Vegetation restoration is a critical strategy for mitigating debris flow hazards by stabilizing slopes and modifying hydrological processes.Effective planning of priority restoration areas is particularly essential in...Vegetation restoration is a critical strategy for mitigating debris flow hazards by stabilizing slopes and modifying hydrological processes.Effective planning of priority restoration areas is particularly essential in dry-hot valley regions,where extreme hydrothermal conditions pose significant challenges.This study presents a novel framework that integrates microclimatic variables,such as temperature lapse rates,to enhance the spatial precision of revegetation efforts.The Reshuihe watershed in Southwest China,a representative dry-hot valley,was chosen as the study area.By analyzing hourly temperature and rainfall across an elevation gradient,a quadratic relationship between temperature lapse rates and weak rainfall events was identified,underscoring the role of microclimatic processes in influencing rainfall distribution and plant-available water.Rainfall peaks were observed when the temperature lapse rate was approximately 4.5°C/km.This relationship was incorporated into a cost-based restoration framework using the Marxan model,optimizing the spatial allocation of priority areas for revegetation.Results demonstrated that integrating microclimatic variables significantly improved the effectiveness of revegetation strategies,particularly for reducing debris flow risks.The lowest restoration costs were observed between elevations of 3200 m and 3300 m,where strong correlations between temperature lapse rates and rainfall were recorded.Priority restoration areas covered 41 km^(2),targeting zones with high debris flow risks.These findings highlight the value of incorporating microclimatic data into revegetation planning,enabling cost-effective and ecologically sustainable hazard mitigation in regions vulnerable to hydrological hazards.展开更多
Field investigations and laboratory analysis were conducted to study the characteristics of soil water-stable aggregates during vegetation rehabilitation in typical grassland soils of the hilly-gullied loess area. The...Field investigations and laboratory analysis were conducted to study the characteristics of soil water-stable aggregates during vegetation rehabilitation in typical grassland soils of the hilly-gullied loess area. The relationship between water- stable aggregates and other soil properties was analyzed using canonical correlation analysis and principal component analysis. The results show that during the natural revegetation, the aggregates 〉 5 mm dominated and constituted between 50% and 80% of the total soil water-stable aggregates in most of the soil layers. The 2-5 mm aggregate class was the second main component. The mean value of water-stable aggregates 〉 5 mm within the 0-2 m soil profile under different plant communities decreased in the following order: Stipa grandis 〉 Stipa bungeana Trin. 〉 Artemisia sacrorum Ledeb. 〉 Thymus mongolicus Ronn. 〉 Hierochloe odorata (L.) Beauv. Clay, organic matter, and total N were the key factors that influenced the water stability of the aggregates. Total N and organic matter were the main factors that affected the water stability of the aggregates 〉 5 mm and 0.5-1 mm in size. The contents of Fe2O3, Al2O3, and physical clay (〈 0.01 mm) were the main factors which affected the water stability of the 1-2 and 0.25-0.5 mm aggregates.展开更多
The dry-hot valley of the Jinsha River is one of the typical eco-fragile areas in Southwest China, as well as a focus of revegetation study in the upper and middle reaches of the Changjiang River. Due to its extremely...The dry-hot valley of the Jinsha River is one of the typical eco-fragile areas in Southwest China, as well as a focus of revegetation study in the upper and middle reaches of the Changjiang River. Due to its extremely dry and hot climate, severely degraded vegetation and the intense soil and water loss, there are extreme difficulties in vegetation restoration in this area and no great breakthrough has ever been achieved on studies of revegetation over the last several decades. Through over ten years’ research conducted in the typical areas-the Yuanmou dry-hot valley, the authors found that the lithologic property is one of the crucial factors determining soil moisture conditions and vegetation types in the dry-hot valley, and the rainfall infiltration capability is also one of the key factors affecting the tree growth. Then the revegetation zoning based on different slopes was conducted and revegetation patterns for different zones were proposed.展开更多
Bauxite residue(BR),a by-product of the industrial production of alumina,has raised environmental concerns in the last decades,due to the presence of high amounts of alkali and various heavy metal ions.Limited studies...Bauxite residue(BR),a by-product of the industrial production of alumina,has raised environmental concerns in the last decades,due to the presence of high amounts of alkali and various heavy metal ions.Limited studies on the application of abandoned BR with massive consumption have been reported.In this study,the possibility of the revegetation using ryegrass growing on BR was discussed mainly through the growth indications and transfer of heavy metal ions in BR and plants.In the pot trails,ryegrass was seeded on BR,de-alkali BR,with(DBRO)or without(DBR)organic fertilizer,respectively.The results indicated that the remediation of bauxite residue can be achieved through de-alkali with acid neutralization.Elemental analysis indicated that the elements,except for Fe,Mn and Pb,were stable in plant roots,and ryegrass could hardly absorb Cd.But,some heavy metals such as Cu enriched in plants,which should be noted in revegetation on bauxite residue.展开更多
Cape Dyer (DYE-M), located on the easternmost point of Baffin Island, is a former DEW line radar station built in 1956-57 which was upgraded in 1993 as part of the current North Warning System. Environmental studies i...Cape Dyer (DYE-M), located on the easternmost point of Baffin Island, is a former DEW line radar station built in 1956-57 which was upgraded in 1993 as part of the current North Warning System. Environmental studies in the late 1990s and early 2000s determined that extensive soil contamination existed across the site, and excavation of six landfills and subsequent reshaping of the area in 2008 disturbed approximately 19,700 m2. A four-year pilot project was conducted between 2009 and 2012 to investigate feasibility of, and determine methods to, accelerate revegetation of the disturbed area through assisted seed dispersal of native and non native species and selective transplantation of slow-growing shrub species. Prior to revegetation efforts, plant surveys conducted in July 2009 determined that 15 species were present in the undisturbed areas, of which Salix arctica (~11%), Vaccinium uliginosum L. (~8%), and Empetrum nigrum L. (~5%) were the predominant species. A total of 14 species (three new) were observed growing on the disturbed areas between 2010 and 2012. The majority of Lolium multiflorum (annual ryegrass) seeds planted as a nurse species in 2009 grew in 2010, but most were stunted and only observed in furrows or sheltered areas at a low density. Salix arctica Pall. (willow) cuttings planted in “islands” of 20-30 cuttings in fall 2009 had a three-year survival rate of 82%, while a second set of cuttings planted in fall 2011 had a one-year survival rate of 93%. Visual observations indicate that patches of new vegetation are becoming more predominant on the disturbed area, especially around the willow islands, indicating the importance of microtopography for successful reclamation in arctic environments. Monitoring over ten or more years will be required to determine the long term success of this project.展开更多
Reclamation and revegetation of a coal mine spoils with various revegetation models utilizing the mycorrhizal technology were studied. The models with different combination of plant species were designed to test the h...Reclamation and revegetation of a coal mine spoils with various revegetation models utilizing the mycorrhizal technology were studied. The models with different combination of plant species were designed to test the hypothesis of speedy revegetation. Root colonization and spore density of arbuscular mycorrhizae (AM) were lowest in plants seeded directly on slopes of the overburden (coal mine dump). At flat surfaces, the mycorrhizal colonization in plant species was higher than that observed at slopes. In other revegetation models, i.e., tree monoculture, tree monoculture + crop species (agroforestry), and two strata plantations (combination of different plant species), maximum AM colonization was recorded for tree species grown along with crop species. This was followed by two strata plantations and tree monoculture. In two strata plantations three categories of AM associations were recognized: 1) every plant in the combination, possessed high mycorrhizal association, 2) only one plant in the combination possessed high mycorrhizal association, and 3) none of the plants in the combination possessed high mycorrhizal association. Azadirachta indica, Pongamia pinnata, Leucaena leucocephala and Acacia catechu were most effective in catching mycorrhizae, and can be used as the effective tool in rehabilitation of the degraded ecosystems.展开更多
Effective vegetation reconstruction plays a vital role in the restoration of desert ecosystems.However,in reconstruction of different vegetation types,the community characteristics,assembly processes,and functions of ...Effective vegetation reconstruction plays a vital role in the restoration of desert ecosystems.However,in reconstruction of different vegetation types,the community characteristics,assembly processes,and functions of different soil microbial taxa under environmental changes are still disputed,which limits the understanding of the sustainability of desert restoration.Hence,we investigated the soil microbial community characteristics and functional attributes of grassland desert(GD),desert steppe(DS),typical steppe(TS),and artificial forest(AF)in the Mu Us Desert,China.Our findings confirmed the geographical conservation of soil microbial composition but highlighted decreased microbial diversity in TS.Meanwhile,the abundance of rare taxa and microbial community stability in TS improved.Heterogeneous and homogeneous selection determined the assembly of rare and abundant bacterial taxa,respectively,with both being significantly influenced by soil moisture.In contrast,fungal communities displayed stochastic processes and exhibited sensitivity to soil nutrient conditions.Furthermore,our investigation revealed a noteworthy augmentation in bacterial metabolic functionality in TS,aligning with improved vegetation restoration and the assemblage of abundant bacterial taxa.However,within nutrient-limited soils(GD,DS,and AF),the assembly dynamics of rare fungal taxa assumed a prominent role in augmenting their metabolic capacity and adaptability to desert ecosystems.These results highlighted the variations in the assembly processes and metabolic functions of soil microorganisms during vegetation reestablishment and provided corresponding theoretical support for anthropogenic revegetation of desert ecosystems.展开更多
The abandonment of rural activities in the Mediterranean mid-mountains has led to the activation of revegetation processes,as well as the subsequent implementation of various management measures to mitigate the associ...The abandonment of rural activities in the Mediterranean mid-mountains has led to the activation of revegetation processes,as well as the subsequent implementation of various management measures to mitigate the associated ecosystem disservices.Focusing on soil environment and its growing importance in a climate change scenario,it is of great interest to study how land management and landscape changes can affect,not only the soil carbon storage process,but also its dynamics.A study was conducted in La Rioja(Iberian System,Spain),comparing three post-abandonment management strategies:secondary succession,forest management,and shrub clearing and extensive grazing.These strategies were analysed in two types of soil environments(acid and alkaline)and for two depth ranges(0–20 cm and 20–40 cm).Laboratory analyses were performed on aggregate stability and soil organic carbon fractionation with regard to three aggregate sizes(<2 mm,2–5 mm,>5 mm)and three density fractions(free labile,occluded,and heavy fraction).The results showed that:1)SOC content in aggregates<2 mm(relative to total SOC)increases with shrub clearing and grazing strategy in acid environments;2)aggregate stability benefits from the implementation of afforestation in acid environments and from all three study strategies in alkaline ones;3)in acid environments,the percentage of labile fractions(free and occluded)in afforested sites is significantly higher compared with shrubland,while in alkaline environments,recalcitrant SOC is significantly higher in shrub clearing sites.Thus,land management should be focused on SOC storage after land abandonment in Mediterranean mountainous environments.展开更多
In recent years,intensive human activities have increased the intensity of desertification,driving continual desertification process of peripheral meadows.To investigate the effects of restoration on soil microbial co...In recent years,intensive human activities have increased the intensity of desertification,driving continual desertification process of peripheral meadows.To investigate the effects of restoration on soil microbial communities,we analyzed vegetation-soil relationships in the Hulun Buir Sandy Land,northern China.Through the use of high-throughput sequencing,we examined the structure and diversity in the bacterial and fungal communities within the 0-20 cm soil layer after 9-15 a of restoration.Different slope positions were analyzed and spatial heterogeneity was assessed.The results showed progressive improvements in soil properties and vegetation with the increase of restoration duration,and the following order was as follows:bottom slope>middle slope>crest slope.During the restoration in the Hulun Buir Sandy Land,the bacterial communities were dominated by Proteobacteria,Actinobacteria,and Acidobacteria,whereas the fungal communities were dominated by Ascomycota and Basidiomycota.Eutrophic bacterial abundance increased with the restoration duration,whereas oligotrophic bacterial and fungal abundance levels decreased.The soil bacterial abundance significantly increased with the increasing restoration duration,whereas the fungal diversity decreased after 11 a of restoration,except that at the crest slope.Redundancy analysis showed that pH,soil moisture content,total nitrogen,and vegetation-related factors affected the bacterial community structure(45.43%of the total variance explained).Canonical correspondence analysis indicated that pH,total phosphorus,and vegetation-related factors shaped the bacterial community structure(31.82%of the total variance explained).Structural equation modeling highlighted greater bacterial responses(R^(2)=0.49-0.79)to changes in environmental factors than those of fungi(R^(2)=0.20-0.48).The soil bacterial community was driven mainly by pH,soil moisture content,electrical conductivity,plant coverage,and litter dry weight.The abundance and diversity of the soil fungal community were mainly driven by plant coverage,litter dry weight,and herbaceous aboveground biomass,while there was no significant correlation between the soil fungal community structure and environmental factors.These findings highlighted divergent microbial succession patterns and environmental sensitivities during sandy grassland restoration.展开更多
A field survey of metal concentrations and mycorrhizal status of plants growing on copper mine tailings was conducted in Anhui Province, China. Available phosphorus and organic matter in the tailings were very low. Hi...A field survey of metal concentrations and mycorrhizal status of plants growing on copper mine tailings was conducted in Anhui Province, China. Available phosphorus and organic matter in the tailings were very low. High concentrations of Pb, Zn, As and Cd as well as Cu were observed on some sites. The dominant plants growing on mine tailings belonged to the families Gramineae and Compositae, and the most widely distributed plant species were Imperata cylin-drica, Cynodon dactylon and Paspalum distichum. Coreopsis drummondii also grew well on the arid sites but not on wet sites. Very low or zero arbuscular mycorrhizal (AM) fungal colonization was observed in most of the plants, but extensive mycorrhizal colonization was recorded in the roots of C. drummondii and C. dactylon. Metal concentrations in plant tissues indicated that /. cylindrica and P. distichum utilized avoidance mechanisms to survive at high metal concentrations. The investigation suggests that remediation and revegetation of heavy metal contaminated sites might be facilitated by selection of tolerant plant species. Isolation of tolerant AM fungi may also be warranted.展开更多
Focusing on the impact of various vegetation management modes on sandy grassland's soil property and vegetation ecological restoration of farming-pastoral ecotone,field surveys and lab analysis were conducted to s...Focusing on the impact of various vegetation management modes on sandy grassland's soil property and vegetation ecological restoration of farming-pastoral ecotone,field surveys and lab analysis were conducted to study the correlation between the characteristics of soil properties and vegetation ecological restoration under four different vegetation management modes,i.e.,unenclosed natural restoration,enclosed natural restoration,unenclosed artificial restoration and enclosed artificial restoration,which have a restoration history of 15 years in the southern edge of the degraded sandy land area of Mu Us Desert in Leilongwan Town,Hengshan County,Shaanxi Province.After 15 years of vegetation restoration,these four vegetation management modes all proved to be useful for improving the vegetation ecological restoration and the soil quality of the degraded sandy grassland not only by enhancing the aboveground vegetation height,coverage and biomass but also increasing the content of soil clay,organic matter,CEC,total nitrogen,available nutrient while reducing soil bulk density.The vegetation ecological restoration effect and soil quality under enclosed or artificial restoration management are better than those of unenclosed or natural restoration management;and the most satisfactory vegetation ecological restoration effects and soil quality can be achieved under the integration of enclosed and artificial restoration management.Severely degraded sandy grassland,during the vegetation restoration,would form an interactional coordinating relationship with the vegetation and soil properties.Vegetation properties as height,coverage and biomass have significant positive correlations with organic matter,CEC,total nitrogen and available nitrogen,phosphorus,and potassium contained in soil.Only the adoption of the strict enclosure system,implementation of aggressive artificial vegetation restoration measures and the realization of the regurgitation-feeding policy of industry towards husbandry can guarantee the gradual restoration of degraded sandy grassland in farming-pastoral ecotone,so that it can continue to play the role of ecological protective screen.展开更多
The waste,subgrade ROM and fine dumps of iron ore mines are characterized by high rock fragment contents,low moisture retention capacity,higher bulk density,low nutrients,lower pH and elevated metal concentrations.Use...The waste,subgrade ROM and fine dumps of iron ore mines are characterized by high rock fragment contents,low moisture retention capacity,higher bulk density,low nutrients,lower pH and elevated metal concentrations.Use of suitable revegetation programme,that require the selection of right type of plants to be used vis-à-vis the site condition and characteristics,can enhance the long-term stability,both mechanical and ecological,of dumps(waste,subgrade ROM and fines)through providing vegetative cover to control soil erosion and gully formation,consolidation of dump top and side surfaces,binding the loose particles through intricate roof system,etc.This paper overviews the roles of revegetation programme that can be used where vegetation is considered to be the long-term answer to slope protection and erosion control.Various revegetation processes like Coir matting,lemon grass,vetiver grass and indigenous plant may find a wide range of usage in iron ore mines for dump stabilization.The Miyawaki method of plantation is more effective than the conventional method of plantation.This will lead to co-existence of plants,and as a matter of fact each plant draws from the other vital nutrients and they grow to become strong and healthy.The Miyawaki plantation technique aims at“survival of the fittest”,and the area which undergone such plantation has an ecology of their own.The indigenous plant has good binding capacity and helps to control soil erosion as well as improve the dump stability.These indigenous plant species include Shorea robusta(Sal),Dalbergia sisoo(Shisham),Karanj and Azadirachta(Neem).The growth of indigenous plants is dependent upon the soil quality as well as the organic matter of the dump material.The leaf debris plays an important role for improving the organic matter of the dump material to successfully implement the revegetation programme.展开更多
Increasing greening of planet Earth to slow down the rise of atmospheric CO_(2) concentrations is certainly desirable;however,its consequences on water resources are less affirmative and thus are a matter of wide conc...Increasing greening of planet Earth to slow down the rise of atmospheric CO_(2) concentrations is certainly desirable;however,its consequences on water resources are less affirmative and thus are a matter of wide concern.China,as the largest and most successful country of the world in terms of artificial revegetation,is naturally the focus of the concerns and warnings.Based on previous studies,we analyzed the mechanism for the effects of climate and watershed characteristics on water resources,explained various hydrological results and phenomena,and considered the ways in which water consumption by artificial revegetation projects can be reduced.Moreover,some guidelines are suggested for artificial revegetation at watershed scale with consideration of water resource sustainability.The findings of this study highlight the need for more top-down approaches when studying the mechanism of"forest and water".展开更多
With the support by the National Natural Science Foundation of China and the Major Programme of High Resolution Earth Observation System,the research team led by Prof.Fu Bojie(傅伯杰)at the State Key Laboratory of Urb...With the support by the National Natural Science Foundation of China and the Major Programme of High Resolution Earth Observation System,the research team led by Prof.Fu Bojie(傅伯杰)at the State Key Laboratory of Urban and Regional Ecology,Research Center for Eco-Environmental Sciences of Chinese Academy of Sciences,cooperated with the researchers from Peking University and the Laboratoire展开更多
A greenhouse pot experiment was conducted to evaluate the potential of selected woody plants for revegetation in copper (Cu) and lead/zinc (Pb/Zn) mine tailing areas. Five woody species (Amorpha fruticosa Linn, V...A greenhouse pot experiment was conducted to evaluate the potential of selected woody plants for revegetation in copper (Cu) and lead/zinc (Pb/Zn) mine tailing areas. Five woody species (Amorpha fruticosa Linn, Vitex trifolia Linn. var. simplicifolia Chum, Glochidion puberum (Linn.) Hutch, Broussonetia papyrifera, and Styrax tonkinensis) and one herbaceous species ( Sesbania cannabina Pets) were planted in Cu and Pb/Zn tailings to assess their growth, root morphology, nutrition uptake, metal accumulation, and translocation in plants. Amorpha fruticosa maintained normal growth, while the other species demonstrated stress related growth and root development. Sesbania cannabina showed the highest biomass among the plants, although it decreased by 30% in Cu tailings and 40% in Pb/Zn railings. Calculated tolerance index (TI) values suggested that A. fruticosa, an N-fixing shrub, was the most tolerant species to both tailings (TI values 0.92-1.01), while S. cannabina had a moderate TI of 0.65-0.81 and B. papyrifera was the most sensitive species, especially to Pb/Zn tailings (TI values 0.15-0.19). Despite the high concentrations of heavy metals in the mine tailings and plants roots, only a small transfer of these elements to the aboveground parts of the woody plants was evident from the low translocation factor (TF) values. Among the woody plants, V. trifolia var. simplicifolia had the highest TF values for Zn (1.32), Cu (0.78), and Pb/Zn (0.78). The results suggested that A. fruticosa and S. cannabina, which have the highest tolerance and biomass production, respectively, demonstrated the potential for tailings revegetation in southern China.展开更多
Mine tailings, waste rock piles, acid mine drainage, industrial wastewater, and sewage sludge have contaminated a vast area of cultivable and fallow lands, with a consequence of deterioration of soil and water quality...Mine tailings, waste rock piles, acid mine drainage, industrial wastewater, and sewage sludge have contaminated a vast area of cultivable and fallow lands, with a consequence of deterioration of soil and water quality and watercourses due to the erosion of contaminated soils for absence of vegetative cover. High concentrations of toxic elements, organic contaminants, acidic soils, and harsh climatic conditions have made it difficult to re-establish vegetation and produce crops there. Recently, a significant body of work has focussed on the suitability and potentiality of biochar as a soil remediation tool that increases seed emergence, soil and crop productivity, above ground biomass, and vegetation cover on mine tailings, waste rock piles, and industrial and sewage waste- contaminated soils by increasing soil nutrients and water-holding capacity, amelioration of soil acidity, and stimulation of microbial diversity and functions. This review addresses: i) the functional properties of biochar, and microbial cycling of nutrients in soil; ii) bioremediation, especially phytoremediation of mine railings, industrial waste, sewage sludge, and contaminated soil using biochar; iii) impact of biochar on reduction of acid production, acid mine drainage treatment, and geochemical dynamics in mine railings; and iv) treatment of metal and organic contaminants in soils using biochar, and restoration of degraded land.展开更多
In semi-arid region of northwestern China, underground mining subsidence often results in decreased vegetation coverage, impoverishment of soil fertility and water stress. In addition, the physical-chemical and biolog...In semi-arid region of northwestern China, underground mining subsidence often results in decreased vegetation coverage, impoverishment of soil fertility and water stress. In addition, the physical-chemical and biological properties of soil also change, resulting in more susceptible to degradation. In particular, subsidence causes disturbance of the symbioses of plant and microbe that can play a beneficial role in the establishment of vegetation communities in degraded ecosystems. The objective of this study was to evaluate the effects of revegetation with exotic arbuscular mycorrhizal fungi(AMF) inoculum on the chemical and biological properties of soil over time in mining subsidence areas. Soils were sampled at a depth up to 30 cm in the adjacent rhizosphere of Amorpha fruticose Linn. from five reclaimed vegetation communities in northwestern China. In August 2015, a field trial was set up with five historical revegetation experiments established in 2008(7-year), 2011(4-year), 2012(3-year), 2013(2-year) and 2014(1-year), respectively. Each reclamation experiment included two treatments, i.e., revegetation with exotic AMF inoculum(AMF) and non-AMF inoculum(the control). Root mycorrhizal colonization, glomalin-related soil protein(GRSP), soil organic carbon(SOC), soil nutrients, and enzyme activities were also assessed. The results showed that mycorrhizal colonization of inoculated plants increased by 33.3%–163.0% compared to that of non-inoculated plants(P<0.05). Revegetation with exotic AMF inoculum also significantly improved total GRSR(T-GRSP) and easily extracted GRSP(EE-GRSP) concentrations compared to control, besides the T-GRSP in 1-year experiment and the EE-GRSP in 2-year experiment. A significant increase in SOC content was only observed in 7-year AMF reclaimed soils compared to non-AMF reclaimed soils. Soil total N(TN), Olsen phosphorus(P) and available potassium(K) were significantly higher in inoculated soil after 1–7 years of reclamation(except for individual cases), and increased with reclamation time(besides soil Olsen P). The exotic AMF inoculum markedly increased the average soil invertase, catalase, urease and alkaline phosphatase by 23.8%, 21.3%, 18.8% and 8.6%, respectively(P<0.01), compared with the control. Root mycorrhizal colonization was positively correlated with soil parameters(SOC, TN and soil available K) and soil enzyme activities(soil invertase, catalase, urease and alkaline phosphatase) in both AMF and non-AMF reclaimed soils(P<0.05), excluding availableK in non-AMF reclaimed soils. T-GRSP(P<0.01) and EE-GRSP(P<0.05) were significantly correlated with the majority of edaphic factors, except for soil Olsen P. The positive correlation between root mycorrhizal colonization and available K was observed in AMF reclaimed soils, indicating that the AMF reclaimed soil with a high root mycorrhizal colonization could potentially accumulate available K in soils. Our findings concluded that revegetation with exotic AMF inoculum influenced soil nutrient availability and enzyme activities in the semi-arid ecosystem, suggesting that inoculating AMF can be an effective method to improve soil fertility and support restoration of vegetation communities under poor conditions like soil nutrient deficiency and drought.展开更多
Both overgrazing and climate change contribute to grassland degradation in the alpine regions of China and negatively affect soil carbon and nitrogen pools. We quantified changes in soil organic carbon (SOC) and tot...Both overgrazing and climate change contribute to grassland degradation in the alpine regions of China and negatively affect soil carbon and nitrogen pools. We quantified changes in soil organic carbon (SOC) and total nitrogen (TN) in black soil beach (BSB). We measured SOC and TN in severely degraded and non-degraded grasslands to calculate differences in carbon and nitrogen storage, and field survey results were extrapolated to the entire headwaters area of the Qinghai-Tibetan Plateau (36.3xlos krn~) to determine SOC and TN losses from these grasslands. We also evaluated changes in SOC and TN in severely degraded grasslands that were artificially re-vegetated five, seven and nine years ago. Totally 92.43 Tg C and 7.08 Tg N were lost from the BSB in the headwater area, which was approximately 50% of the original C and N soil pools. Re-vegetation of the degraded grasslands in the headwater area would result in a gain of 32.71 Tg C in the soil after five years, a loss of 5.5a Tg C after seven years and an increase of 44.15 Tg C after nine years. The TN increased by 53.09% and 59.98% after five and nine years, respectively, while it decreased by 4.92% after seven years of re-vegetation. The results indicate that C and N stocks followed a "V" shaped pattern with re- vegetation time. Understanding plant-soil interactions during succession of artificially planting grassland ecosystems is essential for developing scientifically sound management strategies for the effectively re-vegetated BSB.展开更多
Soil erosion on the Loess Plateau of China is effectively controlled due to the implementation of several ecological restoration projects that improve soil properties and reduce soil erodibility. However, few studies ...Soil erosion on the Loess Plateau of China is effectively controlled due to the implementation of several ecological restoration projects that improve soil properties and reduce soil erodibility. However, few studies have examined the effects of vegetation restoration on soil properties and erodibility of gully head in the gully regions of the Loess Plateau. The objectives of this study were to quantify the effects of vegetation restoration on soil properties and erodibility in this region. Specifically, a control site in a slope cropland and 9 sites in 3 restored land-use types (5 sites in grassland, 3 in woodland and 1 in shrubland) in the Nanxiaohegou watershed of a typical gully region on the Loess Plateau were selected, and soil and root samples were collected to assess soil properties and root characteristics. Soil erodibility factor was calculated by the Erosion Productivity Impact Calculator method. Our results revealed that vegetation restoration increased soil sand content, soil saturated hydraulic conductivity, organic matter content and mean weight diameter of water-stable aggregate but decreased soil silt and clay contents and soil disintegration rate. A significant difference in soil erodibility was observed among different vegetation restoration patterns or land-use types. Compared with cropland, soil erodibility decreased in the restored lands by 3.99% to 21.43%. The restoration patterns of Cleistogenes caespitosa K. and Artemisia sacrorum L. in the grassland showed the lowest soil erodibility and can be considered as the optimal vegetation restoration pattern for improving soil anti-erodibility of the gully heads. Additionally, the negative linear change in soil erodibility for grassland with restoration time was faster than those of woodland and shrubland. Soil erodibility was significantly correlated with soil particle size distribution, soil disintegration rate, soil saturated hydraulic conductivity, water-stable aggregate stability, organic matter content and root characteristics (including root average diameter, root length density, root surface density and root biomass density), but it showed no association with soil bulk density and soil total porosity. These findings indicate that although vegetation destruction is a short-term process, returning the soil erodibility of cropland to the level of grassland, woodland and shrubland is a long-term process (8-50 years).展开更多
Biological soil crusts are essential components of arid ecosystems. We examined the variations in microfungal communities inhabiting different biological crust types in the vicinity of the Shapotou Research Station in...Biological soil crusts are essential components of arid ecosystems. We examined the variations in microfungal communities inhabiting different biological crust types in the vicinity of the Shapotou Research Station in the Tengger Desert, China. A total of 134 species from 66 genera were isolated using the soil dilution plate method. The mycobiota of the crusts from the Tengger Desert, similar to that of the Negev Desert in Israel, was dominated by melanin-containing species with large multicellular spores. Abundance of these xeric species increased spatially with increasing xeric conditions from moss-dominated to cyanobacterial crusts. Density of microfungal isolates displayed the opposite trend and was positively correlated with chlorophyll content, indicating the possible significant influence of organic matter content and wetness duration on fungal biomass. Within a chronosequence of the localities of different periods after sand stabilization with revegetation, little variations were revealed in species composition and isolate density of the crust microfungal communities, while a tendency towards a decrease in the community diversity level with the crust age was noted Microfungal communities from stabilized localities differed from those of the natural localities in abundance of the dominant and some frequent species, and in the fluctuations of diversity characteristics between the cyanobacterial and moss-dominated crusts. The variations in mycobiotie parameters in the soil crusts of the Tengger Desert were apparently associated with the topographically induced variations in abiotic conditions, while the differences in microfungal community of soil crusts between the Tengger and Negev deserts, such as the significantly higher abundance of thermotolerant species in the crusts of the Tengger Deserts, were caused by the principal differences in their precipitation regimes, associated with different rainy seasons, winter and summer in the Negev and Tengger deserts, respectively.展开更多
基金supported by the National Natural Science Foundation of China for General Program(42171118)the National Natural Science Foundation of China for Distinguished Young Scholars(41925030)the Special Funding Projects of Talents of Yunnan Province(YNWR-QNBJ-2020-099).
文摘Vegetation restoration is a critical strategy for mitigating debris flow hazards by stabilizing slopes and modifying hydrological processes.Effective planning of priority restoration areas is particularly essential in dry-hot valley regions,where extreme hydrothermal conditions pose significant challenges.This study presents a novel framework that integrates microclimatic variables,such as temperature lapse rates,to enhance the spatial precision of revegetation efforts.The Reshuihe watershed in Southwest China,a representative dry-hot valley,was chosen as the study area.By analyzing hourly temperature and rainfall across an elevation gradient,a quadratic relationship between temperature lapse rates and weak rainfall events was identified,underscoring the role of microclimatic processes in influencing rainfall distribution and plant-available water.Rainfall peaks were observed when the temperature lapse rate was approximately 4.5°C/km.This relationship was incorporated into a cost-based restoration framework using the Marxan model,optimizing the spatial allocation of priority areas for revegetation.Results demonstrated that integrating microclimatic variables significantly improved the effectiveness of revegetation strategies,particularly for reducing debris flow risks.The lowest restoration costs were observed between elevations of 3200 m and 3300 m,where strong correlations between temperature lapse rates and rainfall were recorded.Priority restoration areas covered 41 km^(2),targeting zones with high debris flow risks.These findings highlight the value of incorporating microclimatic data into revegetation planning,enabling cost-effective and ecologically sustainable hazard mitigation in regions vulnerable to hydrological hazards.
基金the National Natural Science Foundation of China (Nos.40461006 and 40701095) the NationalKey Basic Research Program of China (973 Program) (No.2007CB407201).
文摘Field investigations and laboratory analysis were conducted to study the characteristics of soil water-stable aggregates during vegetation rehabilitation in typical grassland soils of the hilly-gullied loess area. The relationship between water- stable aggregates and other soil properties was analyzed using canonical correlation analysis and principal component analysis. The results show that during the natural revegetation, the aggregates 〉 5 mm dominated and constituted between 50% and 80% of the total soil water-stable aggregates in most of the soil layers. The 2-5 mm aggregate class was the second main component. The mean value of water-stable aggregates 〉 5 mm within the 0-2 m soil profile under different plant communities decreased in the following order: Stipa grandis 〉 Stipa bungeana Trin. 〉 Artemisia sacrorum Ledeb. 〉 Thymus mongolicus Ronn. 〉 Hierochloe odorata (L.) Beauv. Clay, organic matter, and total N were the key factors that influenced the water stability of the aggregates. Total N and organic matter were the main factors that affected the water stability of the aggregates 〉 5 mm and 0.5-1 mm in size. The contents of Fe2O3, Al2O3, and physical clay (〈 0.01 mm) were the main factors which affected the water stability of the 1-2 and 0.25-0.5 mm aggregates.
基金Under the auspices of the National Natural Science Foundation of China (No .30470297)and theNationalBasicRe-searchProgram ofChina (973 Program)(No .2003CB415201 )
文摘The dry-hot valley of the Jinsha River is one of the typical eco-fragile areas in Southwest China, as well as a focus of revegetation study in the upper and middle reaches of the Changjiang River. Due to its extremely dry and hot climate, severely degraded vegetation and the intense soil and water loss, there are extreme difficulties in vegetation restoration in this area and no great breakthrough has ever been achieved on studies of revegetation over the last several decades. Through over ten years’ research conducted in the typical areas-the Yuanmou dry-hot valley, the authors found that the lithologic property is one of the crucial factors determining soil moisture conditions and vegetation types in the dry-hot valley, and the rainfall infiltration capability is also one of the key factors affecting the tree growth. Then the revegetation zoning based on different slopes was conducted and revegetation patterns for different zones were proposed.
基金Projects(51704329,51705540)supported by the National Natural Science Foundation of ChinaProject(2018JJ3671)supported by the Hunan Provincial Natural Science Foundation,China+1 种基金Project(2015CX005)supported by the Innovation Driven Plan of Central South University,ChinaProject(B14034)supported by the National 111 Project,China
文摘Bauxite residue(BR),a by-product of the industrial production of alumina,has raised environmental concerns in the last decades,due to the presence of high amounts of alkali and various heavy metal ions.Limited studies on the application of abandoned BR with massive consumption have been reported.In this study,the possibility of the revegetation using ryegrass growing on BR was discussed mainly through the growth indications and transfer of heavy metal ions in BR and plants.In the pot trails,ryegrass was seeded on BR,de-alkali BR,with(DBRO)or without(DBR)organic fertilizer,respectively.The results indicated that the remediation of bauxite residue can be achieved through de-alkali with acid neutralization.Elemental analysis indicated that the elements,except for Fe,Mn and Pb,were stable in plant roots,and ryegrass could hardly absorb Cd.But,some heavy metals such as Cu enriched in plants,which should be noted in revegetation on bauxite residue.
文摘Cape Dyer (DYE-M), located on the easternmost point of Baffin Island, is a former DEW line radar station built in 1956-57 which was upgraded in 1993 as part of the current North Warning System. Environmental studies in the late 1990s and early 2000s determined that extensive soil contamination existed across the site, and excavation of six landfills and subsequent reshaping of the area in 2008 disturbed approximately 19,700 m2. A four-year pilot project was conducted between 2009 and 2012 to investigate feasibility of, and determine methods to, accelerate revegetation of the disturbed area through assisted seed dispersal of native and non native species and selective transplantation of slow-growing shrub species. Prior to revegetation efforts, plant surveys conducted in July 2009 determined that 15 species were present in the undisturbed areas, of which Salix arctica (~11%), Vaccinium uliginosum L. (~8%), and Empetrum nigrum L. (~5%) were the predominant species. A total of 14 species (three new) were observed growing on the disturbed areas between 2010 and 2012. The majority of Lolium multiflorum (annual ryegrass) seeds planted as a nurse species in 2009 grew in 2010, but most were stunted and only observed in furrows or sheltered areas at a low density. Salix arctica Pall. (willow) cuttings planted in “islands” of 20-30 cuttings in fall 2009 had a three-year survival rate of 82%, while a second set of cuttings planted in fall 2011 had a one-year survival rate of 93%. Visual observations indicate that patches of new vegetation are becoming more predominant on the disturbed area, especially around the willow islands, indicating the importance of microtopography for successful reclamation in arctic environments. Monitoring over ten or more years will be required to determine the long term success of this project.
文摘Reclamation and revegetation of a coal mine spoils with various revegetation models utilizing the mycorrhizal technology were studied. The models with different combination of plant species were designed to test the hypothesis of speedy revegetation. Root colonization and spore density of arbuscular mycorrhizae (AM) were lowest in plants seeded directly on slopes of the overburden (coal mine dump). At flat surfaces, the mycorrhizal colonization in plant species was higher than that observed at slopes. In other revegetation models, i.e., tree monoculture, tree monoculture + crop species (agroforestry), and two strata plantations (combination of different plant species), maximum AM colonization was recorded for tree species grown along with crop species. This was followed by two strata plantations and tree monoculture. In two strata plantations three categories of AM associations were recognized: 1) every plant in the combination, possessed high mycorrhizal association, 2) only one plant in the combination possessed high mycorrhizal association, and 3) none of the plants in the combination possessed high mycorrhizal association. Azadirachta indica, Pongamia pinnata, Leucaena leucocephala and Acacia catechu were most effective in catching mycorrhizae, and can be used as the effective tool in rehabilitation of the degraded ecosystems.
基金supported by the National Natural Science Foundation of China(No.42007428)the National Forage Industry Technology System Program of China(No.CARS34)+1 种基金the Key Research and Development Program of Shaanxi,China(No.2022SF-285)Shaanxi Province Forestry Science and Technology Innovation Program,China(No.SXLK2022-02-14)。
文摘Effective vegetation reconstruction plays a vital role in the restoration of desert ecosystems.However,in reconstruction of different vegetation types,the community characteristics,assembly processes,and functions of different soil microbial taxa under environmental changes are still disputed,which limits the understanding of the sustainability of desert restoration.Hence,we investigated the soil microbial community characteristics and functional attributes of grassland desert(GD),desert steppe(DS),typical steppe(TS),and artificial forest(AF)in the Mu Us Desert,China.Our findings confirmed the geographical conservation of soil microbial composition but highlighted decreased microbial diversity in TS.Meanwhile,the abundance of rare taxa and microbial community stability in TS improved.Heterogeneous and homogeneous selection determined the assembly of rare and abundant bacterial taxa,respectively,with both being significantly influenced by soil moisture.In contrast,fungal communities displayed stochastic processes and exhibited sensitivity to soil nutrient conditions.Furthermore,our investigation revealed a noteworthy augmentation in bacterial metabolic functionality in TS,aligning with improved vegetation restoration and the assemblage of abundant bacterial taxa.However,within nutrient-limited soils(GD,DS,and AF),the assembly dynamics of rare fungal taxa assumed a prominent role in augmenting their metabolic capacity and adaptability to desert ecosystems.These results highlighted the variations in the assembly processes and metabolic functions of soil microorganisms during vegetation reestablishment and provided corresponding theoretical support for anthropogenic revegetation of desert ecosystems.
基金supported by the MANMOUNT project(PID2019-105983RB-100)funded by the MICINN-FEDER(MICIU/AEI/10.13039/501100011033)the 570 PRX21/00375 project funded by the Ministry of Universities of Spain from the“Salvador de Madariaga”programme+1 种基金The‘Geoenvironmental Processes and Global Change’(E02_23R)research group is financed by the Aragon Government and the European Social Fund(ESF-FSE)The first author is working with an FPI contract(PRE2020-094509)from the Spanish Ministry of Economy and Competitiveness associated to the MANMOUNT project.
文摘The abandonment of rural activities in the Mediterranean mid-mountains has led to the activation of revegetation processes,as well as the subsequent implementation of various management measures to mitigate the associated ecosystem disservices.Focusing on soil environment and its growing importance in a climate change scenario,it is of great interest to study how land management and landscape changes can affect,not only the soil carbon storage process,but also its dynamics.A study was conducted in La Rioja(Iberian System,Spain),comparing three post-abandonment management strategies:secondary succession,forest management,and shrub clearing and extensive grazing.These strategies were analysed in two types of soil environments(acid and alkaline)and for two depth ranges(0–20 cm and 20–40 cm).Laboratory analyses were performed on aggregate stability and soil organic carbon fractionation with regard to three aggregate sizes(<2 mm,2–5 mm,>5 mm)and three density fractions(free labile,occluded,and heavy fraction).The results showed that:1)SOC content in aggregates<2 mm(relative to total SOC)increases with shrub clearing and grazing strategy in acid environments;2)aggregate stability benefits from the implementation of afforestation in acid environments and from all three study strategies in alkaline ones;3)in acid environments,the percentage of labile fractions(free and occluded)in afforested sites is significantly higher compared with shrubland,while in alkaline environments,recalcitrant SOC is significantly higher in shrub clearing sites.Thus,land management should be focused on SOC storage after land abandonment in Mediterranean mountainous environments.
基金supported by the National Ecological Environment Survey and Assessment(2024-vertical-0107)the Fundamental Research Funds for the Central Public-interest Scientific Institution(2023YSKY-26)the Hulun Buir Grassland Ecological Restoration Comprehensive Survey Project(DD20230474).
文摘In recent years,intensive human activities have increased the intensity of desertification,driving continual desertification process of peripheral meadows.To investigate the effects of restoration on soil microbial communities,we analyzed vegetation-soil relationships in the Hulun Buir Sandy Land,northern China.Through the use of high-throughput sequencing,we examined the structure and diversity in the bacterial and fungal communities within the 0-20 cm soil layer after 9-15 a of restoration.Different slope positions were analyzed and spatial heterogeneity was assessed.The results showed progressive improvements in soil properties and vegetation with the increase of restoration duration,and the following order was as follows:bottom slope>middle slope>crest slope.During the restoration in the Hulun Buir Sandy Land,the bacterial communities were dominated by Proteobacteria,Actinobacteria,and Acidobacteria,whereas the fungal communities were dominated by Ascomycota and Basidiomycota.Eutrophic bacterial abundance increased with the restoration duration,whereas oligotrophic bacterial and fungal abundance levels decreased.The soil bacterial abundance significantly increased with the increasing restoration duration,whereas the fungal diversity decreased after 11 a of restoration,except that at the crest slope.Redundancy analysis showed that pH,soil moisture content,total nitrogen,and vegetation-related factors affected the bacterial community structure(45.43%of the total variance explained).Canonical correspondence analysis indicated that pH,total phosphorus,and vegetation-related factors shaped the bacterial community structure(31.82%of the total variance explained).Structural equation modeling highlighted greater bacterial responses(R^(2)=0.49-0.79)to changes in environmental factors than those of fungi(R^(2)=0.20-0.48).The soil bacterial community was driven mainly by pH,soil moisture content,electrical conductivity,plant coverage,and litter dry weight.The abundance and diversity of the soil fungal community were mainly driven by plant coverage,litter dry weight,and herbaceous aboveground biomass,while there was no significant correlation between the soil fungal community structure and environmental factors.These findings highlighted divergent microbial succession patterns and environmental sensitivities during sandy grassland restoration.
基金the National Natural Science Foundation of China (Grant No. 40401031) the 863 Program of the Chinese Ministry of Science and Technology (Projects Nos. 2001AA645010-4 , 2002CB410808).
文摘A field survey of metal concentrations and mycorrhizal status of plants growing on copper mine tailings was conducted in Anhui Province, China. Available phosphorus and organic matter in the tailings were very low. High concentrations of Pb, Zn, As and Cd as well as Cu were observed on some sites. The dominant plants growing on mine tailings belonged to the families Gramineae and Compositae, and the most widely distributed plant species were Imperata cylin-drica, Cynodon dactylon and Paspalum distichum. Coreopsis drummondii also grew well on the arid sites but not on wet sites. Very low or zero arbuscular mycorrhizal (AM) fungal colonization was observed in most of the plants, but extensive mycorrhizal colonization was recorded in the roots of C. drummondii and C. dactylon. Metal concentrations in plant tissues indicated that /. cylindrica and P. distichum utilized avoidance mechanisms to survive at high metal concentrations. The investigation suggests that remediation and revegetation of heavy metal contaminated sites might be facilitated by selection of tolerant plant species. Isolation of tolerant AM fungi may also be warranted.
基金the National Natural Science Foundation of China(31100516)the Fundamental Research Funds for the Central Universities(QN2011075)the National High Technology Research and Development Program of China(863 Program)(2013AA102401).
文摘Focusing on the impact of various vegetation management modes on sandy grassland's soil property and vegetation ecological restoration of farming-pastoral ecotone,field surveys and lab analysis were conducted to study the correlation between the characteristics of soil properties and vegetation ecological restoration under four different vegetation management modes,i.e.,unenclosed natural restoration,enclosed natural restoration,unenclosed artificial restoration and enclosed artificial restoration,which have a restoration history of 15 years in the southern edge of the degraded sandy land area of Mu Us Desert in Leilongwan Town,Hengshan County,Shaanxi Province.After 15 years of vegetation restoration,these four vegetation management modes all proved to be useful for improving the vegetation ecological restoration and the soil quality of the degraded sandy grassland not only by enhancing the aboveground vegetation height,coverage and biomass but also increasing the content of soil clay,organic matter,CEC,total nitrogen,available nutrient while reducing soil bulk density.The vegetation ecological restoration effect and soil quality under enclosed or artificial restoration management are better than those of unenclosed or natural restoration management;and the most satisfactory vegetation ecological restoration effects and soil quality can be achieved under the integration of enclosed and artificial restoration management.Severely degraded sandy grassland,during the vegetation restoration,would form an interactional coordinating relationship with the vegetation and soil properties.Vegetation properties as height,coverage and biomass have significant positive correlations with organic matter,CEC,total nitrogen and available nitrogen,phosphorus,and potassium contained in soil.Only the adoption of the strict enclosure system,implementation of aggressive artificial vegetation restoration measures and the realization of the regurgitation-feeding policy of industry towards husbandry can guarantee the gradual restoration of degraded sandy grassland in farming-pastoral ecotone,so that it can continue to play the role of ecological protective screen.
文摘The waste,subgrade ROM and fine dumps of iron ore mines are characterized by high rock fragment contents,low moisture retention capacity,higher bulk density,low nutrients,lower pH and elevated metal concentrations.Use of suitable revegetation programme,that require the selection of right type of plants to be used vis-à-vis the site condition and characteristics,can enhance the long-term stability,both mechanical and ecological,of dumps(waste,subgrade ROM and fines)through providing vegetative cover to control soil erosion and gully formation,consolidation of dump top and side surfaces,binding the loose particles through intricate roof system,etc.This paper overviews the roles of revegetation programme that can be used where vegetation is considered to be the long-term answer to slope protection and erosion control.Various revegetation processes like Coir matting,lemon grass,vetiver grass and indigenous plant may find a wide range of usage in iron ore mines for dump stabilization.The Miyawaki method of plantation is more effective than the conventional method of plantation.This will lead to co-existence of plants,and as a matter of fact each plant draws from the other vital nutrients and they grow to become strong and healthy.The Miyawaki plantation technique aims at“survival of the fittest”,and the area which undergone such plantation has an ecology of their own.The indigenous plant has good binding capacity and helps to control soil erosion as well as improve the dump stability.These indigenous plant species include Shorea robusta(Sal),Dalbergia sisoo(Shisham),Karanj and Azadirachta(Neem).The growth of indigenous plants is dependent upon the soil quality as well as the organic matter of the dump material.The leaf debris plays an important role for improving the organic matter of the dump material to successfully implement the revegetation programme.
基金the High-end Talents Start-up Project of Nanjing University of Information Science&Technology(Grant No.20191040)the National Natural Science Foundation of China(Grant Nos.41890823,42071031,31770493)GDAS’s Special Project of Science and Development(Grant No.2019GDASYL-0104001)。
文摘Increasing greening of planet Earth to slow down the rise of atmospheric CO_(2) concentrations is certainly desirable;however,its consequences on water resources are less affirmative and thus are a matter of wide concern.China,as the largest and most successful country of the world in terms of artificial revegetation,is naturally the focus of the concerns and warnings.Based on previous studies,we analyzed the mechanism for the effects of climate and watershed characteristics on water resources,explained various hydrological results and phenomena,and considered the ways in which water consumption by artificial revegetation projects can be reduced.Moreover,some guidelines are suggested for artificial revegetation at watershed scale with consideration of water resource sustainability.The findings of this study highlight the need for more top-down approaches when studying the mechanism of"forest and water".
文摘With the support by the National Natural Science Foundation of China and the Major Programme of High Resolution Earth Observation System,the research team led by Prof.Fu Bojie(傅伯杰)at the State Key Laboratory of Urban and Regional Ecology,Research Center for Eco-Environmental Sciences of Chinese Academy of Sciences,cooperated with the researchers from Peking University and the Laboratoire
基金support of the Introduced Project of Advanced Science and Forest Technology (948) (No. 2006-4-06)the Research Institute of Subtropical Forestry,Chinese Academy of Forestry(No. RISF6803+2 种基金RISF 6924)the Science and Technology Department of Zhejiang Province(No. 2006C12065)the Natural Science Foundation of Zhejiang Province(No. Y3080506)
文摘A greenhouse pot experiment was conducted to evaluate the potential of selected woody plants for revegetation in copper (Cu) and lead/zinc (Pb/Zn) mine tailing areas. Five woody species (Amorpha fruticosa Linn, Vitex trifolia Linn. var. simplicifolia Chum, Glochidion puberum (Linn.) Hutch, Broussonetia papyrifera, and Styrax tonkinensis) and one herbaceous species ( Sesbania cannabina Pets) were planted in Cu and Pb/Zn tailings to assess their growth, root morphology, nutrition uptake, metal accumulation, and translocation in plants. Amorpha fruticosa maintained normal growth, while the other species demonstrated stress related growth and root development. Sesbania cannabina showed the highest biomass among the plants, although it decreased by 30% in Cu tailings and 40% in Pb/Zn railings. Calculated tolerance index (TI) values suggested that A. fruticosa, an N-fixing shrub, was the most tolerant species to both tailings (TI values 0.92-1.01), while S. cannabina had a moderate TI of 0.65-0.81 and B. papyrifera was the most sensitive species, especially to Pb/Zn tailings (TI values 0.15-0.19). Despite the high concentrations of heavy metals in the mine tailings and plants roots, only a small transfer of these elements to the aboveground parts of the woody plants was evident from the low translocation factor (TF) values. Among the woody plants, V. trifolia var. simplicifolia had the highest TF values for Zn (1.32), Cu (0.78), and Pb/Zn (0.78). The results suggested that A. fruticosa and S. cannabina, which have the highest tolerance and biomass production, respectively, demonstrated the potential for tailings revegetation in southern China.
文摘Mine tailings, waste rock piles, acid mine drainage, industrial wastewater, and sewage sludge have contaminated a vast area of cultivable and fallow lands, with a consequence of deterioration of soil and water quality and watercourses due to the erosion of contaminated soils for absence of vegetative cover. High concentrations of toxic elements, organic contaminants, acidic soils, and harsh climatic conditions have made it difficult to re-establish vegetation and produce crops there. Recently, a significant body of work has focussed on the suitability and potentiality of biochar as a soil remediation tool that increases seed emergence, soil and crop productivity, above ground biomass, and vegetation cover on mine tailings, waste rock piles, and industrial and sewage waste- contaminated soils by increasing soil nutrients and water-holding capacity, amelioration of soil acidity, and stimulation of microbial diversity and functions. This review addresses: i) the functional properties of biochar, and microbial cycling of nutrients in soil; ii) bioremediation, especially phytoremediation of mine railings, industrial waste, sewage sludge, and contaminated soil using biochar; iii) impact of biochar on reduction of acid production, acid mine drainage treatment, and geochemical dynamics in mine railings; and iv) treatment of metal and organic contaminants in soils using biochar, and restoration of degraded land.
基金funded by the National Natural Science Foundation of China (51574253)the National High Technology Research and Development Program of China (2013AA102904)the Open Research Project of the State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing) (SKLCRSM16KFA01)
文摘In semi-arid region of northwestern China, underground mining subsidence often results in decreased vegetation coverage, impoverishment of soil fertility and water stress. In addition, the physical-chemical and biological properties of soil also change, resulting in more susceptible to degradation. In particular, subsidence causes disturbance of the symbioses of plant and microbe that can play a beneficial role in the establishment of vegetation communities in degraded ecosystems. The objective of this study was to evaluate the effects of revegetation with exotic arbuscular mycorrhizal fungi(AMF) inoculum on the chemical and biological properties of soil over time in mining subsidence areas. Soils were sampled at a depth up to 30 cm in the adjacent rhizosphere of Amorpha fruticose Linn. from five reclaimed vegetation communities in northwestern China. In August 2015, a field trial was set up with five historical revegetation experiments established in 2008(7-year), 2011(4-year), 2012(3-year), 2013(2-year) and 2014(1-year), respectively. Each reclamation experiment included two treatments, i.e., revegetation with exotic AMF inoculum(AMF) and non-AMF inoculum(the control). Root mycorrhizal colonization, glomalin-related soil protein(GRSP), soil organic carbon(SOC), soil nutrients, and enzyme activities were also assessed. The results showed that mycorrhizal colonization of inoculated plants increased by 33.3%–163.0% compared to that of non-inoculated plants(P<0.05). Revegetation with exotic AMF inoculum also significantly improved total GRSR(T-GRSP) and easily extracted GRSP(EE-GRSP) concentrations compared to control, besides the T-GRSP in 1-year experiment and the EE-GRSP in 2-year experiment. A significant increase in SOC content was only observed in 7-year AMF reclaimed soils compared to non-AMF reclaimed soils. Soil total N(TN), Olsen phosphorus(P) and available potassium(K) were significantly higher in inoculated soil after 1–7 years of reclamation(except for individual cases), and increased with reclamation time(besides soil Olsen P). The exotic AMF inoculum markedly increased the average soil invertase, catalase, urease and alkaline phosphatase by 23.8%, 21.3%, 18.8% and 8.6%, respectively(P<0.01), compared with the control. Root mycorrhizal colonization was positively correlated with soil parameters(SOC, TN and soil available K) and soil enzyme activities(soil invertase, catalase, urease and alkaline phosphatase) in both AMF and non-AMF reclaimed soils(P<0.05), excluding availableK in non-AMF reclaimed soils. T-GRSP(P<0.01) and EE-GRSP(P<0.05) were significantly correlated with the majority of edaphic factors, except for soil Olsen P. The positive correlation between root mycorrhizal colonization and available K was observed in AMF reclaimed soils, indicating that the AMF reclaimed soil with a high root mycorrhizal colonization could potentially accumulate available K in soils. Our findings concluded that revegetation with exotic AMF inoculum influenced soil nutrient availability and enzyme activities in the semi-arid ecosystem, suggesting that inoculating AMF can be an effective method to improve soil fertility and support restoration of vegetation communities under poor conditions like soil nutrient deficiency and drought.
基金financially supported by the grants from the Ministry of Science and Technology,China (Grant No. 2012BAC01B02)the Ministry of Environmental Protection,China (Grant No. 201209033)
文摘Both overgrazing and climate change contribute to grassland degradation in the alpine regions of China and negatively affect soil carbon and nitrogen pools. We quantified changes in soil organic carbon (SOC) and total nitrogen (TN) in black soil beach (BSB). We measured SOC and TN in severely degraded and non-degraded grasslands to calculate differences in carbon and nitrogen storage, and field survey results were extrapolated to the entire headwaters area of the Qinghai-Tibetan Plateau (36.3xlos krn~) to determine SOC and TN losses from these grasslands. We also evaluated changes in SOC and TN in severely degraded grasslands that were artificially re-vegetated five, seven and nine years ago. Totally 92.43 Tg C and 7.08 Tg N were lost from the BSB in the headwater area, which was approximately 50% of the original C and N soil pools. Re-vegetation of the degraded grasslands in the headwater area would result in a gain of 32.71 Tg C in the soil after five years, a loss of 5.5a Tg C after seven years and an increase of 44.15 Tg C after nine years. The TN increased by 53.09% and 59.98% after five and nine years, respectively, while it decreased by 4.92% after seven years of re-vegetation. The results indicate that C and N stocks followed a "V" shaped pattern with re- vegetation time. Understanding plant-soil interactions during succession of artificially planting grassland ecosystems is essential for developing scientifically sound management strategies for the effectively re-vegetated BSB.
基金supported by the National Natural Science Foundation of China(41571275)the Western Action Plan Project of the Chinese Academy of Sciences(KZCX-XB3-13)the Major Program of the National Natural Science Foundation of China(41790444/D0214)
文摘Soil erosion on the Loess Plateau of China is effectively controlled due to the implementation of several ecological restoration projects that improve soil properties and reduce soil erodibility. However, few studies have examined the effects of vegetation restoration on soil properties and erodibility of gully head in the gully regions of the Loess Plateau. The objectives of this study were to quantify the effects of vegetation restoration on soil properties and erodibility in this region. Specifically, a control site in a slope cropland and 9 sites in 3 restored land-use types (5 sites in grassland, 3 in woodland and 1 in shrubland) in the Nanxiaohegou watershed of a typical gully region on the Loess Plateau were selected, and soil and root samples were collected to assess soil properties and root characteristics. Soil erodibility factor was calculated by the Erosion Productivity Impact Calculator method. Our results revealed that vegetation restoration increased soil sand content, soil saturated hydraulic conductivity, organic matter content and mean weight diameter of water-stable aggregate but decreased soil silt and clay contents and soil disintegration rate. A significant difference in soil erodibility was observed among different vegetation restoration patterns or land-use types. Compared with cropland, soil erodibility decreased in the restored lands by 3.99% to 21.43%. The restoration patterns of Cleistogenes caespitosa K. and Artemisia sacrorum L. in the grassland showed the lowest soil erodibility and can be considered as the optimal vegetation restoration pattern for improving soil anti-erodibility of the gully heads. Additionally, the negative linear change in soil erodibility for grassland with restoration time was faster than those of woodland and shrubland. Soil erodibility was significantly correlated with soil particle size distribution, soil disintegration rate, soil saturated hydraulic conductivity, water-stable aggregate stability, organic matter content and root characteristics (including root average diameter, root length density, root surface density and root biomass density), but it showed no association with soil bulk density and soil total porosity. These findings indicate that although vegetation destruction is a short-term process, returning the soil erodibility of cropland to the level of grassland, woodland and shrubland is a long-term process (8-50 years).
基金the Chinese Academy of Sciences Visiting Professorship for Senior International Scientists (No. 2011T1Z16)Israeli Ministry of Absorption for financial support of this research
文摘Biological soil crusts are essential components of arid ecosystems. We examined the variations in microfungal communities inhabiting different biological crust types in the vicinity of the Shapotou Research Station in the Tengger Desert, China. A total of 134 species from 66 genera were isolated using the soil dilution plate method. The mycobiota of the crusts from the Tengger Desert, similar to that of the Negev Desert in Israel, was dominated by melanin-containing species with large multicellular spores. Abundance of these xeric species increased spatially with increasing xeric conditions from moss-dominated to cyanobacterial crusts. Density of microfungal isolates displayed the opposite trend and was positively correlated with chlorophyll content, indicating the possible significant influence of organic matter content and wetness duration on fungal biomass. Within a chronosequence of the localities of different periods after sand stabilization with revegetation, little variations were revealed in species composition and isolate density of the crust microfungal communities, while a tendency towards a decrease in the community diversity level with the crust age was noted Microfungal communities from stabilized localities differed from those of the natural localities in abundance of the dominant and some frequent species, and in the fluctuations of diversity characteristics between the cyanobacterial and moss-dominated crusts. The variations in mycobiotie parameters in the soil crusts of the Tengger Desert were apparently associated with the topographically induced variations in abiotic conditions, while the differences in microfungal community of soil crusts between the Tengger and Negev deserts, such as the significantly higher abundance of thermotolerant species in the crusts of the Tengger Deserts, were caused by the principal differences in their precipitation regimes, associated with different rainy seasons, winter and summer in the Negev and Tengger deserts, respectively.