Sharp eyespot(Rhizoctonia cerealis)is a widespread soil-borne fungal disease that poses a severe threat to wheat health,and it is one of the main obstacles to achieving stable and high-quality wheat yields in China.Ou...Sharp eyespot(Rhizoctonia cerealis)is a widespread soil-borne fungal disease that poses a severe threat to wheat health,and it is one of the main obstacles to achieving stable and high-quality wheat yields in China.Our collaborative team has developed a novel,efficient,and low-toxicity fungicide named Y17991(N-(2-(2,4-bis-(trifluoromethyl)phenoxy)phenyl)-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide).Preliminary laboratory tests confirmed the significant inhibitory effect of this agent on R.cerealis.Large-area field trials also demonstrated its efficacy,with a disease prevention index of 83.52%,which is 1.97%greater than that of the widely used thifluzamide,and it significantly increased the wheat yield.Moreover,this study explored the impacts of Y17991 on the structure and function of the microbial community in wheat rhizosphere soil.Bacterial communities were more strongly affected than fungal communities.Y17991 significantly modulated key amino acid metabolic pathways and certain biosynthetic processes in diseased wheat rhizospheres,and it also enhanced certain biosynthetic pathways and metabolic activities in healthy wheat rhizospheres.Additionally,the application of Y17991 regulated rhizosphere metabolites,thus exerting significant control over the microbial community.We identified 15 microbial strains potentially involved in the prevention and treatment of R.cerealis,and Y17991 treatment promoted the growth of Pedobacter and Bacillus strains.These strains not only aid in plant growth but they also have the potential for disease prevention.In summary,Y17991 application at a reasonable dose does not cause significant disruption to nontarget rhizosphere microbial communities.In future studies,we will continue to investigate the impacts of Y17991 on nonmicrobial components in soil ecosystems,such as protozoa and nematodes.Our research provides a theoretical basis for the scientific application and promotion of new fungicides and offers a significant reference for establishing a comprehensive system for assessing the ecological impact of pesticides on the environment.展开更多
[Objectives]To explore the effects of mixed humus soil and straw ash substrate on rhizosphere bacterial community and growth of hot pepper.[Methods]In this pot experiment,high-throughput sequencing was conducted to an...[Objectives]To explore the effects of mixed humus soil and straw ash substrate on rhizosphere bacterial community and growth of hot pepper.[Methods]In this pot experiment,high-throughput sequencing was conducted to analyze bacterial communities in the rhizosphere soil of pepper plants treated with four different HA proportions.[Results]Pepper seedlings exhibited optimal growth in the 6:4(w/w)HA substrate.Bacterial structure and composition varied with the HA proportion.The relative abundance of the Proteobacteria phylum(ranging from 48.37%to 60.40%)was the highest across all treatments.Correlation analysis indicated that certain bacterial communities were closely related to the availability of soil nutrients and enzymatic activities.[Conclusions]This study elucidates the impact of HA proportion on rhizosphere bacterial communities and plant growth,laying a foundation for understanding the application of different mixed substrates and their effects on soil microbiology.展开更多
[Objectives]To systematically investigate the microbial community composition of rhizosphere soil and endophytes associated with Pogostemon cablin,and to explore the relationships between endophytes and rhizosphere mi...[Objectives]To systematically investigate the microbial community composition of rhizosphere soil and endophytes associated with Pogostemon cablin,and to explore the relationships between endophytes and rhizosphere microorganisms as well as their potential applications.[Methods]Microbial isolates were obtained from rhizosphere soil,root tissues,and stem tissues using the serial dilution and spread plate method.These isolates were identified through morphological characterization,physiological and biochemical assays,and molecular biological techniques.[Results]A total of 18 microbial strains were isolated,including 7 bacterial and 11 fungal strains.Among the bacterial isolates,Pseudomonas spp.and Bacillus spp.were predominant,while the fungal isolates were mainly represented by Aspergillus spp.Certain bacterial strains,notably Pseudomonas spp.,exhibited potential abilities for indole-3-acetic acid(IAA)production,nitrogen fixation,and antagonistic activity against pathogenic microorganisms,suggesting their potential utility as biocontrol agents and promoters of plant growth.[Conclusions]This study establishes a foundational understanding of the microbial community characteristics in the rhizosphere and tissues of P.cablin,as well as their roles in plant growth and development.展开更多
This study investigated the effects of planting duration(1,5,10 and 15 years)on soil properties,bacterial community diversity,and function in the rhizosphere of Zanthoxylum bungeanum.We employed Illumina highthroughpu...This study investigated the effects of planting duration(1,5,10 and 15 years)on soil properties,bacterial community diversity,and function in the rhizosphere of Zanthoxylum bungeanum.We employed Illumina highthroughput sequencing and PICRUSt2 functional prediction to analyze the structure and functional potential of rhizosphere soil bacterial communities.The Mantel test and redundancy analysis were used to identify physicochemical factors influencing bacterial community structure and function.The results indicated significant differences in rhizosphere soil physicochemical properties across planting years:the content of organic matter,alkaline hydrolyzable nitrogen in the soil,as well as the activity of invertase,urease,and alkaline phosphatase initially increased and then decreased,while available potassium,Olsen-phosphorus content,and peroxidase activity continued to increase.However,bacterial alpha diversity(Chao1 and Shannon indices)and the number of amplicon sequence variants increased continuously with planting duration.Principal coordinate analysis and Adonis tests revealed that the planting year significantly influenced the bacterial community structure(p<0.05).The phyla Proteobacteria,Actinobacteria,Acidobacteriota and Chloroflexi collectively constituted 56.7%to 71.2%of the relative abundance,representing the dominant taxa.PICRUSt2 predictions indicated key functional categories(cellular processes,metabolism,genetic information processing,and environmental information processing)each exceeding 10%relative abundance.BugBase analysis revealed a progressive increase in aerobic and oxidative stress-tolerant bacteria and a decrease in anaerobic and potentially pathogenic bacteria.Differential indicator species analysis identified Firmicutes,Planctomycetes,Methylomirabilota and Actinobacteriota as key discriminators for the 1-,5-,10-and 15-year stages,respectively.Organic matter,alkaline phosphatase,soil pH,and available phosphorus were the primary physicochemical drivers of bacterial communities.Notably,soil organic matter significantly influenced both the community structure(p<0.05)and predictedmetabolic functions(p<0.05).In conclusion,prolonged planting duration significantly enhanced rhizosphere microbial diversity and functional gene abundance in Z.bungeanumwhile driving the structural succession of bacterial communities dominated by Proteobacteria,Actinobacteria,Acidobacteriota,and Chloroflexi.This ecological shift,characterized by increased aerobic/oxidative-stress taxa and decreased anaerobic/pathogenic bacteria,was primarily regulated by soil organic matter,a key driver shaping both community structure and metabolic functions,ultimately improving soil microecological health.展开更多
Sediment properties have a crucial effect on the growth and recovery of aquatic plants in lakes.Addition of various chemical substances has been proposed to reinforce the recovery of plants after a nutrient loading re...Sediment properties have a crucial effect on the growth and recovery of aquatic plants in lakes.Addition of various chemical substances has been proposed to reinforce the recovery of plants after a nutrient loading reduction.However,the effects of such sediment amendments on plant growth,especially those from rhizosphere microorganisms,is limited.We added Kaolin clay to sediments in different concentrations to explore its impact on the growth of Vallisneria natans and Ottelia acuminate and the concurrent shift in rhizosphere microorganisms using high-throughput sequencing technology.We found that the addition of low doses(10%and 20%in mass ratio)of Kaolin significantly modified sediment conditions(oxidation reduction potential and pH),with implications also for the composition,diversity,and stability of rhizosphere microorganisms.LEfSe analysis revealed that low-dose addition of Kaolin increased the abundances of functional microbial groups that benefit plant nutrient absorption and enhance plant stress resistance,such as Spirillaceae,Rhodocyclaceae,and Burkholderiales.Moreover,low doses of Kaolin significantly promoted the photosynthesis and nutrient absorption of submerged macrophytes,thereby facilitating plant growth.A structural equation model(SEM)indicated that the direct impact of Kaolin on the growth of submerged plants was relatively minor,while the indirect effect through modulation of rhizosphere microorganisms was important.Our study suggests that low doses of Kaolin may be used to promote the growth of submerged macrophytes when lakes with a high organic content in the sediment are recovering after nutrient loading reduction.展开更多
Plant growth-promoting rhizobacteria(PGPR)have been widely used for the promotion of plant performance.Predatory protists can influence the taxonomic and functional composition of rhizosphere bacteria.However,research...Plant growth-promoting rhizobacteria(PGPR)have been widely used for the promotion of plant performance.Predatory protists can influence the taxonomic and functional composition of rhizosphere bacteria.However,research on the impact of the interaction between protist and PGPR on plant performance remains at a very early stage.Here,we examined the impacts of individual inoculation of protist(Colpoda inflata,Dimastigella trypaniformis,or Vermamoeba vermiformis)or the PGPR strain Bacillus velezensis SQR9 as well as the co-inoculation of the protist C.inflata and B.velezensis SQR9 on the growth of tomato plants.We found that all individual protists and Bacillus could promote plant growth compared to the control with no microbe inoculation,with the co-inoculation of C.inflata and B.velezensis SQR9 achieving the greatest performance,including plant height,fresh weight,and dry weight.Different protists harbored distinct rhizosphere bacterial communities,with the co-inoculation of protist and Bacillus resulting in the lowest bacterial diversity and driving significant changes in community structure and composition,particularly by increasing the relative abundance of Proteobacteria.Random forest model highlighted Cellvibrio as the most important bacterial predictor of plant growth,which was enriched after protist inoculation,especially after the mixed inoculation of protist and Bacillus.We further found that bacterial functional genes of nitrogen metabolism were the key determinants of plant growth.These results indicate that the interaction between protists and Bacillus can support plant growth by reshaping rhizosphere bacterial community composition and function.Understanding the interaction mechanisms between protist and PGPR is crucial for their effective utilization in sustainable agriculture.展开更多
Increasing soil phosphorus(P)availability and plant P uptake are potential approaches to alleviate low P stress in plants and mitigate P resource shortages.Application of fulvic acid(FA)in soil is observed to increase...Increasing soil phosphorus(P)availability and plant P uptake are potential approaches to alleviate low P stress in plants and mitigate P resource shortages.Application of fulvic acid(FA)in soil is observed to increase plant growth and P uptake.However,the biological mechanisms underlying these effects remain largely unknown.In this study,based on a three-year field experiment,multi-omics analyses were performed to reveal the effects of FA on rice growth and P uptake,the expression of P transporter genes,root exudates,and rhizosphere bacterial communities in a P-deficient soil.The results showed that FA application significantly promoted rice growth and P absorption under P deficiency,in association with the upregulation of P transporter genes expression and increased rhizosphere P mobilization.FA increased the transformation of non-labile to labile P in the rhizosphere by increasing the secretion of Pdissolving exudates and changing a rhizosphere bacterial community with high P-mobilization capacity,and the variations in the rhizosphere bacterial community were coupled with those of the root exudates,especially glutamylproline,tryptophanamide,5-chloro-2′-deoxyuridine,L-menthyl(R,S)-3-hydroxybutyrate,and 2,7-diamino-7-iminoheptanoic acid.These findings reveal the multiple positive effects of FA on rice P uptake and indicate the potential utilization of FA in increasing P utilization in rice production.展开更多
Bacteria play critical roles in regulating soil phosphorus(P) cycling. The effects of interactions between crops and soil P-availability on bacterial communities and the feedback regulation of soil P cycling by the ba...Bacteria play critical roles in regulating soil phosphorus(P) cycling. The effects of interactions between crops and soil P-availability on bacterial communities and the feedback regulation of soil P cycling by the bacterial community modifications are poorly understood. Here, six soybean(Glycine max) genotypes with differences in P efficiency were cultivated in acidic soils with long-term sufficient or deficient P-fertilizer treatments. The acid phosphatase(AcP) activities, organic-P concentrations and associated bacterial community compositions were determined in bulk and rhizosphere soils. The results showed that both soybean plant P content and the soil AcP activity were negatively correlated with soil organic-P concentration in P-deficient acidic soils. Soil P-availability affected the ɑ-diversity of bacteria in both bulk and rhizosphere soils. However, soybean had a stronger effect on the bacterial community composition, as reflected by the similar biomarker bacteria in the rhizosphere soils in both P-treatments. The relative abundance of biomarker bacteria Proteobacteria was strongly correlated with soil organic-P concentration and AcP activity in low-P treatments. Further high-throughput sequencing of the phoC gene revealed an obvious shift in Proteobacteria groups between bulk soils and rhizosphere soils, which was emphasized by the higher relative abundances of Cupriavidus and Klebsiella, and lower relative abundance of Xanthomonas in rhizosphere soils. Among them, Cupriavidus was the dominant phoC bacterial genus, and it was negatively correlated with the soil organic-P concentration. These findings suggest that soybean growth relies on organic-P mineralization in P-deficient acidic soils, which might be partially achieved by recruiting specific phoCharboring bacteria, such as Cupriavidus.展开更多
Plants serve as rich repositories of diverse chemical compounds collectively referred to as specialized metabolites.These compounds are of importance for adaptive processes,including interactions with various microbes...Plants serve as rich repositories of diverse chemical compounds collectively referred to as specialized metabolites.These compounds are of importance for adaptive processes,including interactions with various microbes both beneficial and harmful.Considering microbes as bioreactors,the chemical diversity undergoes dynamic changes when root-derived specialized metabolites(RSMs)and microbes encounter each other in the rhizosphere.Recent advancements in sequencing techniques and molecular biology tools have not only accelerated the elucidation of biosynthetic pathways of RSMs but also unveiled the significance of RSMs in plant-microbe interactions.In this review,we provide a comprehensive description of the effects of RSMs on microbe assembly in the rhizosphere and the influence of corresponding microbial changes on plant health,incorporating the most up-to-date information available.Additionally,we highlight open questions that remain for a deeper understanding of and harnessing the potential of RSM-microbe interactions to enhance plant adaptation to the environment.Finally,we propose a pipeline for investigating the intricate associations between root exometabolites and the rhizomicrobiome.展开更多
The addition of biochar(BC)or Arbuscular mycorrhizal fungi(AMF)alone has been reported to promote plant growth,while their synergistic effects on Allium schoenoprasum root morphology and rhizosphere fungal community i...The addition of biochar(BC)or Arbuscular mycorrhizal fungi(AMF)alone has been reported to promote plant growth,while their synergistic effects on Allium schoenoprasum root morphology and rhizosphere fungal community in barren soil is still unclear.In this study,we investigated the effects of BC and AMF(Funneliformis mosseae)on plant growth and root morphology in barren soil and revealed the structure of soil fungal communities Therefore,a greenhouse pot trial consisting of five treatments was enforced.The results showed that the combination of biochar and AMF significantly improved plant biomass,nutrient uptake,mycorrhizal colonization rates and soil properties and significantly impacted rhizosphere fungal community composition and structure.Biochar significantly increased the fungal community stability and enhanced their positive correlation with plants.Our findings indicated that the combination of AMF and biochar play synergic role for plant growth and rhizosphere fungal community in barren soil.展开更多
Dried roots of Scutellaria baicalensis Georgi are an acclaimed traditional Chinese medicine,and wogonoside content is a key indicator used to evaluate S.baicalensis quality.Rather than rising linearly with cultivation...Dried roots of Scutellaria baicalensis Georgi are an acclaimed traditional Chinese medicine,and wogonoside content is a key indicator used to evaluate S.baicalensis quality.Rather than rising linearly with cultivation years,S.baicalensis quality initially increases and then declines.However,little is known regarding the dynamic variations in S.baicalensis rhizosphere microorganisms under long-term cultivation and underlying mechanisms of their effects on wogonoside formation and accumulation.The aim of this study was to investigate the roles of soil nutrients and rhizosphere microbes on S.baicalensis quality across different cultivation years(1-4 years).The wogonoside content(25.14 mg g^(-1))was highest in the biennial S.baicalensis and then decreased following long-term cultivation.Most soil nutrients(available nitrogen,available phosphorus,available iron,available manganese,and available zinc)were reduced significantly as cultivation years increased.Time also affected rhizosphere bacterial community structure significantly,driving it toward deterministic process(i.e.,β-nearest taxon index<-2).Available manganese and exchangeable calcium indirectly affected wogonoside formation and accumulation.Wogonoside inhibition was driven by the reduction in rhizosphere bacterial diversity,which significantly increased the relative abundance of beta-glucosidase and decreased the relative abundance of phenylalanine ammonialyase.The rhizosphere microenvironment was altered under long-term cultivation,thereby shaping rhizosphere bacterial community,reducing the community diversity,and ultimately inhibiting wogonoside formation and accumulation.Our findings may aid in understanding of the mechanisms and reasons for the reduction in S.baicalensis quality under long-term cultivation from the perspective of soil nutrients and microorganisms,which may theoretically support the future artificial cultivation and management of Chinese medicinal plants.展开更多
The effect of functionalized graphene on the growth and development of Vicia faba L.was investigated by analyzing its impact on the composition and diversity of the microbial community in rhizosphere peat soil.Seedlin...The effect of functionalized graphene on the growth and development of Vicia faba L.was investigated by analyzing its impact on the composition and diversity of the microbial community in rhizosphere peat soil.Seedlings of V.faba planted in this peat soil were treated with either distilled water(CK)or 25 mg·L^(−1)(G25)of functionalized graphene solution.Results showed that the height and root length of V.faba seedlings in the G25 group were significantly larger than those in CK group.The microbial com-munity was analyzed by amplifying and sequencing the 16S rRNA gene V_(3)-V_(4) region of bacteria and internal transcribed spacer re-gion of fungi in rhizosphere soil using Illumina MiSeq technology.Alpha and beta diversity analysis indicated that functionalized graphene increased the richness and diversity of bacteria and fungi in the V.faba rhizosphere peat soil.The abundances of three ni-trogen cycling-related bacteria,Hydrogenophaga,Sphingomonas and Nitrosomonadaceae,were also altered after treatment with the functionalized graphene.The relative abundance of Basilicum,related to soil phosphorus solubilization,decreased in the fungal com-munity,while the relative abundance of Clonostachys and Dimorphospora,which exhibited strong biological control over numerous fungal plant pathogens,nematodes and insects,increased in the soil after functionalized graphene treatment.Redundancy analysis re-vealed that the potential of hydrogen(pH),organic matter,and total phosphorus contributed the most to the changes in bacterial and fungal community composition in the rhizosphere soil.Overall,our findings suggested that the addition of functionalized graphene altered the relative abundances of nitrogen and phosphorus cycling-related microorganisms in peat soil,promoting changes in the physicochemical properties of the soil and ultimately leading to the improved growth of V.faba plants.展开更多
The objective of this work was to carry out a morphological characterization of arbuscular mycorrhizal fungi in the rhizosphere of Xanthosoma sagittifolium L. Schott plants. The plant material used was the white and r...The objective of this work was to carry out a morphological characterization of arbuscular mycorrhizal fungi in the rhizosphere of Xanthosoma sagittifolium L. Schott plants. The plant material used was the white and red cultivars of X. sagittifolium, belonging to age intervals of 3 - 6, 6 - 9, and 9 - 12 months. Three harvest sites were chosen in the Central Region of Cameroon. In each site, soil from the rhizosphere and plant roots was collected in a randomized manner. In the field, the agronomic parameters were evaluated. The physicochemical characteristics of the soils, the mycorrhization index, and the morphological characterization of the mycorrhizal types of each site were carried out. The results obtained show that the agronomic growth parameters varied significantly using the Student Newman and Keuls Test depending on the harvest sites. The soils’ pH in all sites was acidic and ranged between 4.6 and 5.8. The Nkometou site has a loamy texture while the Olembe and Soa sites have loam-clay-sandy and loam-clay textures respectively. The highest mycorrhization frequencies appeared at the Nkometou site, with 75 and 87.33% of the white and red cultivars plant roots at 6 - 9 and 3 - 6 months. The relative abundance of AMF arbuscular mycorrhizal fungal spores in the rhizosphere of X. sagittifolium plants varied with age and cultivar. There were 673 spores between 9 - 12 months in Nkometou in the red cultivar. Six AMF genera were identified in all the different soils collected: Acaulospora sp., Funneliformis sp., Gigaspora sp., Glomus sp., Scutellospora sp., and Septoglomus sp. The genus Glomus sp. was the most present at all age intervals in both cultivars.展开更多
[Objectives]To make full use of crop rhizosphere microbial resources.[Methods]Illumina NovaSeq sequencing platform was used to analyze the richness and diversity of microbial community structure in rhizosphere soil of...[Objectives]To make full use of crop rhizosphere microbial resources.[Methods]Illumina NovaSeq sequencing platform was used to analyze the richness and diversity of microbial community structure in rhizosphere soil of rice and maize crops in Baitu Town,Gaoyao District,Zhaoqing City.[Results]A total of 14936 OTUs of bacteria and 1905 OTUs of fungi were obtained from three samples of rice rhizosphere soil,and 13437 OTUs of bacteria and 1413 OTUs of fungi were obtained from three samples of maize rhizosphere soil.The diversity and richness of bacterial communities were higher than those of fungi.There are differences in soil bacterial and fungal communities among different crop samples.The analysis of species with bacteria difference at genus level among crop rhizosphere soil samples showed that 18 genera with significant differences were obtained from 6 samples;species analysis of fungi at the genus level showed that 3 genera with significant differences were obtained from 6 samples.[Conclusions]The research results of this paper have positive significance for the development and utilization of soil resources in Zhaoqing City and the full exploitation of rice and maize rhizosphere microbial resources.展开更多
Four types of soils, including brown coniferous forest soil, dark brown soil, black soil, and black calic soil, sampled from three different places in northeast China were used in this test. The functions of two root-...Four types of soils, including brown coniferous forest soil, dark brown soil, black soil, and black calic soil, sampled from three different places in northeast China were used in this test. The functions of two root-derived organic acids and water were simulated and compared in the activation of mineral nutrients from the rhizosphere soil. The results showed that the organic acids could activate the nutrients and the activated degree of the nutrient elements highly depended on the amount and types of the organic acid excreted and on the physiochemical and biochemical properties of the soil tested. The activation effect of the citric acid was obviously higher than that of malic acid in extracting Fe, Mn, Cu, and Zn for all the tested soil types. However, the activation efficiencies of P, K, Ca, and Mg extracting by the citric acid were not much higher, sometimes even lower, than those by malic acid. The solution concentration of all elements increased with increase of amount of the citric acid added.展开更多
[Objective] The aim was to research the effect of concentration of NO-3-N on root vigor and rhizosphere pH of winter wheat seedlings under water culture.[Method]By selecting Hoagland's nutritional solution as cult...[Objective] The aim was to research the effect of concentration of NO-3-N on root vigor and rhizosphere pH of winter wheat seedlings under water culture.[Method]By selecting Hoagland's nutritional solution as cultural medium and winter wheat as material of experiment,on the basis,testing root vigor,nutrient solution NO-3 and change of pH values under the different level of disposal,such as high(containing NO-3-N 15 mmol/L),medium(containing NO-3-N 7.5 mmol/L)and lower(containing NO-3-N 2.5 mmol/L).[Result]The results of this research showed that the effect of different nitrogen level on the wastage of nutrient solution NO-3,the changes of pH values and root vigor is obvious under the hydroponics condition.[Conclusion]Though NO-3 is a safe nitrogen sources when it was supplied to plants too more,it would restrain assimilation on nitrate nitrogen farther,but when it was supplied to plants too little,it would lead to deficiency of NO-3 that plants uptake and decrease of root activity,so it isn't useful to wheat young seedling to absorb nitrogen nutrition.展开更多
[Objective] The aim was to study the characteristics of microbial community in the rhizosphere soil of Dongxiang wild rice(Oryza rufipogon Griff.).[Method] The microbial biomass carbon and nitrogen was estimated by ...[Objective] The aim was to study the characteristics of microbial community in the rhizosphere soil of Dongxiang wild rice(Oryza rufipogon Griff.).[Method] The microbial biomass carbon and nitrogen was estimated by the chloroform fumigation extraction method;the microbial community composition and Nitrogen cycling microbial functional groups were investigated by the Dilution plate culture method and the most probable number methods respectively.[Result] The microbial biomass carbon and nitrogen,in rhizosphere soil of Dongxiang Wild Rice was 83.02±18.23 mg/kg soil and 16.98±2.54 mg/kg soil,which was lower than that of ordinary cultivated rice;The relationship between the number of culturable microbial groups was bacteriaactinomycetesfungi,and the Nitrogen cycling microbial physiological groups was as the following:ammonifying bacteriaaerobic azotobacteriadenitrobacteriaanaerobic azotobacterianitrobacterianitrosobacteria.[Conclusion] The microbial community in the rhizosphere soil of Dongxiang Wild Rice was different from that of the ordinary cultivated rice.展开更多
Soil samples were taken from rhizosphere zone and off-rhizosphere zone of ash (Fraxinus mandshurica Rupr.) and larch (Larix olgensis Henry) in mixed and monoculture stands, and the nutrient concentration of N, P, and ...Soil samples were taken from rhizosphere zone and off-rhizosphere zone of ash (Fraxinus mandshurica Rupr.) and larch (Larix olgensis Henry) in mixed and monoculture stands, and the nutrient concentration of N, P, and K was analyzed to study the effect of nutrients variation on yield improvement in the mixed stand. The result showed that: 1) The stand level total soil N concentration and available N in the mixed stand was similar to that in the monoculture stand of ash, but higher than that in monoculture stand of larch. The total N and available N concentration in rhizosphere soil of ash in the mixed stand was similar to that in the monoculture stand of ash, but the available N concentration in rhizosphere of larch in mixed stand was much higher than in its monoculture. 2) The stand level total P, total K concentration in the mixed stand was similar to that in monocul-ture stands of both species, but available P and K was more concentrated in the mixed stand than in the monoculture stands of ash. The rhizosphere available P and K of ash in the mixed stand was 44.1% and 13.5% (for the 9-yr-old stands) and 79.6% and 25.6% (for the 21-yr-old stands) higher than that in its monoculture. The improvement of soil P and K availability in the mixed stand is concluded.展开更多
Soil management practices affect rhizosphere microorganisms and enzyme activities, which in turn influence soil ecosystem processes. The objective of this study was to explore the effects of different nitrogen applica...Soil management practices affect rhizosphere microorganisms and enzyme activities, which in turn influence soil ecosystem processes. The objective of this study was to explore the effects of different nitrogen application rates on wheat(Triticum aestivum L.) rhizosphere soil microorganisms and enzyme activities, and their temporal variations in relation to soil fertility under supplemental irrigation conditions in a fluvo-aquic region. For this, we established a split-plot experiment for two consecutive years(2014–2015 and 2015–2016) in the field with three levels of soil moisture: water deficit to no irrigation(W1), medium irrigation to(70±5)% of soil relative moisture after jointing stage(W2), and adequate irrigation to(80±5)% of soil relative moisture after jointing stage(W3);and three levels of nitrogen: 0 kg ha^–1(N1), 195 kg ha^–1(N2) and 270 kg ha^–1(N3). Results showed that irrigation and nitrogen application significantly increased rhizosphere microorganisms and enzyme activities. Soil microbiological properties showed different trends in response to N level;the highest values of bacteria, protease, catalase and phosphatase appeared in N2, while the highest levels of actinobacteria, fungi and urease were observed in N3. In addition, these items performed best under medium irrigation(W2) relative to W1 and W3;particularly the maximum microorganism(bacteria, actinobacteria and fungi) amounts appeared at W2, 5.37×10^7 and 6.35×10^7 CFUs g^–1 higher than those at W3 in 2014–2015 and 2015–2016, respectively;and these changes were similar in both growing seasons. Microbe-related parameters fluctuated over time but their seasonality did not hamper the irrigation and fertilization-induced effects. Further, the highest grain yields of 13 309.2 and 12 885.7 kg ha^–1 were both obtained at W2 N2 in 2014–2015 and 2015–2016, respectively. The selected properties, soil microorganisms and enzymes, were significantly correlated with wheat yield and proved to be valuable indicators of soil quality. These results clearly demonstrated that the combined treatment(W2 N2) significantly improved soil microbiological properties, soil fertility and wheat yield on the Huanghuai Plain, China.展开更多
To understand the role of ectomycorrhizas in improving the tolerance of its host to excessive heavy metals in soil, this study was conducted to exam the patterns of four fractions (the exchangeable, the carbonate-boun...To understand the role of ectomycorrhizas in improving the tolerance of its host to excessive heavy metals in soil, this study was conducted to exam the patterns of four fractions (the exchangeable, the carbonate-bound, the Fe-Mn oxide- bound and the organically bound) of both Cu and Cd in the rhizosphere of Chinese pine (Pinus tabulaeformis) seedlings grown in excessive Cu and Cd environment. The results showed that the speciation of Cu and Cd in the rhizosphere was significantly influenced by inoculation of ectomycorrhizal fungus Boletus edulis. Compared to the rhizosphere, the content of exchangeable Cu slightly decreased in the mycorrhizosphere of the seedlings grown in 166 and 400 mg kg-1 Cu contaminated soil, whereas the exchangeable Cd in the mycorrhizosphere decreased remarkably to only 33% and to 60% that of the rhizosphere at 0.75 and 1.50 mg kg-1 Cd levels, respectively. These indicate the potential capacity of mycorrhizas to alleviate the damage of heavy metals to the host plants by reducing the bioavailability of heavy metals in soil. Distribution of the 4 tested fractions of Cu and Cd at different contamination levels showed that there was a strong tendency of changing from loosely associated fractions to strongly associated fractions in the mycorrhizosphere. The most stable Cd fraction, organically bound Cd, was significantly larger in the mycorrhizosphere than in the rhizosphere at different Cd contamination levels. This phenomenon was also observed for Cu but the difference was not statistically significant.展开更多
基金supported by the National Natural Science Foundation of China(32270296)the Shenzhen Postdoctoral Scientific Research,China(77000-42100004)+1 种基金the Key Basic Research and Development Program of Hubei Province,China(2020BBA052)the Natural Science Foundation of Guangdong Province,China(2024A1515010498)and the Fundamental Research Funds for the Central Universities,Sun Yat-sen University,China.
文摘Sharp eyespot(Rhizoctonia cerealis)is a widespread soil-borne fungal disease that poses a severe threat to wheat health,and it is one of the main obstacles to achieving stable and high-quality wheat yields in China.Our collaborative team has developed a novel,efficient,and low-toxicity fungicide named Y17991(N-(2-(2,4-bis-(trifluoromethyl)phenoxy)phenyl)-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide).Preliminary laboratory tests confirmed the significant inhibitory effect of this agent on R.cerealis.Large-area field trials also demonstrated its efficacy,with a disease prevention index of 83.52%,which is 1.97%greater than that of the widely used thifluzamide,and it significantly increased the wheat yield.Moreover,this study explored the impacts of Y17991 on the structure and function of the microbial community in wheat rhizosphere soil.Bacterial communities were more strongly affected than fungal communities.Y17991 significantly modulated key amino acid metabolic pathways and certain biosynthetic processes in diseased wheat rhizospheres,and it also enhanced certain biosynthetic pathways and metabolic activities in healthy wheat rhizospheres.Additionally,the application of Y17991 regulated rhizosphere metabolites,thus exerting significant control over the microbial community.We identified 15 microbial strains potentially involved in the prevention and treatment of R.cerealis,and Y17991 treatment promoted the growth of Pedobacter and Bacillus strains.These strains not only aid in plant growth but they also have the potential for disease prevention.In summary,Y17991 application at a reasonable dose does not cause significant disruption to nontarget rhizosphere microbial communities.In future studies,we will continue to investigate the impacts of Y17991 on nonmicrobial components in soil ecosystems,such as protozoa and nematodes.Our research provides a theoretical basis for the scientific application and promotion of new fungicides and offers a significant reference for establishing a comprehensive system for assessing the ecological impact of pesticides on the environment.
文摘[Objectives]To explore the effects of mixed humus soil and straw ash substrate on rhizosphere bacterial community and growth of hot pepper.[Methods]In this pot experiment,high-throughput sequencing was conducted to analyze bacterial communities in the rhizosphere soil of pepper plants treated with four different HA proportions.[Results]Pepper seedlings exhibited optimal growth in the 6:4(w/w)HA substrate.Bacterial structure and composition varied with the HA proportion.The relative abundance of the Proteobacteria phylum(ranging from 48.37%to 60.40%)was the highest across all treatments.Correlation analysis indicated that certain bacterial communities were closely related to the availability of soil nutrients and enzymatic activities.[Conclusions]This study elucidates the impact of HA proportion on rhizosphere bacterial communities and plant growth,laying a foundation for understanding the application of different mixed substrates and their effects on soil microbiology.
基金Supported by Rural Science and Technology Commissioner Project of Guangdong Province(KTP20240806).
文摘[Objectives]To systematically investigate the microbial community composition of rhizosphere soil and endophytes associated with Pogostemon cablin,and to explore the relationships between endophytes and rhizosphere microorganisms as well as their potential applications.[Methods]Microbial isolates were obtained from rhizosphere soil,root tissues,and stem tissues using the serial dilution and spread plate method.These isolates were identified through morphological characterization,physiological and biochemical assays,and molecular biological techniques.[Results]A total of 18 microbial strains were isolated,including 7 bacterial and 11 fungal strains.Among the bacterial isolates,Pseudomonas spp.and Bacillus spp.were predominant,while the fungal isolates were mainly represented by Aspergillus spp.Certain bacterial strains,notably Pseudomonas spp.,exhibited potential abilities for indole-3-acetic acid(IAA)production,nitrogen fixation,and antagonistic activity against pathogenic microorganisms,suggesting their potential utility as biocontrol agents and promoters of plant growth.[Conclusions]This study establishes a foundational understanding of the microbial community characteristics in the rhizosphere and tissues of P.cablin,as well as their roles in plant growth and development.
基金supported by Forestry and Grassland Science and Technology Innovation Project(LCKJCX2022001)from Forestry and Grassland Bureau of Gansu Province’s.
文摘This study investigated the effects of planting duration(1,5,10 and 15 years)on soil properties,bacterial community diversity,and function in the rhizosphere of Zanthoxylum bungeanum.We employed Illumina highthroughput sequencing and PICRUSt2 functional prediction to analyze the structure and functional potential of rhizosphere soil bacterial communities.The Mantel test and redundancy analysis were used to identify physicochemical factors influencing bacterial community structure and function.The results indicated significant differences in rhizosphere soil physicochemical properties across planting years:the content of organic matter,alkaline hydrolyzable nitrogen in the soil,as well as the activity of invertase,urease,and alkaline phosphatase initially increased and then decreased,while available potassium,Olsen-phosphorus content,and peroxidase activity continued to increase.However,bacterial alpha diversity(Chao1 and Shannon indices)and the number of amplicon sequence variants increased continuously with planting duration.Principal coordinate analysis and Adonis tests revealed that the planting year significantly influenced the bacterial community structure(p<0.05).The phyla Proteobacteria,Actinobacteria,Acidobacteriota and Chloroflexi collectively constituted 56.7%to 71.2%of the relative abundance,representing the dominant taxa.PICRUSt2 predictions indicated key functional categories(cellular processes,metabolism,genetic information processing,and environmental information processing)each exceeding 10%relative abundance.BugBase analysis revealed a progressive increase in aerobic and oxidative stress-tolerant bacteria and a decrease in anaerobic and potentially pathogenic bacteria.Differential indicator species analysis identified Firmicutes,Planctomycetes,Methylomirabilota and Actinobacteriota as key discriminators for the 1-,5-,10-and 15-year stages,respectively.Organic matter,alkaline phosphatase,soil pH,and available phosphorus were the primary physicochemical drivers of bacterial communities.Notably,soil organic matter significantly influenced both the community structure(p<0.05)and predictedmetabolic functions(p<0.05).In conclusion,prolonged planting duration significantly enhanced rhizosphere microbial diversity and functional gene abundance in Z.bungeanumwhile driving the structural succession of bacterial communities dominated by Proteobacteria,Actinobacteria,Acidobacteriota,and Chloroflexi.This ecological shift,characterized by increased aerobic/oxidative-stress taxa and decreased anaerobic/pathogenic bacteria,was primarily regulated by soil organic matter,a key driver shaping both community structure and metabolic functions,ultimately improving soil microecological health.
基金supported by the National Natural Science Foundation of China(Nos.U23A20153,and 32101319).
文摘Sediment properties have a crucial effect on the growth and recovery of aquatic plants in lakes.Addition of various chemical substances has been proposed to reinforce the recovery of plants after a nutrient loading reduction.However,the effects of such sediment amendments on plant growth,especially those from rhizosphere microorganisms,is limited.We added Kaolin clay to sediments in different concentrations to explore its impact on the growth of Vallisneria natans and Ottelia acuminate and the concurrent shift in rhizosphere microorganisms using high-throughput sequencing technology.We found that the addition of low doses(10%and 20%in mass ratio)of Kaolin significantly modified sediment conditions(oxidation reduction potential and pH),with implications also for the composition,diversity,and stability of rhizosphere microorganisms.LEfSe analysis revealed that low-dose addition of Kaolin increased the abundances of functional microbial groups that benefit plant nutrient absorption and enhance plant stress resistance,such as Spirillaceae,Rhodocyclaceae,and Burkholderiales.Moreover,low doses of Kaolin significantly promoted the photosynthesis and nutrient absorption of submerged macrophytes,thereby facilitating plant growth.A structural equation model(SEM)indicated that the direct impact of Kaolin on the growth of submerged plants was relatively minor,while the indirect effect through modulation of rhizosphere microorganisms was important.Our study suggests that low doses of Kaolin may be used to promote the growth of submerged macrophytes when lakes with a high organic content in the sediment are recovering after nutrient loading reduction.
基金supported by the National Natural Science Foundation of China(Nos.42377296 and 42107141)the National Key Research and Development Program of China(Nos.2023YFD1901402 and 2023YFD1901105)the Fundamental Research Funds for the Central Universities,China(No.YDZX2025046).
文摘Plant growth-promoting rhizobacteria(PGPR)have been widely used for the promotion of plant performance.Predatory protists can influence the taxonomic and functional composition of rhizosphere bacteria.However,research on the impact of the interaction between protist and PGPR on plant performance remains at a very early stage.Here,we examined the impacts of individual inoculation of protist(Colpoda inflata,Dimastigella trypaniformis,or Vermamoeba vermiformis)or the PGPR strain Bacillus velezensis SQR9 as well as the co-inoculation of the protist C.inflata and B.velezensis SQR9 on the growth of tomato plants.We found that all individual protists and Bacillus could promote plant growth compared to the control with no microbe inoculation,with the co-inoculation of C.inflata and B.velezensis SQR9 achieving the greatest performance,including plant height,fresh weight,and dry weight.Different protists harbored distinct rhizosphere bacterial communities,with the co-inoculation of protist and Bacillus resulting in the lowest bacterial diversity and driving significant changes in community structure and composition,particularly by increasing the relative abundance of Proteobacteria.Random forest model highlighted Cellvibrio as the most important bacterial predictor of plant growth,which was enriched after protist inoculation,especially after the mixed inoculation of protist and Bacillus.We further found that bacterial functional genes of nitrogen metabolism were the key determinants of plant growth.These results indicate that the interaction between protists and Bacillus can support plant growth by reshaping rhizosphere bacterial community composition and function.Understanding the interaction mechanisms between protist and PGPR is crucial for their effective utilization in sustainable agriculture.
基金supported by the Higher Education Scientific Research Project of the Anhui Province(Natural Sciences)(2023AH051039)Anhui Provincial Natural Resources Science and Technology Project(2023-K-4)+1 种基金the National Key Research&Development Program of China(2023YFD1902300)Anhui Provincial Natural Science Foundation(2108085QC123).
文摘Increasing soil phosphorus(P)availability and plant P uptake are potential approaches to alleviate low P stress in plants and mitigate P resource shortages.Application of fulvic acid(FA)in soil is observed to increase plant growth and P uptake.However,the biological mechanisms underlying these effects remain largely unknown.In this study,based on a three-year field experiment,multi-omics analyses were performed to reveal the effects of FA on rice growth and P uptake,the expression of P transporter genes,root exudates,and rhizosphere bacterial communities in a P-deficient soil.The results showed that FA application significantly promoted rice growth and P absorption under P deficiency,in association with the upregulation of P transporter genes expression and increased rhizosphere P mobilization.FA increased the transformation of non-labile to labile P in the rhizosphere by increasing the secretion of Pdissolving exudates and changing a rhizosphere bacterial community with high P-mobilization capacity,and the variations in the rhizosphere bacterial community were coupled with those of the root exudates,especially glutamylproline,tryptophanamide,5-chloro-2′-deoxyuridine,L-menthyl(R,S)-3-hydroxybutyrate,and 2,7-diamino-7-iminoheptanoic acid.These findings reveal the multiple positive effects of FA on rice P uptake and indicate the potential utilization of FA in increasing P utilization in rice production.
基金This work was supported by grants from the National Key Research and Development Program of China(2021YFF1000500)the Open Competition Program of Ten Major Directions of Agricultural Science and Technology Innovation for the 14th Five-Year Plan of Guangdong Province,China(2022SDZG07)+3 种基金the Key Areas Research and Development Programs of Guangdong Province,China(2022B0202060005)the STICGrantof China(SGDX20210823103535007)the Major Program of Guangdong Basic and Applied Research,China(2019B030302006)the Natural Science Foundation of Guangdong Province,China(2021A1515010826and 2020A1515110261).
文摘Bacteria play critical roles in regulating soil phosphorus(P) cycling. The effects of interactions between crops and soil P-availability on bacterial communities and the feedback regulation of soil P cycling by the bacterial community modifications are poorly understood. Here, six soybean(Glycine max) genotypes with differences in P efficiency were cultivated in acidic soils with long-term sufficient or deficient P-fertilizer treatments. The acid phosphatase(AcP) activities, organic-P concentrations and associated bacterial community compositions were determined in bulk and rhizosphere soils. The results showed that both soybean plant P content and the soil AcP activity were negatively correlated with soil organic-P concentration in P-deficient acidic soils. Soil P-availability affected the ɑ-diversity of bacteria in both bulk and rhizosphere soils. However, soybean had a stronger effect on the bacterial community composition, as reflected by the similar biomarker bacteria in the rhizosphere soils in both P-treatments. The relative abundance of biomarker bacteria Proteobacteria was strongly correlated with soil organic-P concentration and AcP activity in low-P treatments. Further high-throughput sequencing of the phoC gene revealed an obvious shift in Proteobacteria groups between bulk soils and rhizosphere soils, which was emphasized by the higher relative abundances of Cupriavidus and Klebsiella, and lower relative abundance of Xanthomonas in rhizosphere soils. Among them, Cupriavidus was the dominant phoC bacterial genus, and it was negatively correlated with the soil organic-P concentration. These findings suggest that soybean growth relies on organic-P mineralization in P-deficient acidic soils, which might be partially achieved by recruiting specific phoCharboring bacteria, such as Cupriavidus.
基金National Key Research and Development Program of China(2018YFA0900603 to G.W.and 2022YFF1001800 to Y.B.)the National Natural Science Foundation of China(grant No.32000232)to X.W.the State Key Laboratory of Plant Genomics of China(SKLPG2016A-13)to G.W.
文摘Plants serve as rich repositories of diverse chemical compounds collectively referred to as specialized metabolites.These compounds are of importance for adaptive processes,including interactions with various microbes both beneficial and harmful.Considering microbes as bioreactors,the chemical diversity undergoes dynamic changes when root-derived specialized metabolites(RSMs)and microbes encounter each other in the rhizosphere.Recent advancements in sequencing techniques and molecular biology tools have not only accelerated the elucidation of biosynthetic pathways of RSMs but also unveiled the significance of RSMs in plant-microbe interactions.In this review,we provide a comprehensive description of the effects of RSMs on microbe assembly in the rhizosphere and the influence of corresponding microbial changes on plant health,incorporating the most up-to-date information available.Additionally,we highlight open questions that remain for a deeper understanding of and harnessing the potential of RSM-microbe interactions to enhance plant adaptation to the environment.Finally,we propose a pipeline for investigating the intricate associations between root exometabolites and the rhizomicrobiome.
基金the Key Research and Development Program of Anhui Province(Grant No.202204c06020021)Natural Science Foundation of China(Grant Nos.U21A20235 and 32201308).
文摘The addition of biochar(BC)or Arbuscular mycorrhizal fungi(AMF)alone has been reported to promote plant growth,while their synergistic effects on Allium schoenoprasum root morphology and rhizosphere fungal community in barren soil is still unclear.In this study,we investigated the effects of BC and AMF(Funneliformis mosseae)on plant growth and root morphology in barren soil and revealed the structure of soil fungal communities Therefore,a greenhouse pot trial consisting of five treatments was enforced.The results showed that the combination of biochar and AMF significantly improved plant biomass,nutrient uptake,mycorrhizal colonization rates and soil properties and significantly impacted rhizosphere fungal community composition and structure.Biochar significantly increased the fungal community stability and enhanced their positive correlation with plants.Our findings indicated that the combination of AMF and biochar play synergic role for plant growth and rhizosphere fungal community in barren soil.
基金supported by the Carbon Peaking Carbon Neutrality Science and Technology Innovation Special Fund Project of Jiangsu Province,China(No.BE2022301)the National Natural Science Foundation of China(No.41977055)the Coastal Development Group’s 2022 Science and Technology“Revelation List”Project of Jiangsu,China(No.2022YHTDJB03)。
文摘Dried roots of Scutellaria baicalensis Georgi are an acclaimed traditional Chinese medicine,and wogonoside content is a key indicator used to evaluate S.baicalensis quality.Rather than rising linearly with cultivation years,S.baicalensis quality initially increases and then declines.However,little is known regarding the dynamic variations in S.baicalensis rhizosphere microorganisms under long-term cultivation and underlying mechanisms of their effects on wogonoside formation and accumulation.The aim of this study was to investigate the roles of soil nutrients and rhizosphere microbes on S.baicalensis quality across different cultivation years(1-4 years).The wogonoside content(25.14 mg g^(-1))was highest in the biennial S.baicalensis and then decreased following long-term cultivation.Most soil nutrients(available nitrogen,available phosphorus,available iron,available manganese,and available zinc)were reduced significantly as cultivation years increased.Time also affected rhizosphere bacterial community structure significantly,driving it toward deterministic process(i.e.,β-nearest taxon index<-2).Available manganese and exchangeable calcium indirectly affected wogonoside formation and accumulation.Wogonoside inhibition was driven by the reduction in rhizosphere bacterial diversity,which significantly increased the relative abundance of beta-glucosidase and decreased the relative abundance of phenylalanine ammonialyase.The rhizosphere microenvironment was altered under long-term cultivation,thereby shaping rhizosphere bacterial community,reducing the community diversity,and ultimately inhibiting wogonoside formation and accumulation.Our findings may aid in understanding of the mechanisms and reasons for the reduction in S.baicalensis quality under long-term cultivation from the perspective of soil nutrients and microorganisms,which may theoretically support the future artificial cultivation and management of Chinese medicinal plants.
文摘The effect of functionalized graphene on the growth and development of Vicia faba L.was investigated by analyzing its impact on the composition and diversity of the microbial community in rhizosphere peat soil.Seedlings of V.faba planted in this peat soil were treated with either distilled water(CK)or 25 mg·L^(−1)(G25)of functionalized graphene solution.Results showed that the height and root length of V.faba seedlings in the G25 group were significantly larger than those in CK group.The microbial com-munity was analyzed by amplifying and sequencing the 16S rRNA gene V_(3)-V_(4) region of bacteria and internal transcribed spacer re-gion of fungi in rhizosphere soil using Illumina MiSeq technology.Alpha and beta diversity analysis indicated that functionalized graphene increased the richness and diversity of bacteria and fungi in the V.faba rhizosphere peat soil.The abundances of three ni-trogen cycling-related bacteria,Hydrogenophaga,Sphingomonas and Nitrosomonadaceae,were also altered after treatment with the functionalized graphene.The relative abundance of Basilicum,related to soil phosphorus solubilization,decreased in the fungal com-munity,while the relative abundance of Clonostachys and Dimorphospora,which exhibited strong biological control over numerous fungal plant pathogens,nematodes and insects,increased in the soil after functionalized graphene treatment.Redundancy analysis re-vealed that the potential of hydrogen(pH),organic matter,and total phosphorus contributed the most to the changes in bacterial and fungal community composition in the rhizosphere soil.Overall,our findings suggested that the addition of functionalized graphene altered the relative abundances of nitrogen and phosphorus cycling-related microorganisms in peat soil,promoting changes in the physicochemical properties of the soil and ultimately leading to the improved growth of V.faba plants.
文摘The objective of this work was to carry out a morphological characterization of arbuscular mycorrhizal fungi in the rhizosphere of Xanthosoma sagittifolium L. Schott plants. The plant material used was the white and red cultivars of X. sagittifolium, belonging to age intervals of 3 - 6, 6 - 9, and 9 - 12 months. Three harvest sites were chosen in the Central Region of Cameroon. In each site, soil from the rhizosphere and plant roots was collected in a randomized manner. In the field, the agronomic parameters were evaluated. The physicochemical characteristics of the soils, the mycorrhization index, and the morphological characterization of the mycorrhizal types of each site were carried out. The results obtained show that the agronomic growth parameters varied significantly using the Student Newman and Keuls Test depending on the harvest sites. The soils’ pH in all sites was acidic and ranged between 4.6 and 5.8. The Nkometou site has a loamy texture while the Olembe and Soa sites have loam-clay-sandy and loam-clay textures respectively. The highest mycorrhization frequencies appeared at the Nkometou site, with 75 and 87.33% of the white and red cultivars plant roots at 6 - 9 and 3 - 6 months. The relative abundance of AMF arbuscular mycorrhizal fungal spores in the rhizosphere of X. sagittifolium plants varied with age and cultivar. There were 673 spores between 9 - 12 months in Nkometou in the red cultivar. Six AMF genera were identified in all the different soils collected: Acaulospora sp., Funneliformis sp., Gigaspora sp., Glomus sp., Scutellospora sp., and Septoglomus sp. The genus Glomus sp. was the most present at all age intervals in both cultivars.
基金Supported by Guangdong Province Rural Science and Technology Commissioner Project(KTP20240693)Zhaoqing University Project(QN202329)+3 种基金Science and Technology Innovation Guidance Project of Zhaoqing(202304038001)Undergraduate Innovation and Entrepreneurship Training Program(202410580011&X202310580120)The Third Batch of Innovation Research Team of Zhaoqing University(05)Quality Engineering and Teaching Reform Project of Zhaoqing University(zlgc202229,zlgc202261).
文摘[Objectives]To make full use of crop rhizosphere microbial resources.[Methods]Illumina NovaSeq sequencing platform was used to analyze the richness and diversity of microbial community structure in rhizosphere soil of rice and maize crops in Baitu Town,Gaoyao District,Zhaoqing City.[Results]A total of 14936 OTUs of bacteria and 1905 OTUs of fungi were obtained from three samples of rice rhizosphere soil,and 13437 OTUs of bacteria and 1413 OTUs of fungi were obtained from three samples of maize rhizosphere soil.The diversity and richness of bacterial communities were higher than those of fungi.There are differences in soil bacterial and fungal communities among different crop samples.The analysis of species with bacteria difference at genus level among crop rhizosphere soil samples showed that 18 genera with significant differences were obtained from 6 samples;species analysis of fungi at the genus level showed that 3 genera with significant differences were obtained from 6 samples.[Conclusions]The research results of this paper have positive significance for the development and utilization of soil resources in Zhaoqing City and the full exploitation of rice and maize rhizosphere microbial resources.
基金This paper was supported by the Innovation Program of the Chinese Academy of Sciences (KZCX1-SW-01) and the National Natural Science Foundation of China (30070158)
文摘Four types of soils, including brown coniferous forest soil, dark brown soil, black soil, and black calic soil, sampled from three different places in northeast China were used in this test. The functions of two root-derived organic acids and water were simulated and compared in the activation of mineral nutrients from the rhizosphere soil. The results showed that the organic acids could activate the nutrients and the activated degree of the nutrient elements highly depended on the amount and types of the organic acid excreted and on the physiochemical and biochemical properties of the soil tested. The activation effect of the citric acid was obviously higher than that of malic acid in extracting Fe, Mn, Cu, and Zn for all the tested soil types. However, the activation efficiencies of P, K, Ca, and Mg extracting by the citric acid were not much higher, sometimes even lower, than those by malic acid. The solution concentration of all elements increased with increase of amount of the citric acid added.
基金Supported by the Key Programfromthe National Natural Science Foundation of China(30230230)the National Natural Science Foundation Agricultural Program of China(30070429)Scientific Research Program for Universities in Inner Mongolia Autonomous Region(NJZY07120)~~
文摘[Objective] The aim was to research the effect of concentration of NO-3-N on root vigor and rhizosphere pH of winter wheat seedlings under water culture.[Method]By selecting Hoagland's nutritional solution as cultural medium and winter wheat as material of experiment,on the basis,testing root vigor,nutrient solution NO-3 and change of pH values under the different level of disposal,such as high(containing NO-3-N 15 mmol/L),medium(containing NO-3-N 7.5 mmol/L)and lower(containing NO-3-N 2.5 mmol/L).[Result]The results of this research showed that the effect of different nitrogen level on the wastage of nutrient solution NO-3,the changes of pH values and root vigor is obvious under the hydroponics condition.[Conclusion]Though NO-3 is a safe nitrogen sources when it was supplied to plants too more,it would restrain assimilation on nitrate nitrogen farther,but when it was supplied to plants too little,it would lead to deficiency of NO-3 that plants uptake and decrease of root activity,so it isn't useful to wheat young seedling to absorb nitrogen nutrition.
基金Supported by Jiangxi Natural Science Fund Program(2009GQN0068)~~
文摘[Objective] The aim was to study the characteristics of microbial community in the rhizosphere soil of Dongxiang wild rice(Oryza rufipogon Griff.).[Method] The microbial biomass carbon and nitrogen was estimated by the chloroform fumigation extraction method;the microbial community composition and Nitrogen cycling microbial functional groups were investigated by the Dilution plate culture method and the most probable number methods respectively.[Result] The microbial biomass carbon and nitrogen,in rhizosphere soil of Dongxiang Wild Rice was 83.02±18.23 mg/kg soil and 16.98±2.54 mg/kg soil,which was lower than that of ordinary cultivated rice;The relationship between the number of culturable microbial groups was bacteriaactinomycetesfungi,and the Nitrogen cycling microbial physiological groups was as the following:ammonifying bacteriaaerobic azotobacteriadenitrobacteriaanaerobic azotobacterianitrobacterianitrosobacteria.[Conclusion] The microbial community in the rhizosphere soil of Dongxiang Wild Rice was different from that of the ordinary cultivated rice.
基金This study was supported by National Natural Science Foundation of China (Grant No. 30130160) and the Quick Response of Basic Research Supporting Program (Grant No.2102)
文摘Soil samples were taken from rhizosphere zone and off-rhizosphere zone of ash (Fraxinus mandshurica Rupr.) and larch (Larix olgensis Henry) in mixed and monoculture stands, and the nutrient concentration of N, P, and K was analyzed to study the effect of nutrients variation on yield improvement in the mixed stand. The result showed that: 1) The stand level total soil N concentration and available N in the mixed stand was similar to that in the monoculture stand of ash, but higher than that in monoculture stand of larch. The total N and available N concentration in rhizosphere soil of ash in the mixed stand was similar to that in the monoculture stand of ash, but the available N concentration in rhizosphere of larch in mixed stand was much higher than in its monoculture. 2) The stand level total P, total K concentration in the mixed stand was similar to that in monocul-ture stands of both species, but available P and K was more concentrated in the mixed stand than in the monoculture stands of ash. The rhizosphere available P and K of ash in the mixed stand was 44.1% and 13.5% (for the 9-yr-old stands) and 79.6% and 25.6% (for the 21-yr-old stands) higher than that in its monoculture. The improvement of soil P and K availability in the mixed stand is concluded.
基金supported by the National Technology R&D Program of China (2013BAD07B07, 2015BAD26B01 and 2018YFD0300701)
文摘Soil management practices affect rhizosphere microorganisms and enzyme activities, which in turn influence soil ecosystem processes. The objective of this study was to explore the effects of different nitrogen application rates on wheat(Triticum aestivum L.) rhizosphere soil microorganisms and enzyme activities, and their temporal variations in relation to soil fertility under supplemental irrigation conditions in a fluvo-aquic region. For this, we established a split-plot experiment for two consecutive years(2014–2015 and 2015–2016) in the field with three levels of soil moisture: water deficit to no irrigation(W1), medium irrigation to(70±5)% of soil relative moisture after jointing stage(W2), and adequate irrigation to(80±5)% of soil relative moisture after jointing stage(W3);and three levels of nitrogen: 0 kg ha^–1(N1), 195 kg ha^–1(N2) and 270 kg ha^–1(N3). Results showed that irrigation and nitrogen application significantly increased rhizosphere microorganisms and enzyme activities. Soil microbiological properties showed different trends in response to N level;the highest values of bacteria, protease, catalase and phosphatase appeared in N2, while the highest levels of actinobacteria, fungi and urease were observed in N3. In addition, these items performed best under medium irrigation(W2) relative to W1 and W3;particularly the maximum microorganism(bacteria, actinobacteria and fungi) amounts appeared at W2, 5.37×10^7 and 6.35×10^7 CFUs g^–1 higher than those at W3 in 2014–2015 and 2015–2016, respectively;and these changes were similar in both growing seasons. Microbe-related parameters fluctuated over time but their seasonality did not hamper the irrigation and fertilization-induced effects. Further, the highest grain yields of 13 309.2 and 12 885.7 kg ha^–1 were both obtained at W2 N2 in 2014–2015 and 2015–2016, respectively. The selected properties, soil microorganisms and enzymes, were significantly correlated with wheat yield and proved to be valuable indicators of soil quality. These results clearly demonstrated that the combined treatment(W2 N2) significantly improved soil microbiological properties, soil fertility and wheat yield on the Huanghuai Plain, China.
基金the National Natural Science Foundation of China (No.20777004).
文摘To understand the role of ectomycorrhizas in improving the tolerance of its host to excessive heavy metals in soil, this study was conducted to exam the patterns of four fractions (the exchangeable, the carbonate-bound, the Fe-Mn oxide- bound and the organically bound) of both Cu and Cd in the rhizosphere of Chinese pine (Pinus tabulaeformis) seedlings grown in excessive Cu and Cd environment. The results showed that the speciation of Cu and Cd in the rhizosphere was significantly influenced by inoculation of ectomycorrhizal fungus Boletus edulis. Compared to the rhizosphere, the content of exchangeable Cu slightly decreased in the mycorrhizosphere of the seedlings grown in 166 and 400 mg kg-1 Cu contaminated soil, whereas the exchangeable Cd in the mycorrhizosphere decreased remarkably to only 33% and to 60% that of the rhizosphere at 0.75 and 1.50 mg kg-1 Cd levels, respectively. These indicate the potential capacity of mycorrhizas to alleviate the damage of heavy metals to the host plants by reducing the bioavailability of heavy metals in soil. Distribution of the 4 tested fractions of Cu and Cd at different contamination levels showed that there was a strong tendency of changing from loosely associated fractions to strongly associated fractions in the mycorrhizosphere. The most stable Cd fraction, organically bound Cd, was significantly larger in the mycorrhizosphere than in the rhizosphere at different Cd contamination levels. This phenomenon was also observed for Cu but the difference was not statistically significant.