A piggyback pipeline is a special configuration of offshore pipelines for offshore oil and gas exploration and is characterized by the coupling of a large-diameter pipe with a small-diameter pipe. This study conducts ...A piggyback pipeline is a special configuration of offshore pipelines for offshore oil and gas exploration and is characterized by the coupling of a large-diameter pipe with a small-diameter pipe. This study conducts a numerical investigation of the transverse VIV characteristics of a piggyback pipeline at low Reynolds numbers, as the vortex shedding modes and vibration characteristics can be accurately represented under laminar flow conditions with minimal computational expense. The effects of influential factors, such as the mass ratio, position angle of the small pipe relative to the main pipe, and Reynolds number, on the VIV amplitude, frequency, vibration center, and mean lift coefficient are specifically examined. The results indicate that the mass ratio has a limited effect on the maximum VIV amplitude. However, as the mass ratio decreases, the lock-in region expands, and the vibration center of the piggyback pipeline deviates further from its original position. The VIV amplitude is minimized, and the lock-in region is the narrowest at a position angle of 45°, whereas the vibration center reaches its maximum displacement at a position angle of 135°. As the Reynolds number increases, the VIV amplitude slightly increases, accompanied by convergence of the vibration center toward its initial position. The mean lift coefficient and wake vortices are also analyzed to establish a connection with the vibration characteristics of the piggyback pipeline. The optimal configuration of the piggyback pipeline is also proposed on the basis of the present numerical results.展开更多
The effects of Reynolds number on the compressor efficiency are investigated by tests on three highlyloaded 10-stage axial compressors.The tests are conducted by adjusting the inlet total pressure,and thus different R...The effects of Reynolds number on the compressor efficiency are investigated by tests on three highlyloaded 10-stage axial compressors.The tests are conducted by adjusting the inlet total pressure,and thus different Reynolds numbers are obtained.The results indicate that the compressor efficiency decreases when the Reynolds number decreases.Based on the test results,reasonable correlations between the Reynolds number and compressor efficiency for each of the three compressors are obtained.The comparison between the test result-deduced correlations and Wassell correlations indicates that the effects of Reynolds number on the efficiency predicted by the Wassell correlations are less than those obtained by the test result-deduced correlations.Owing to the complex loss models and flow behavior in highly-loaded multi-stage compressors,additional influence factors,including the tip clearance and the compressor inlet duct design,should be considered for performance correlations.Nevertheless,the Wassell correlations are valid for the tendency prediction of performance changes relating to the Reynolds number,while accurate correlations still largely depend on the specific test results.展开更多
A two-dimensional(2-D) incompressible plane jet is investigated using the lattice Boltzmann method(LBM) for low Reynolds numbers of 42 and 65 based on the jet-exit-width and the maximum jet-exit-velocity. The resu...A two-dimensional(2-D) incompressible plane jet is investigated using the lattice Boltzmann method(LBM) for low Reynolds numbers of 42 and 65 based on the jet-exit-width and the maximum jet-exit-velocity. The results show that the mean centerline velocity decays as x-1/3 and the jet spreads as x2/3 in the self-similar region, which are consistent with the theoretical predictions and the experimental data. The time histories and PSD analyses of the instantaneous centerline velocities indicate the periodic behavior and the interaction between periodic components of velocities should not be neglected in the far field region, although it is invisible in the near field region.展开更多
Reynolds推出了Reynolds方程以来,人们花费大量精力研究方程的封闭性。Taylor首先引入相关概念并提出各态历经假说。Prandtl提出著名的混合长度理论:Karman给出混合长度的另外形式。周培源(Chou P Y)对各向同性湍流做了大量研究工作,获...Reynolds推出了Reynolds方程以来,人们花费大量精力研究方程的封闭性。Taylor首先引入相关概念并提出各态历经假说。Prandtl提出著名的混合长度理论:Karman给出混合长度的另外形式。周培源(Chou P Y)对各向同性湍流做了大量研究工作,获得了满意的结果。最近高歌用侧偏系综平均取代Reynolds平均。展开更多
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 52371289 and 51979192)。
文摘A piggyback pipeline is a special configuration of offshore pipelines for offshore oil and gas exploration and is characterized by the coupling of a large-diameter pipe with a small-diameter pipe. This study conducts a numerical investigation of the transverse VIV characteristics of a piggyback pipeline at low Reynolds numbers, as the vortex shedding modes and vibration characteristics can be accurately represented under laminar flow conditions with minimal computational expense. The effects of influential factors, such as the mass ratio, position angle of the small pipe relative to the main pipe, and Reynolds number, on the VIV amplitude, frequency, vibration center, and mean lift coefficient are specifically examined. The results indicate that the mass ratio has a limited effect on the maximum VIV amplitude. However, as the mass ratio decreases, the lock-in region expands, and the vibration center of the piggyback pipeline deviates further from its original position. The VIV amplitude is minimized, and the lock-in region is the narrowest at a position angle of 45°, whereas the vibration center reaches its maximum displacement at a position angle of 135°. As the Reynolds number increases, the VIV amplitude slightly increases, accompanied by convergence of the vibration center toward its initial position. The mean lift coefficient and wake vortices are also analyzed to establish a connection with the vibration characteristics of the piggyback pipeline. The optimal configuration of the piggyback pipeline is also proposed on the basis of the present numerical results.
文摘The effects of Reynolds number on the compressor efficiency are investigated by tests on three highlyloaded 10-stage axial compressors.The tests are conducted by adjusting the inlet total pressure,and thus different Reynolds numbers are obtained.The results indicate that the compressor efficiency decreases when the Reynolds number decreases.Based on the test results,reasonable correlations between the Reynolds number and compressor efficiency for each of the three compressors are obtained.The comparison between the test result-deduced correlations and Wassell correlations indicates that the effects of Reynolds number on the efficiency predicted by the Wassell correlations are less than those obtained by the test result-deduced correlations.Owing to the complex loss models and flow behavior in highly-loaded multi-stage compressors,additional influence factors,including the tip clearance and the compressor inlet duct design,should be considered for performance correlations.Nevertheless,the Wassell correlations are valid for the tendency prediction of performance changes relating to the Reynolds number,while accurate correlations still largely depend on the specific test results.
基金Supported by the National Nature Science Foundation of China(10472046)the Scientific Innova-tion Research of College Graduate in Jiangsu Province(CX08B-035Z)the Innovation and Excellence Foundation of Doctoral Dissertation of Nanjing University of Aeronautics and Astronautics(BCXJ08-01)~~
文摘A two-dimensional(2-D) incompressible plane jet is investigated using the lattice Boltzmann method(LBM) for low Reynolds numbers of 42 and 65 based on the jet-exit-width and the maximum jet-exit-velocity. The results show that the mean centerline velocity decays as x-1/3 and the jet spreads as x2/3 in the self-similar region, which are consistent with the theoretical predictions and the experimental data. The time histories and PSD analyses of the instantaneous centerline velocities indicate the periodic behavior and the interaction between periodic components of velocities should not be neglected in the far field region, although it is invisible in the near field region.
文摘Reynolds推出了Reynolds方程以来,人们花费大量精力研究方程的封闭性。Taylor首先引入相关概念并提出各态历经假说。Prandtl提出著名的混合长度理论:Karman给出混合长度的另外形式。周培源(Chou P Y)对各向同性湍流做了大量研究工作,获得了满意的结果。最近高歌用侧偏系综平均取代Reynolds平均。