of rigid groups into epoxy resins is the main method to improve their intrinsic thermal conductivity.The researchers explored the relationship between the flexible chains of epoxy monomers and the thermal conductivity of the modified epoxy resins(MEP).The effect of flexible chain length on the introduction of rigid groups into the cross-linked structure of epoxy is worth investigating,which is of great significance for the improvement of thermal conductivity of polymers and related theories.We prepared a small molecule liquid crystal(SMLC)containing a long flexible chain via a simple synthesis reaction,and introduced rigid mesocrystalline units into the epoxy resin via a curing reaction.During high-temperature curing,the introduced mesocrystalline units underwent orientational stacking and were immobilized within the polymer.XRD and TGA tests showed that the ordering within the modified epoxy resin was increased,which improved the thermal conductivity of the epoxy resin.Crucially,during the above process,the flexible chains of SMLC provide space for the biphenyl groups to align and therefore affect the thermal conductivity of the MEP.Specifically,the MEP-Ⅵcured with SMLC-Ⅵcontaining six carbon atoms in the flexible chain has the highest thermal conductivity of 0.40W·m^(-1)·K^(-1),which is 125%of the thermal conductivity of SMLC-IV of 0.32 W·m^(-1)·K^(-1),111%of the thermal conductivity of SMLC-Ⅷof 0.36W·m^(-1)·K^(-1),and 182%of the thermal conductivity of pure epoxy of 0.22 W·m^(-1)·K^(-1).The introduction of appropriate length flexible chains for SMLC promotes the stacking of rigid groups within the resin while reducing the occurrence of chain folding.This study will provide new ideas for the enhancement of thermal conductivity of cross-linked polymeric materials.展开更多
Rigid barrier is a straightforward and effective countermeasure widely used for mitigating debris flow.However,in current designs,it remains unclear how to optimize the rigid barrier to enhance its mechanical properti...Rigid barrier is a straightforward and effective countermeasure widely used for mitigating debris flow.However,in current designs,it remains unclear how to optimize the rigid barrier to enhance its mechanical properties.Therefore,this study investigates the influence of the shape of the upstream face of the rigid barrier,referred to as the'barrier shape',on the impact dynamics of debris flow entraining a boulder onto rigid barrier.This study employs a coupled numerical approach involving smoothed particle hydrodynamics(SPH),the discrete element method(DEM),and the finite element method(FEM).The simulation results demonstrate that the barrier shape can affect the mechanical properties of the rigid barrier by altering the interaction mode between the debris flow and the barrier.Compared to vertical and slanted barriers,a curved barrier exhibits superior mechanical properties when subjected to debris flow impact.Furthermore,reducing the slope of the upstream face appropriately proves to be an effective method for enhancing the impact resistance of slanted barriers.The relevant findings from this study can serve as valuable references for the structural optimization of rigid barriers.展开更多
As drilling wells continue to move into deep ultra-deep layers,the requirements for temperature resistance of drilling fluid treatments are getting higher and higher.Among them,blocking agent,as one of the key treatme...As drilling wells continue to move into deep ultra-deep layers,the requirements for temperature resistance of drilling fluid treatments are getting higher and higher.Among them,blocking agent,as one of the key treatment agents,has also become a hot spot of research.In this study,a high temperature resistant strong adsorption rigid blocking agent(QW-1)was prepared using KH570 modified silica,acrylamide(AM)and allyltrimethylammonium chloride(TMAAC).QW-1 has good thermal stability,average particle size of 1.46μm,water contact angle of 10.5.,has a strong hydrophilicity,can be well dispersed in water.The experimental results showed that when 2 wt%QW-1 was added to recipe A(4 wt%bentonite slurry+0.5 wt%DSP-1(filtration loss depressant)),the API filtration loss decreased from 7.8to 6.4 m L.After aging at 240.C,the API loss of filtration was reduced from 21 to 14 m L,which has certain performance of high temperature loss of filtration.At the same time,it is effective in sealing 80-100mesh and 100-120 mesh sand beds as well as 3 and 5μm ceramic sand discs.Under the same conditions,the blocking performance was superior to silica(5μm)and calcium carbonate(2.6μm).In addition,the mechanism of action of QW-1 was further investigated.The results show that QW-1 with amide and quaternary ammonium groups on the molecular chain can be adsorbed onto the surface of clay particles through hydrogen bonding and electrostatic interaction to form a dense blocking layer,thus preventing further intrusion of drilling fluid into the formation.展开更多
In order to advance the understanding of the impact dynamics of granular flow in complex geological settings,this paper studied the impact dynamics of granular flow on rigid barriers with a number of Material Point Me...In order to advance the understanding of the impact dynamics of granular flow in complex geological settings,this paper studied the impact dynamics of granular flow on rigid barriers with a number of Material Point Method(MPM)numerical tests.The impact behavior of granular flow on a rigid barrier was characterized by the initial dynamic impact stage,dynamic surge impact stage,compression impact stage and static stage of granular flow,where the impact force of granular flow was comprised of the dynamic and static forces of granular flow.The impact behavior of granular flow on a rigid barrier was characterized by the states of the fast or slow impact behavior of granular flow.The angle of slope and aspect ratio of granular soil greatly affected the impact behavior of granular flow on a column rigid barrier,where a power model was proposed to quantify the residual(Fnr)-over-maximum(Fnmax)normal impact force ratio of granular flow Fnr⁄Fnmax incorporating the effects of the angle of slope and aspect ratio of granular soil.With the increase of the column rigid barrier up to the semi-infinite column rigid barrier,the impact dynamics of granular flow gradually increased up to a maximum by progressively transforming the overflow into the dynamic surge impact of the incoming flow on the rigid barrier to capture more granular soil of granular flow against the rigid barrier.Presence of water in granular flow,i.e.,a mixture of solid and liquid in granular flow,yielded a dynamic coupling contribution of the solid and liquid,being accompanied by the whole dynamic process of granular flow,on the impact behavior of granular flow on a rigid barrier,where the liquid-phase material of granular flow,i.e.,the water,was predominant to contribute on the normal impact force of granular flow in comparison with the solid-phase material of granular flow.In addition,other factors,e.g.,the shape of rigid barrier(i.e.,the column barrier,arch barrier and circle barrier),and the gravity(i.e.,in the gravitational environment of the Moon,Earth and Mars),greatly affected the impact behavior of granular flow on a rigid barrier as well.展开更多
By introducing the Carathéodory metric,we establish the Schwarz lemma at the boundary for holomorphic self-mappings on the unit p-ball B_(p)^(n) of C^(n).Furthermore,the boundary rigidity theorem for holomorphic ...By introducing the Carathéodory metric,we establish the Schwarz lemma at the boundary for holomorphic self-mappings on the unit p-ball B_(p)^(n) of C^(n).Furthermore,the boundary rigidity theorem for holomorphic self-mappings defined on B_(n)^(p) is obtained.These results cover the boundary Schwarz lemma and rigidity result for holomorphic self-mappings on the unit ball for p=2,and the unit polydisk for p=∞,respectively.展开更多
The deteriorated continuous rigid frame bridge is strengthened by external prestressing. Static loading tests wereconducted before and after the bridge rehabilitation to verify the effectiveness of the rehabilitation ...The deteriorated continuous rigid frame bridge is strengthened by external prestressing. Static loading tests wereconducted before and after the bridge rehabilitation to verify the effectiveness of the rehabilitation process. Thestiffness of the repaired bridge is improved, and the maximum deflection of the load test is reduced from 37.9 to27.6 mm. A bridge health monitoring system is installed after the bridge is reinforced. To achieve an easy assessmentof the bridge’s safety status by directly using transferred data, a real-time safety warning system is createdbased on a five-level safety standard. The threshold for each safety level will be determined by theoretical calculationsand the outcomes of static loading tests. The highest risk threshold will be set at the ultimate limit statevalue. The remaining levels, namely middle risk, low risk, and very low risk, will be determined usingreduction coefficients of 0.95, 0.9, and 0.8, respectively.展开更多
Pavement infrastructure is vital in providing services and links between various sectors of society. Therefore, thepreservation and maintenance of these roads are critical to attaining a pavement network in good condi...Pavement infrastructure is vital in providing services and links between various sectors of society. Therefore, thepreservation and maintenance of these roads are critical to attaining a pavement network in good conditionthroughout its service life. Various performance indicators like the international roughness index (IRI), pavementcondition index (PCI), and present serviceability rating (PSR) have been used by the state department of transportation (DOT) and highway agencies for evaluating pavement surface conditions and planning future maintenance strategies. Limited data availability, multiple distresses depending on region, lack of correlation of thesecondition indices to maintenance strategies, and data collection limitations pose a challenge for applying theseindices to local conditions. This paper compares condition indices of different states for rigid pavements. Further,using a specific condition index for local conditions is also highlighted. For this purpose, five states and theircorresponding condition indices were evaluated and compared to the Michigan DOT distress index (DI). Thesestates include Virginia, Minnesota, North Dakota, Louisiana, and Oregon. The corresponding distresses of eachcondition index were converted to make them compatible with the MDOT DI. This study used the MDOT'spavement management system (PMS) database to evaluate each condition index for 433 rigid pavement sections.Each distress index was plotted against MDOT DI and compared using a paired t-test. Results show that thecondition indices of Virginia and Minnesota are comparable to DI in terms of the Spearman correlation value. Thet-test results show that except for Virgina, condition indices from other states statistically differ from DI.Therefore, one can't use those directly for local conditions in Michigan. This paper presents the evaluation anddata requirements for each condition index and its impact on selecting a maintenance treatment.展开更多
This research is centered on a comprehensive investigation into the impact of turbulence on the movement and dispersion of materials within a three-dimensional(3D)bedform,specifically when there is a continuous presenc...This research is centered on a comprehensive investigation into the impact of turbulence on the movement and dispersion of materials within a three-dimensional(3D)bedform,specifically when there is a continuous presence of rigid vegetation submerged in theflow.To achieve our research objectives,we conducted extensive velocity measurements within a channel featuring this submerged vegetation.The measurements were carried out using an Acoustic Doppler Velocimeter(ADV).Additionally,our study delved into the intricate structures and turbulent characteristics of theflow,considering the coexistence of submerged vegetation and a 3D gravel pool.This pool featured entrance and exit slopes measuring 3 and 2.5°,respectively.Our experimental setup took place in a straightflume,measuring 14 m in length,0.9 m in width,and 0.6 m in depth.Theflume was equipped with transparent side walls to facilitate observations.Furthermore,our investigation extended to the spatial variations in velocity and turbulence distributions.We analyzed various parameters including turbulence kinetic energy,integral turbulence lengths,dispersion coefficients,and advective transport.The results revealed that integral length scales offer key insights into turbulent eddy behavior.In the presence of vegetation and a 3D bedform,turbulent eddies undergo notable changes,flattening in the longitudinal direction and expanding in the transverse and vertical directions.Moreover,longitudinal advection is notably higher compared toflows without vegetation in a uniformflow or bare channel,especially for z/H>0.2.This indicates that the presence of vegetation and a 3D bedform leads to an increase in turbulent kinetic energy(k values)that surpasses the reduction in the time-averaged velocity component(“U”)in the U×k term,thereby enhancing longitudinal advection.展开更多
We report progress towards a modern scientific description of thermodynamic properties of fluids following the discovery (in 2012) of a coexisting critical density hiatus and a supercritical mesophase defined by perco...We report progress towards a modern scientific description of thermodynamic properties of fluids following the discovery (in 2012) of a coexisting critical density hiatus and a supercritical mesophase defined by percolation transitions. The state functions density ρ(p,T), and Gibbs energy G(p,T), of fluids, e.g. CO<sub>2</sub>, H<sub>2</sub>O and argon exhibit a symmetry characterised by the rigidity, ω = (dp/dρ)<sub>T</sub>, between gaseous and liquid states along any isotherm from critical (T<sub>c</sub>) to Boyle (T<sub>B</sub>) temperatures, on either side of the supercritical mesophase. Here, using experimental data for fluid argon, we investigate the low-density cluster physics description of an ideal dilute gas that obeys Dalton’s partial pressure law. Cluster expansions in powers of density relate to a supercritical liquid-phase rigidity symmetry (RS) line (ω = ρ<sub>rs</sub>(T) = RT) to gas phase virial coefficients. We show that it is continuous in all derivatives, linear within stable fluid phase, and relates analytically to the Boyle-work line (BW) (w = (p/ρ)<sub>T</sub> = RT), and to percolation lines of gas (PB) and liquid (PA) phases by: ρ<sub>BW</sub>(T) = 2ρ<sub>PA</sub>(T) = 3ρ<sub>PB</sub>(T) = 3ρ<sub>RS</sub>(T)/2 for T T<sub>B</sub>. These simple relationships arise, because the higher virial coefficients (b<sub>n</sub>, n ≥ 4) cancel due to clustering equilibria, or become negligible at all temperatures (0 T T<sub>B</sub>)<sub> </sub>within the gas phase. The Boyle-work line (p/ρ<sub>BW</sub>)<sub>T</sub> is related exactly at lower densities as T → T<sub>B</sub>, and accurately for liquid densities, by ρ<sub>BW</sub>(T) = −(b<sub>2</sub>/b<sub>3</sub>)<sub>T</sub>. The RS line, ω(T) = RT, defines a new liquid-density ground-state physical constant (ρ<sub>RS</sub>(0) = (2/3)ρ<sub>BW</sub>(0) for argon). Given the gas-liquid rigidity symmetry, the entire thermodynamic state functions below T<sub>B</sub> are obtainable from b<sub>2</sub>(T). A BW-line ground-state crystal density ρ<sub>BW</sub>(0) can be defined by the pair potential minimum. The Ar<sub>2</sub> pair potential, ∅ij</sub>(r<sub>ij</sub>) determines b<sub>2</sub>(T) analytically for all T. This report, therefore, advances the salient objective of liquid-state theory: an argon p(ρ,T) Equation-of-state is obtained from ∅<sub>ij</sub>(r<sub>ij</sub>) for all fluid states, without any adjustable parameters.展开更多
基金financially supported by the National Natural Science Foundation of China(62464010)Spring City Plan-Special Program for Young Talents(K202005007)+3 种基金Yunnan Talents Support Plan for Yong Talents(XDYC-QNRC-2022-0482)Yunnan Local Colleges Applied Basic Research Projects(202101BA070001-138)Key Laboratory of Artificial Microstructures in Yunnan Higher EducationFrontier Research Team of Kunming University 2023。
文摘Zinc-ion batteries(ZIBs)are inexpensive and safe,but side reactions on the Zn anode and Zn dendrite growth hinder their practical applications.In this study,1,3,5-triformylphloroglycerol(Tp)and various diamine monomers(p-phenylenediamine(Pa),benzidine(BD),and 4,4"-diamino-p-terphenyl(DATP))were used to synthesize a series of two-dimensional covalent-organic frameworks(COFs).The resulting COFs were named TpPa,TpBD,and TpDATP,respectively,and they showed uniform zincophilic sites,different pore sizes,and high Young's moduli on the Zn anode.Among them,TpPa and TpBD showed lower surface work functions and higher ion transfer numbers,which were conducive to uniform galvanizing/stripping zinc and inhibited dendrite growth.Theoretical calculations showed that TpPa and TpBD had wider negative potential region and greater adsorption capacity for Zn2+than TpDATP,providing more electron donor sites to coordinate with Zn^(2+).Symmetric cells protected by TpPa and TpBD stably cycled for more than 2300 h,whereas TpDATP@Zn and the bare zinc symmetric cells failed after around 150 and200 h.The full cells containing TpPa and TpBD modification layers also showed excellent cycling capacity at 1 A/g.This study provides comprehensive insights into the construction of highly reversible Zn anodes via COF modification layers for advanced rechargeable ZIBs.
文摘Five cadmium naphthalene-diphosphonates,formulated as[Cd_(1.5)(1,4-ndpaH_(2))2(4,4'-bpyH)(4,4'-bpy)0.5(H_(2)O)_(2)]2(1),[Cd(1,4-ndpaH_(2))(1,4-bib)0.5(H_(2)O)](2),[Cd(1,4-ndpaH3)2(1,2-dpe)(H_(2)O)]·(1,2-dpe)·7H_(2)O(3),(1,2-bixH)[Cd3(1,4-ndpaH)(1,4-ndpaH_(2))2(H_(2)O)_(2)](4),and[Cd(1,4-ndpaH_(2))(H_(2)O)]·H_(2)O(5),have been synthesized from the selfassembly reactions of 1,4-naphthalenediphosphonic acid(1,4-ndpaH4)with Cd(NO3)2·4H_(2)O by introducing auxiliary ligands with variation of rigidity,such as 4,4'-bipyridine(4,4'-bpy),1,4-bis(1-imidazolyl)benzene(1,4-bib),1,2-di(4-pyridyl)ethylene(1,2-dpe),1,3-di(4-pyridyl)propane(1,3-dpp),and bis(imidazol-1-ylmethyl)benzene(1,2-bix),respectively.Structure resolution by single-crystal X-ray diffraction reveals that compound 1 possesses a layered framework,in which the{Cd3(PO2)2}trimers made up of corner-sharing two{CdO4N2}and one{CdO6}octahedra are connected by phosphonate groups,forming a ribbon,which are cross-linked by 4,4'-bipy ligands,forming a 2D layer.Compound 2 shows a 3D open-framework structure,where chains of corner-sharing{CdO4N}trigonal bipyramids and{PO3C}tetrahedra are cross-linked by 1,4-bib and/or phosphonate groups.A 1D ladder-like chain structure is found in compound 3,where the ladder-like chains made up of corner-sharing{CdO5N}octahedra and{PO3C}tetra hedra are connected by 1,4-ndpaH_(2)^(2-).Both compounds 4 and 5 obtained by the introduction of flexible ligands during the synthesis show a 2D layered structure,which is formed by ligand crosslinking double metal chains.Interestingly,In 4,flexible 1,2-bix was singly protonated,as vip molecules,filled between layer and layer,while flexible ligand 1,3-dpp is absent in 5.Photophysical measurements indicate that compounds 1-5 show ligand-centered emissions.
文摘From[J.Differential Geom.,1990,31(1):285-299],one can obtain that compact self-shrinking hypersufaces in R^(n+1) with constant scalar curvature must be the standard sphere S^(n)(√n)(cf.[Front.Math.,2023,18(2):417-430]).This result was generalized by Guo[J.Math.Soc.Japan,2018,70(3):1103-1110]with assumption of a lower or upper scalar curvature bound.In this paper,we will generalize the scalar curvature rigidity theorem of Guo to the case of λ-hypersurfaces.We will also give an alternative proof of the theorem(cf.[2014,arXiv:1410.5302]and[Proc.Amer.Math.Soc.,2018,146(10):4459-4471])that λ-hypersurfaces which are entire graphs must be hyperplanes.
基金supported by the National Key Research and Development Program of China(No.2021YFA1600304)Joint Fund for Regional Innovation and Development(No.U20A2073)+4 种基金National Natural Science Foundation of China(Nos.22373048,21973038,61904119 and 22105089)Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry(No.20212BCD42018)US National Science Foundation(NSF,No.CHE-2055499)the Interdisciplinary program of Wuhan National High Magnetic Field Center(No.WHMFC202133)the support of the NSF Research Traineeship Program(No.DGE-2152168)。
文摘Two CoⅡ-based complexes,{[Co(dps)_(2)(N_(3))_(2)]·H_(2)O}_n(1)and[Co(dps)_(2)(N_(3))_(2)]_n(2),show a 1D chain and a 3D network,respectively.The central CoⅡions in the complexes have the same coordination environment with the[Co(dps)_(4)(N_(3))_(2)]unit.Although the differences in crystal parameters are nearly negligible,their magnetic properties are very different.AC susceptibility data show that 1 behaves as a typical field-induced single-ion magnet(SIM)with the out-of-phase(χ_(M)”)signals,while 2 shows ac signals ofχ_(M)”without peaks even under applied dc filed within our measurement window.Far-IR magneto-spectra(FIRMS)show strong spin-phonon couplings at 0 T in 2,likely making the magnetic relaxation in 2 fast,while the couplings are negligible in 1.Small spin-phonon coupling in 1 likely leads to slower magnetic relaxation,making 1 a SIM.The difference in the properties is due to the structural rigidity of 2 in its 3D network,leading to stronger spin-phonon coupling.Combined high-field EPR(HF-EPR)and FIRMS studies give spin-Hamiltonian parameters,including D=64.0(9)cm^(-1),|E|=15.7(2)cm^(-1)for 1 and D=80.0(2)cm^(-1),|E|=19.0(1)cm^(-1)for 2.
文摘This work reviews models and methods for determining the dynamic response of pavements to moving vehicle loads in the framework of continuum-based three dimensional models and linear theories.This review emphasizes the most representative models and methods of analysis in the existing literature and illustrates all of them by numerical examples.Thus,13 such examples are presented here in some detail.Both flexible and rigid(concrete)pavement models involving simple and elaborate cases with respect to geometry and material behavior are considered.Thus,homogeneous or layered half-spaces with isotropic or cross-anisotropic and elastic,viscoelastic or poroelastic properties are considered.The vehicles are modeled as simple point or distributed loads or discrete spring-mass-dashpot system moving with constant or variable velocity.The dynamic response of the above pavement-vehicle systems is obtained by analytical/numerical or purely numerical methods of solution.Analytical/numerical methods have mainly to do with Fourier transforms or complex Fourier series with respect to both space and time.Purely numerical methods involve the finite element method(FEM)and the boundary element method(BEM)working in time or frequency domain.Critical discussions on the advantages and disadvantages of the various pavement-vehicle models and their methods of analysis are provided and the effects of the main parameters on the pavement response are determined through parametric studies and presented in the examples.Finally,conclusions are provided and suggestions for future research are made.
基金Special Support Program for Scientific and Technological Talent“Application and Impact of Dental Arch Splint Intermaxillary Traction Combined with Rigid Internal Fixation on Oral Health in Patients with Facial Fractures”(DX2023BR18)。
文摘Objective: To analyze the therapeutic effect of combining dental arch splint intermaxillary traction with rigid internal fixation for the treatment of facial comminuted fractures. Methods: Sixty patients with facial comminuted fractures admitted for treatment between July 2023 and December 2024 were selected. Using a random number table method, 30 patients were assigned to the observation group, where moderate traction using a dental arch splint combined with rigid internal fixation was applied. Another 30 patients were assigned to the control group and only received dental arch splint traction treatment. The total effective rate, postoperative recovery indicators, periodontal status, complication rate, and quality of life scores were compared between the two groups. Results: The total effective rate in the observation group was higher than that in the control group. The postoperative recovery indicators and periodontal status in the observation group were superior to those in the control group. The complication rate and quality of life score were lower in the observation group compared to the control group, with P < 0.05. Conclusion: Combining dental arch splint intermaxillary traction with rigid internal fixation can improve the periodontal status and quality of life of patients with facial comminuted fractures, shorten postoperative recovery time, reduce various complications, and enhance surgical efficacy.
文摘The motion of an elliptical rigid particle in a lid-driven cavity flow was numerically simulated using the immersed boundary lattice Boltzmann method(IB-LBM).The effects of the particle's initial orientation angle,initial position,aspect ratio,and size on the motion characteristics were investigated.The computational results indicate that the particle's motion undergoes two distinct stages:a starting stage that involves moving from the release position to a limit cycle,and a periodic stage that involves moving on the limit cycle.The initial orientation of the particle has a minimal impact on both stages of motion.In contrast,the time it takes for the particle to reach the limit cycle may vary depending on the release position.Furthermore,particles with a larger aspect ratio exhibit a greater maximum velocity magnitude;an increase in particle size causes the particle trajectory to contract more toward the center of the cavity,decreasing the centrifugal force experienced by the particle.
基金supported by the National Natural Science Foundation of China(No.12372229)the Aeronautical Science Foundation of China(No.2020Z006063001)+1 种基金the Science and Technology on Rotorcraft Aeromechanics Laboratory Foundation,China(No.61422202110)the Fundamental Research Funds for the Central Universities of China(No.DUT22LK12)。
文摘This paper proposes a new approach to eliminate aerodynamic lift oscillation,called the Dominant Sector Individual Blade Control(DS-IBC)method for rigid rotor helicopters.An Advancing Blade Concept(ABC)rotor model for aerodynamic analysis based on the free-wake method is applied.DS-IBC avoids applying active control on the rotor's retreating side by employing and restricting active control inputs to a sector area of the rotor disc.Outside this sector,only primary collective and cyclic pitch control are used.Each blade takes turns entering the sector,creating a“relay”active control form to ensure continuous control inputs.The method also includes outer-trim and inner-trim iteration modules.Results show that DS-IBC can eliminate aerodynamic lift oscillation using much smaller control inputs than the sine-trim method.By focusing active control on the rotor's advancing side,DS-IBC improves the effective lift-to-drag ratio and reduces the implementation difficulty of active rotor control for aerodynamic oscillation elimination,especially at a large lift-offset.
基金supported by the National Key R&D Program of China(No.2022YFB3805302)the National Natural Science Foundation of China(No.22379141)+2 种基金CAS Strategic Leading Science&Technology Program(A)(No.XDA0400201)Dalian Science and Technology Star Program(No.2022RQ014)Youth Innovation Promotion Association CAS(No.2022184).
文摘The membrane,one of the key components of flow batteries,ideally has high selectivity,conductivity,and stability.However,porous membranes prepared by conventional non-solvent-induced phase separation(NIPS)commonly suffer from low selectivity and poor mechanical stability.Here,we used rigid naphthalene-containing polybenzimidazole(NPBI)to prepare a porous membrane with unique egg-shaped pores by adjusting solvent/non-solvent exchange in NIPS.The dense pores with a size of 3.6Åarranged dispersedly between egg-shaped pores.The rigid NPBI and 3.6-Åsmall pores enabled the membrane high mechanical strength.The thickness was thus decreased to 1.4μm,which exhibited an ultrahigh tensile strength of 463.54 MPa.The dense pores were also smaller than hydrated vanadium ions,achieving a low permeability of 2.28×10^(-7)cm^(2)/h,indicating high selectivity.This is the first time to prepare such a highly selective and mechanically stable ultrathin porous membrane by NIPS.Importantly,the ion-transport pathways in the 1.4μm membrane were shortened,decreasing the area resistance to as low as 0.015Ωcm 2.Demonstrated in a vanadium flow battery,its coulombic efficiency was 98.57%and energy efficiency reached 81.72%at 200 mA/cm 2.This study proposes an effective strategy to prepare highperformance ultrathin porous membranes for flow batteries.
基金supported by the National Natural Science Foundation of China(Grant Nos.42120104008 and 42207198).
文摘Rigid barrier deflectors can effectively prevent overspilling landslides,and can satisfy disaster prevention requirements.However,the mechanisms of interaction between natural granular flow and rigid barrier deflectors require further investigation.To date,few studies have investigated the impact of deflectors on controlling viscous debris flows for geological disaster prevention.To investigate the effect of rigid barrier deflectors on impact mechanisms,a numerical model using the smoothed particle hydrodynamics(SPH)method with the Herschel–Bulkley model is proposed to simulate the interaction between natural viscous flow and single/dual barriers with and without deflectors.This model was validated using laboratory flume test data from the literature.Then,the model was used to investigate the influence of the deflector angle and multi-barrier arrangements.The optimal configuration of multi-barriers was analyzed with consideration to the barrier height and distance between the barriers,because these metrics have a significant impact on the viscous flow pile-up,run-up,and overflow mechanisms.The investigation considered the energy dissipation process,retention efficiency,and dead-zone formation.Compared with bare barriers with similar geometric characteristics and spatial distribution,rigid barriers with deflectors exhibit superior effectiveness in preventing the overflow and overspilling of viscous debris flow.Recommendations for the rational design of deflectors and the optimal arrangement of multi-barriers are provided to mitigate geological disasters.
基金supported by the National Natural Science Foundation of China under grant number 11971019.
文摘In this paper,we investigate the existence of strange nonchaotic attractors(SNAs)in a slender rigid rocking block under quasi-periodic forcing with two frequencies.We find that an SNA can exist between a quasi-periodic attractor and a chaotic attractor,or between two chaotic attractors.In particular,we demonstrate that a torus doubling bifurcation of a quasi-periodic attractor can result in SNAs via the fractal route before transforming into chaotic attractors.This phenomenon is rarely reported in quasiperiodically forced discontinuous differential equations and vibro-impact systems.The properties of SNAs are verified by the Lyapunov exponent,rational approximation,phase sensitivity,power spectrum,and separation of nearby trajectories.
基金financially supported by the National Key R&D Program of China(No.2022YFB3808800)the National Science Foundation for Distinguished Young Scholars of China(No.51925403)+3 种基金the National Natural Science Foundation of China(Nos.52303102 and 22378309)Tianjin Research Innovation Project for Postgraduate Students(No.2022BKY060)Ningbo Science and Technology Innovation 2025 Major Special Project(No.2022Z112)Ningbo Natural Science Foundation(No.2022J016)。
文摘Epoxy resins are cross-linked polymeric materials with typically low thermal conductivity.Currently,the introduction of rigid groups into epoxy resins is the main method to improve their intrinsic thermal conductivity.The researchers explored the relationship between the flexible chains of epoxy monomers and the thermal conductivity of the modified epoxy resins(MEP).The effect of flexible chain length on the introduction of rigid groups into the cross-linked structure of epoxy is worth investigating,which is of great significance for the improvement of thermal conductivity of polymers and related theories.We prepared a small molecule liquid crystal(SMLC)containing a long flexible chain via a simple synthesis reaction,and introduced rigid mesocrystalline units into the epoxy resin via a curing reaction.During high-temperature curing,the introduced mesocrystalline units underwent orientational stacking and were immobilized within the polymer.XRD and TGA tests showed that the ordering within the modified epoxy resin was increased,which improved the thermal conductivity of the epoxy resin.Crucially,during the above process,the flexible chains of SMLC provide space for the biphenyl groups to align and therefore affect the thermal conductivity of the MEP.Specifically,the MEP-Ⅵcured with SMLC-Ⅵcontaining six carbon atoms in the flexible chain has the highest thermal conductivity of 0.40W·m^(-1)·K^(-1),which is 125%of the thermal conductivity of SMLC-IV of 0.32 W·m^(-1)·K^(-1),111%of the thermal conductivity of SMLC-Ⅷof 0.36W·m^(-1)·K^(-1),and 182%of the thermal conductivity of pure epoxy of 0.22 W·m^(-1)·K^(-1).The introduction of appropriate length flexible chains for SMLC promotes the stacking of rigid groups within the resin while reducing the occurrence of chain folding.This study will provide new ideas for the enhancement of thermal conductivity of cross-linked polymeric materials.
基金supported by the National Key Research and Development Program of China(No.2022YFC3005704)the National Natural Science Foundation of China(No.42277143)+3 种基金the Natural Science Foundation of Sichuan Province(2024NSFSC0100)the Fundamental Research Funds for the Central Universities(No.2682023ZTPY022)Projects of Science and Technology Research and Development Program of China Railway Group Limited(2021-Special Class-03)the Natural Science Foundation of Sichuan Province(2024NSFSC0834).
文摘Rigid barrier is a straightforward and effective countermeasure widely used for mitigating debris flow.However,in current designs,it remains unclear how to optimize the rigid barrier to enhance its mechanical properties.Therefore,this study investigates the influence of the shape of the upstream face of the rigid barrier,referred to as the'barrier shape',on the impact dynamics of debris flow entraining a boulder onto rigid barrier.This study employs a coupled numerical approach involving smoothed particle hydrodynamics(SPH),the discrete element method(DEM),and the finite element method(FEM).The simulation results demonstrate that the barrier shape can affect the mechanical properties of the rigid barrier by altering the interaction mode between the debris flow and the barrier.Compared to vertical and slanted barriers,a curved barrier exhibits superior mechanical properties when subjected to debris flow impact.Furthermore,reducing the slope of the upstream face appropriately proves to be an effective method for enhancing the impact resistance of slanted barriers.The relevant findings from this study can serve as valuable references for the structural optimization of rigid barriers.
基金supported by the National Natural Science Foundation of China (No.52074330,No.52288101)。
文摘As drilling wells continue to move into deep ultra-deep layers,the requirements for temperature resistance of drilling fluid treatments are getting higher and higher.Among them,blocking agent,as one of the key treatment agents,has also become a hot spot of research.In this study,a high temperature resistant strong adsorption rigid blocking agent(QW-1)was prepared using KH570 modified silica,acrylamide(AM)and allyltrimethylammonium chloride(TMAAC).QW-1 has good thermal stability,average particle size of 1.46μm,water contact angle of 10.5.,has a strong hydrophilicity,can be well dispersed in water.The experimental results showed that when 2 wt%QW-1 was added to recipe A(4 wt%bentonite slurry+0.5 wt%DSP-1(filtration loss depressant)),the API filtration loss decreased from 7.8to 6.4 m L.After aging at 240.C,the API loss of filtration was reduced from 21 to 14 m L,which has certain performance of high temperature loss of filtration.At the same time,it is effective in sealing 80-100mesh and 100-120 mesh sand beds as well as 3 and 5μm ceramic sand discs.Under the same conditions,the blocking performance was superior to silica(5μm)and calcium carbonate(2.6μm).In addition,the mechanism of action of QW-1 was further investigated.The results show that QW-1 with amide and quaternary ammonium groups on the molecular chain can be adsorbed onto the surface of clay particles through hydrogen bonding and electrostatic interaction to form a dense blocking layer,thus preventing further intrusion of drilling fluid into the formation.
基金supported by the Sichuan Science and Technology Program - China (Grant no. 2023ZYD0149)National Natural Science Foundation of China (Grant no. U22A20603)CAS "Light of West China" Program - China (Grant No. Fangwei Yu)
文摘In order to advance the understanding of the impact dynamics of granular flow in complex geological settings,this paper studied the impact dynamics of granular flow on rigid barriers with a number of Material Point Method(MPM)numerical tests.The impact behavior of granular flow on a rigid barrier was characterized by the initial dynamic impact stage,dynamic surge impact stage,compression impact stage and static stage of granular flow,where the impact force of granular flow was comprised of the dynamic and static forces of granular flow.The impact behavior of granular flow on a rigid barrier was characterized by the states of the fast or slow impact behavior of granular flow.The angle of slope and aspect ratio of granular soil greatly affected the impact behavior of granular flow on a column rigid barrier,where a power model was proposed to quantify the residual(Fnr)-over-maximum(Fnmax)normal impact force ratio of granular flow Fnr⁄Fnmax incorporating the effects of the angle of slope and aspect ratio of granular soil.With the increase of the column rigid barrier up to the semi-infinite column rigid barrier,the impact dynamics of granular flow gradually increased up to a maximum by progressively transforming the overflow into the dynamic surge impact of the incoming flow on the rigid barrier to capture more granular soil of granular flow against the rigid barrier.Presence of water in granular flow,i.e.,a mixture of solid and liquid in granular flow,yielded a dynamic coupling contribution of the solid and liquid,being accompanied by the whole dynamic process of granular flow,on the impact behavior of granular flow on a rigid barrier,where the liquid-phase material of granular flow,i.e.,the water,was predominant to contribute on the normal impact force of granular flow in comparison with the solid-phase material of granular flow.In addition,other factors,e.g.,the shape of rigid barrier(i.e.,the column barrier,arch barrier and circle barrier),and the gravity(i.e.,in the gravitational environment of the Moon,Earth and Mars),greatly affected the impact behavior of granular flow on a rigid barrier as well.
基金supported by the National Natural Science Foundation of China(12071161,11971165)supported by the National Natural Science Foundation of China(11971042)the Natural Science Foundation of Zhejiang Province(Z24A010005)。
文摘By introducing the Carathéodory metric,we establish the Schwarz lemma at the boundary for holomorphic self-mappings on the unit p-ball B_(p)^(n) of C^(n).Furthermore,the boundary rigidity theorem for holomorphic self-mappings defined on B_(n)^(p) is obtained.These results cover the boundary Schwarz lemma and rigidity result for holomorphic self-mappings on the unit ball for p=2,and the unit polydisk for p=∞,respectively.
文摘The deteriorated continuous rigid frame bridge is strengthened by external prestressing. Static loading tests wereconducted before and after the bridge rehabilitation to verify the effectiveness of the rehabilitation process. Thestiffness of the repaired bridge is improved, and the maximum deflection of the load test is reduced from 37.9 to27.6 mm. A bridge health monitoring system is installed after the bridge is reinforced. To achieve an easy assessmentof the bridge’s safety status by directly using transferred data, a real-time safety warning system is createdbased on a five-level safety standard. The threshold for each safety level will be determined by theoretical calculationsand the outcomes of static loading tests. The highest risk threshold will be set at the ultimate limit statevalue. The remaining levels, namely middle risk, low risk, and very low risk, will be determined usingreduction coefficients of 0.95, 0.9, and 0.8, respectively.
文摘Pavement infrastructure is vital in providing services and links between various sectors of society. Therefore, thepreservation and maintenance of these roads are critical to attaining a pavement network in good conditionthroughout its service life. Various performance indicators like the international roughness index (IRI), pavementcondition index (PCI), and present serviceability rating (PSR) have been used by the state department of transportation (DOT) and highway agencies for evaluating pavement surface conditions and planning future maintenance strategies. Limited data availability, multiple distresses depending on region, lack of correlation of thesecondition indices to maintenance strategies, and data collection limitations pose a challenge for applying theseindices to local conditions. This paper compares condition indices of different states for rigid pavements. Further,using a specific condition index for local conditions is also highlighted. For this purpose, five states and theircorresponding condition indices were evaluated and compared to the Michigan DOT distress index (DI). Thesestates include Virginia, Minnesota, North Dakota, Louisiana, and Oregon. The corresponding distresses of eachcondition index were converted to make them compatible with the MDOT DI. This study used the MDOT'spavement management system (PMS) database to evaluate each condition index for 433 rigid pavement sections.Each distress index was plotted against MDOT DI and compared using a paired t-test. Results show that thecondition indices of Virginia and Minnesota are comparable to DI in terms of the Spearman correlation value. Thet-test results show that except for Virgina, condition indices from other states statistically differ from DI.Therefore, one can't use those directly for local conditions in Michigan. This paper presents the evaluation anddata requirements for each condition index and its impact on selecting a maintenance treatment.
文摘This research is centered on a comprehensive investigation into the impact of turbulence on the movement and dispersion of materials within a three-dimensional(3D)bedform,specifically when there is a continuous presence of rigid vegetation submerged in theflow.To achieve our research objectives,we conducted extensive velocity measurements within a channel featuring this submerged vegetation.The measurements were carried out using an Acoustic Doppler Velocimeter(ADV).Additionally,our study delved into the intricate structures and turbulent characteristics of theflow,considering the coexistence of submerged vegetation and a 3D gravel pool.This pool featured entrance and exit slopes measuring 3 and 2.5°,respectively.Our experimental setup took place in a straightflume,measuring 14 m in length,0.9 m in width,and 0.6 m in depth.Theflume was equipped with transparent side walls to facilitate observations.Furthermore,our investigation extended to the spatial variations in velocity and turbulence distributions.We analyzed various parameters including turbulence kinetic energy,integral turbulence lengths,dispersion coefficients,and advective transport.The results revealed that integral length scales offer key insights into turbulent eddy behavior.In the presence of vegetation and a 3D bedform,turbulent eddies undergo notable changes,flattening in the longitudinal direction and expanding in the transverse and vertical directions.Moreover,longitudinal advection is notably higher compared toflows without vegetation in a uniformflow or bare channel,especially for z/H>0.2.This indicates that the presence of vegetation and a 3D bedform leads to an increase in turbulent kinetic energy(k values)that surpasses the reduction in the time-averaged velocity component(“U”)in the U×k term,thereby enhancing longitudinal advection.
文摘We report progress towards a modern scientific description of thermodynamic properties of fluids following the discovery (in 2012) of a coexisting critical density hiatus and a supercritical mesophase defined by percolation transitions. The state functions density ρ(p,T), and Gibbs energy G(p,T), of fluids, e.g. CO<sub>2</sub>, H<sub>2</sub>O and argon exhibit a symmetry characterised by the rigidity, ω = (dp/dρ)<sub>T</sub>, between gaseous and liquid states along any isotherm from critical (T<sub>c</sub>) to Boyle (T<sub>B</sub>) temperatures, on either side of the supercritical mesophase. Here, using experimental data for fluid argon, we investigate the low-density cluster physics description of an ideal dilute gas that obeys Dalton’s partial pressure law. Cluster expansions in powers of density relate to a supercritical liquid-phase rigidity symmetry (RS) line (ω = ρ<sub>rs</sub>(T) = RT) to gas phase virial coefficients. We show that it is continuous in all derivatives, linear within stable fluid phase, and relates analytically to the Boyle-work line (BW) (w = (p/ρ)<sub>T</sub> = RT), and to percolation lines of gas (PB) and liquid (PA) phases by: ρ<sub>BW</sub>(T) = 2ρ<sub>PA</sub>(T) = 3ρ<sub>PB</sub>(T) = 3ρ<sub>RS</sub>(T)/2 for T T<sub>B</sub>. These simple relationships arise, because the higher virial coefficients (b<sub>n</sub>, n ≥ 4) cancel due to clustering equilibria, or become negligible at all temperatures (0 T T<sub>B</sub>)<sub> </sub>within the gas phase. The Boyle-work line (p/ρ<sub>BW</sub>)<sub>T</sub> is related exactly at lower densities as T → T<sub>B</sub>, and accurately for liquid densities, by ρ<sub>BW</sub>(T) = −(b<sub>2</sub>/b<sub>3</sub>)<sub>T</sub>. The RS line, ω(T) = RT, defines a new liquid-density ground-state physical constant (ρ<sub>RS</sub>(0) = (2/3)ρ<sub>BW</sub>(0) for argon). Given the gas-liquid rigidity symmetry, the entire thermodynamic state functions below T<sub>B</sub> are obtainable from b<sub>2</sub>(T). A BW-line ground-state crystal density ρ<sub>BW</sub>(0) can be defined by the pair potential minimum. The Ar<sub>2</sub> pair potential, ∅ij</sub>(r<sub>ij</sub>) determines b<sub>2</sub>(T) analytically for all T. This report, therefore, advances the salient objective of liquid-state theory: an argon p(ρ,T) Equation-of-state is obtained from ∅<sub>ij</sub>(r<sub>ij</sub>) for all fluid states, without any adjustable parameters.