期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
双金属RhAu_x/γ-Al_2O_3催化剂的CO催化氧化反应活性
1
作者 姚红华 訾学红 +1 位作者 戴洪兴 何洪 《工业催化》 CAS 2011年第8期16-23,共8页
采用超声辅助膜扩散法制备了双金属RhAu/γ-Al_2O_3催化剂(x=0、0.25、0.5、1.0、2.0和4.0),研究了该系列催化剂的CO催化氧化反应活性。采用程序升温还原(TPR)、X射线衍射(XRD)、原位DRIFTS和电子透射显微镜(TEM)等技术对催化剂的结构... 采用超声辅助膜扩散法制备了双金属RhAu/γ-Al_2O_3催化剂(x=0、0.25、0.5、1.0、2.0和4.0),研究了该系列催化剂的CO催化氧化反应活性。采用程序升温还原(TPR)、X射线衍射(XRD)、原位DRIFTS和电子透射显微镜(TEM)等技术对催化剂的结构、形貌和物化性能进行了表征。结果表明,双金属RhAu/γ-Al_2O_3催化剂具有良好的CO催化氧化活性,催化活性的变化规律为:RhAu_4/γ-Al_2O_3≈RhAu_2/γ-Al_2O_3≈RhAu/γ-Al_2O_3≈RhAu_0.5/γ-Al_2O_3>RhAu0.25/γ--Al_2O_3>Rh/γ-Al_2O_3>Au/γ-Al_2O_3。在RhAux/γ-Al_2O_3催化剂体系中,Au对于催化剂上RhAu_x金属纳米粒子的粒度分布、氧化还原性能、CO吸附行为和CO催化氧化活性具有重要的调节作用。Rh与Au原子之间存在一定的相互作用,经过H_2还原处理,催化剂表面上的RhAu_x金属纳米粒子发生Au表面偏析,形成一定的壳核结构,覆盖了部分金属Rh的活性中心,使还原后的RhAu_x/γ-Al_2O_3催化剂活性降低。 展开更多
关键词 催化化学 双金属rhau 催化剂 Au表面偏析 CO吸附 CO催化氧化
在线阅读 下载PDF
To unwind the biological knots:The DNA/RNA G-quadruplex resolvase RHAU(DHX36)in development and disease
2
作者 Chensi Yang Jie Yao +3 位作者 Huijuan Yi Xinyi Huang Wukui Zhao Zhongzhou Yang 《Animal Models and Experimental Medicine》 CAS CSCD 2022年第6期542-549,共8页
The G-quadruplex(G4)sequences are short fragments of 4-i nterval triple guanine(G)with frequent and ubiquitous distribution in the genome and RNA transcripts.The G4sequences are usually folded into secondary“knot”st... The G-quadruplex(G4)sequences are short fragments of 4-i nterval triple guanine(G)with frequent and ubiquitous distribution in the genome and RNA transcripts.The G4sequences are usually folded into secondary“knot”structure via Hoogsteen hydrogen bond to exert negative regulation on a variety of biological processes,including DNA replication and transcription,mRNA translation,and telomere maintenance.Recent structural biological and mouse genetics studies have demonstrated that RHAU(DHX36)can bind and unwind the G4“knots”to modulate embryonic development and postnatal organ function.Deficiency of RHAU gives rise to embryonic lethality,impaired organogenesis,and organ dysfunction.These studies uncovered the pivotal G4 resolvase function of RHAU to release the G4 barrier,which plays fundamental roles in development and physiological homeostasis.This review discusses the latest advancements and findings in deciphering RHAU functions using animal models. 展开更多
关键词 development and disease DHX36 G-QUADRUPLEX rhau
暂未订购
Enhancement of CH_(3)CO^(*) adsorption by editing d-orbital states of Pd to boost C–C bond cleavage of ethanol eletrooxidation
3
作者 Yuchen Qin Fengqi Wang +11 位作者 Pei Liu Jinyu Ye Qian Wang Yao Wang Guangce Jiang Lijie Liu Pengfang Zhang Xiaobiao Liu Xin Zheng Yunlai Ren Junjun Li Zhicheng Zhang 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第2期696-704,共9页
Improving the complete ethanol electrooxidation on Pd-based catalysts in alkaline media has drawn widely attention due to the high mass energy density.However,the weak adsorption energy of CH_(3)CO^(*) on Pd restricts... Improving the complete ethanol electrooxidation on Pd-based catalysts in alkaline media has drawn widely attention due to the high mass energy density.However,the weak adsorption energy of CH_(3)CO^(*) on Pd restricts the C–C bond cleavage.Inspired by the molecular orbital theory,we proposed the d-state-editing strategy to construct more unoccupied d-states of Pd for the enhanced interaction with CH_(3)CO^(*) to break C–C bonds.As expected,the reduced number of e_g electrons and more unoccupied d-states of Pd successfully formed on as-prepared porous Rh Au–Pd Cu nanosheets(PNSs).Theoretical calculations show that the optimized d-states of Rh Au–Pd Cu PNS can effectively improve the adsorption of CH_(3)CO^(*) and drastically reduce the energy barrier of C–C bond cleavage,thus boosting the complete oxidation of ethanol.The charge ratio of C_1 pathway on Rh Au–Pd Cu PNSs is 51.5%,more than 2 times higher than that of Pd NSs.Our finding provides an innovative perspective for the design of highly-efficient noble-based electrocatalysts. 展开更多
关键词 C–C bond cleavage CH_(3)CO^(*)adsorption unoccupied d-states ethanol oxidation reaction rhau–PdCu porous nanosheets
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部