The organotypic retinal explant culture has been established for more than a decade and offers a range of unique advantages compared with in vivo experiments and cell cultures.However,the lack of systematic and contin...The organotypic retinal explant culture has been established for more than a decade and offers a range of unique advantages compared with in vivo experiments and cell cultures.However,the lack of systematic and continuous comparison between in vivo retinal development and the organotypic retinal explant culture makes this model controversial in postnatal retinal development studies.Thus,we aimed to verify the feasibility of using this model for postnatal retinal development studies by comparing it with the in vivo retina.In this study,we showed that postnatal retinal explants undergo normal development,and exhibit a consistent structure and timeline with retinas in vivo.Initially,we used SOX2 and PAX6 immunostaining to identify retinal progenitor cells.We then examined cell proliferation and migration by immunostaining with Ki-67 and doublecortin,respectively.Ki-67-and doublecortin-positive cells decreased in both in vivo and explants during postnatal retinogenesis,and exhibited a high degree of similarity in abundance and distribution between groups.Additionally,we used Ceh-10 homeodomain-containing homolog,glutamate-ammonia ligase(glutamine synthetase),neuronal nuclei,and ionized calcium-binding adapter molecule 1 immunostaining to examine the emergence of bipolar cells,Müller glia,mature neurons,and microglia,respectively.The timing and spatial patterns of the emergence of these cell types were remarkably consistent between in vivo and explant retinas.Our study showed that the organotypic retinal explant culture model had a high degree of consistency with the progression of in vivo early postnatal retina development.The findings confirm the accuracy and credibility of this model and support its use for long-term,systematic,and continuous observation.展开更多
This study presents a real-time tracking algorithm derived from the retina algorithm,designed for the rapid,real-time tracking of straight-line particle trajectories.These trajectories are detected by pixel detectors ...This study presents a real-time tracking algorithm derived from the retina algorithm,designed for the rapid,real-time tracking of straight-line particle trajectories.These trajectories are detected by pixel detectors to localize single-event effects in two-dimensional space.Initially,we developed a retina algorithm to track the trajectory of a single heavy ion and achieved a positional accuracy of 40μm.This was accomplished by analyzing trajectory samples from the simulations using a pixel sensor with a 72×72 pixel array and an 83μm pixel pitch.Subsequently,we refined this approach to create an iterative retina algorithm for tracking multiple heavy-ion trajectories in single events.This iterative version demonstrated a tracking efficiency of over 97%,with a positional resolution comparable to that of single-track events.Furthermore,it exhibits significant parallelism,requires fewer resources,and is ideally suited for implementation in field-programmable gate arrays on board-level systems,facilitating real-time online trajectory tracking.展开更多
The human retina,a complex and highly specialized structure,includes multiple cell types that work synergistically to generate and transmit visual signals.However,genetic predisposition or age-related degeneration can...The human retina,a complex and highly specialized structure,includes multiple cell types that work synergistically to generate and transmit visual signals.However,genetic predisposition or age-related degeneration can lead to retinal damage that severely impairs vision or causes blindness.Treatment options for retinal diseases are limited,and there is an urgent need for innovative therapeutic strategies.Cell and gene therapies are promising because of the efficacy of delivery systems that transport therapeutic genes to targeted retinal cells.Gene delivery systems hold great promise for treating retinal diseases by enabling the targeted delivery of therapeutic genes to affected cells or by converting endogenous cells into functional ones to facilitate nerve regeneration,potentially restoring vision.This review focuses on two principal categories of gene delivery vectors used in the treatment of retinal diseases:viral and non-viral systems.Viral vectors,including lentiviruses and adeno-associated viruses,exploit the innate ability of viruses to infiltrate cells,which is followed by the introduction of therapeutic genetic material into target cells for gene correction.Lentiviruses can accommodate exogenous genes up to 8 kb in length,but their mechanism of integration into the host genome presents insertion mutation risks.Conversely,adeno-associated viruses are safer,as they exist as episomes in the nucleus,yet their limited packaging capacity constrains their application to a narrower spectrum of diseases,which necessitates the exploration of alternative delivery methods.In parallel,progress has also occurred in the development of novel non-viral delivery systems,particularly those based on liposomal technology.Manipulation of the ratios of hydrophilic and hydrophobic molecules within liposomes and the development of new lipid formulations have led to the creation of advanced non-viral vectors.These innovative systems include solid lipid nanoparticles,polymer nanoparticles,dendrimers,polymeric micelles,and polymeric nanoparticles.Compared with their viral counterparts,non-viral delivery systems offer markedly enhanced loading capacities that enable the direct delivery of nucleic acids,mRNA,or protein molecules into cells.This bypasses the need for DNA transcription and processing,which significantly enhances therapeutic efficiency.Nevertheless,the immunogenic potential and accumulation toxicity associated with non-viral particulate systems necessitates continued optimization to reduce adverse effects in vivo.This review explores the various delivery systems for retinal therapies and retinal nerve regeneration,and details the characteristics,advantages,limitations,and clinical applications of each vector type.By systematically outlining these factors,our goal is to guide the selection of the optimal delivery tool for a specific retinal disease,which will enhance treatment efficacy and improve patient outcomes while paving the way for more effective and targeted therapeutic interventions.展开更多
Microcystin-LR(MC-LR)is a highly toxic category of biotoxins that can damage eye development and retinal structure in zebrafish,while probiotics can largely benefit the function of the retina.Although they both act on...Microcystin-LR(MC-LR)is a highly toxic category of biotoxins that can damage eye development and retinal structure in zebrafish,while probiotics can largely benefit the function of the retina.Although they both act on the visual system,whether probiotics can alleviate the visual damage caused by MC-LR in fish and the underlying mechanisms remains unclear.In this study,we exposed adult zebrafish for 28 days at MC-LR concentrations of 0,2.20,and 22.00μg/L with or without the probiotic Lactobacillus rhamnosus in the diet.MC-LR exposure alone resulted in structural damage to the retina and abnormal phototropic behavior,whereas L.rhamnosus could alleviate these damages.Biochemical analyses showed thatMCLR-induced abnormalities in apoptosis of ocular cells,retinal inflammatory responses,neurotransmission,and phototransduction were restored in the L.rhamnosus treatment group,indicating L.rhamnosus alleviated MC-LR-induced defects in the visual system and dysfunctions.This study underlines the defensive role of probiotics in protecting the host from environmental pollutants,which may provide guidance for the application of probiotics in aquaculture.展开更多
AIM:To examined the effects of a high-fat diet(HFD)on retinal pathological changes and dysfunction using peroxisome proliferator-activated receptor-alpha(PPARα)knockout mice.METHODS:For four months,C57BL/6J and PPAR...AIM:To examined the effects of a high-fat diet(HFD)on retinal pathological changes and dysfunction using peroxisome proliferator-activated receptor-alpha(PPARα)knockout mice.METHODS:For four months,C57BL/6J and PPARαknockout mice received either HFD or a standard diet(SD).A fluorometric method was used to determine the retinal triglycerides.The retinal malondialdehyde(MDA)content was measured.Hematoxylin-eosin was used to evaluate retinal pathological changes.Protein expression was analyzed by Western blot and immunofluorescence,while mRNA expression was evaluated by quantitative reverse transcription-polymerase chain reaction.Electroretinogram was used to assess retinal function.RESULTS:HFD resulted in increased fatty acidβ-oxidation in the inner retina,particularly retinal ganglion cells(RGCs),as well as increased weight and accumulation of retinal triglyceride.Retinal fatty acid β-oxidation and triglyceride accumulation were affected by PPARα^(−/−)abnormalities.PPARαknockdown increased the infiltration and activation of inflammatory cells,as well as it upregulated the nuclear factor kappa B(NF-κB)signaling pathway and corresponding proinflammatory cytokine levels in the most retina subjected to the HFD.In the HFD mice,oxidative stress levels were elevated in the inner retina,particularly in the HFD PPARα^(−/−)mice.HFD-induced RGCs apoptosis initiation was exacerbated by PPARαdeficiency.Lastly,HFD feeding resulted in the lower amplitudes of scotopic a-wave,b-wave and photopic negative response(PhNR)wave,particularly in HFD PPARα^(−/−)mice.CONCLUSION:In HFD-fed mice retina,particularly in the inner retina,PPARα knockout increases lipid metabolic abnormalities,inflammatory responses,oxidative stress,apoptosis initiation and dysfunction.展开更多
AIM:To explore the effect and mechanism of Lycium barbarum polysaccharide(LBP)inhibiting retinal neovascularization.METHODS:In vitro tests were performed on human retinal microvascular endothelial cells(HRECs)from thr...AIM:To explore the effect and mechanism of Lycium barbarum polysaccharide(LBP)inhibiting retinal neovascularization.METHODS:In vitro tests were performed on human retinal microvascular endothelial cells(HRECs)from three groups,including control group(normal oxygen),hypoxic group(hypoxia at 37℃,1%O_(2),5%CO_(2),and 94%N_(2)),and LBP group(hypoxic group with LBP 100μg/mL).In vivo experiments,C57 mice were divided into three groups:control group(normal rearing group),the oxygen-induced ischemic retinopathy(OIR)group,and the OIR with 50 mg/kg LBP group.Retinal neovascularization was observed by fluorescein angiography and quantified.Retinal thickness was evaluated by Hematoxylin and eosin(HE)stain.The expression of epidermal growth factor receptor(EGFR),phosphatidylinositol 3-kinase(PI3K),mammalian target of rapamycin(mTOR),phosphorylated mammalian target of rapamycin(p-mTOR),protein kinase B(AKT),phosphorylated protein kinase B(p-AKT),interleukin-1β(IL-1β),inducible nitric oxide synthase(iNOS),and tumor necrosis factor-α(TNF-α)in each group were analyzed by Western blot.IL-1βlevel in retina was analyzed using immunohistochemical staining.RESULTS:The increased area of neovascular clusters in OIR mice was significantly decreased by LBP.Retinal thickness of OIR mice was significantly thinner compared with normal oxygenated mice and was increased in LBP group.Compared with those in the hypoxic groups,Western blotting of HRECs and retinal tissues revealed that the expression of EGFR,PI3K,p-mTOR,p-AKT,IL-1β,iNOS,and TNF-αdecreased in the LBP group but was still greater than that in control group.Moreover,IL-1βwas reduced in retinal sections treated with LBP.In the scratch test,the cell migration of the hypoxic group was significantly greater than that of the control group,while LBP treatment attenuated this increase in migration.CONCLUSION:LBP reduces retinal neovascularization and inflammation in vivo and inhibits the migration of HRECs in vitro by regulating the EGFR/PI3K/Akt/mTOR signaling pathway.展开更多
Inflammation plays a crucial role in the regeneration of fish and avian retinas.However,how inflammation regulates Müller glia(MG)reprogramming remains unclear.Here,we used single-cell RNA sequencing to investiga...Inflammation plays a crucial role in the regeneration of fish and avian retinas.However,how inflammation regulates Müller glia(MG)reprogramming remains unclear.Here,we used single-cell RNA sequencing to investigate the cell heterogeneity and interactions of MG and immune cells in the regenerating zebrafish retina.We first showed that two types of quiescent MG(resting MG1 and MG2)reside in the uninjured retina.Following retinal injury,resting MG1 transitioned into an activated state expressing known reprogramming genes,while resting MG2 gave rise to rod progenitors.We further showed that retinal microglia can be categorized into three subtypes(microglia-1,microglia-2,and proliferative)and pseudotime analysis demonstrated dynamic changes in microglial status following retinal injury.Analysis of cell–cell interactions indicated extensive crosstalk between immune cells and MG,with many interactions shared among different immune cell types.Finally,we showed that inflammation activated Jak1–Stat3 signaling in MG,promoting their transition from a resting to an activated state.Our study reveals the cell heterogeneity and crosstalk of immune cells and MG in zebrafish retinal repair,and may provide valuable insights into future mammalian retina regeneration.展开更多
High intraocular pressure causes retinal ganglion cell injury in primary and secondary glaucoma diseases,yet the molecular landscape characteristics of retinal cells under high intraocular pressure remain unknown.Rat ...High intraocular pressure causes retinal ganglion cell injury in primary and secondary glaucoma diseases,yet the molecular landscape characteristics of retinal cells under high intraocular pressure remain unknown.Rat models of acute hypertension ocular pressure were established by injection of cross-linked hyaluronic acid hydrogel(Healaflow■).Single-cell RNA sequencing was then used to describe the cellular composition and molecular profile of the retina following high intraocular pressure.Our results identified a total of 12 cell types,namely retinal pigment epithelial cells,rod-photoreceptor cells,bipolar cells,Müller cells,microglia,cone-photoreceptor cells,retinal ganglion cells,endothelial cells,retinal progenitor cells,oligodendrocytes,pericytes,and fibroblasts.The single-cell RNA sequencing analysis of the retina under acute high intraocular pressure revealed obvious changes in the proportions of various retinal cells,with ganglion cells decreased by 23%.Hematoxylin and eosin staining and TUNEL staining confirmed the damage to retinal ganglion cells under high intraocular pressure.We extracted data from retinal ganglion cells and analyzed the retinal ganglion cell cluster with the most distinct expression.We found upregulation of the B3gat2 gene,which is associated with neuronal migration and adhesion,and downregulation of the Tsc22d gene,which participates in inhibition of inflammation.This study is the first to reveal molecular changes and intercellular interactions in the retina under high intraocular pressure.These data contribute to understanding of the molecular mechanism of retinal injury induced by high intraocular pressure and will benefit the development of novel therapies.展开更多
Microvasculature of the retina is considered an alternative marker of cerebral vascular risk in healthy populations.However,the ability of retinal vasculature changes,specifically focusing on retinal vessel diameter,t...Microvasculature of the retina is considered an alternative marker of cerebral vascular risk in healthy populations.However,the ability of retinal vasculature changes,specifically focusing on retinal vessel diameter,to predict the recurrence of cerebrovascular events in patients with ischemic stroke has not been determined comprehensively.While previous studies have shown a link between retinal vessel diameter and recurrent cerebrovascular events,they have not incorporated this information into a predictive model.Therefore,this study aimed to investigate the relationship between retinal vessel diameter and subsequent cerebrovascular events in patients with acute ischemic stroke.Additionally,we sought to establish a predictive model by combining retinal veessel diameter with traditional risk factors.We performed a prospective observational study of 141 patients with acute ischemic stroke who were admitted to the First Affiliated Hospital of Jinan University.All of these patients underwent digital retinal imaging within 72 hours of admission and were followed up for 3 years.We found that,after adjusting for related risk factors,patients with acute ischemic stroke with mean arteriolar diameter within 0.5-1.0 disc diameters of the disc margin(MAD_(0.5-1.0DD))of≥74.14μm and mean venular diameter within 0.5-1.0 disc diameters of the disc margin(MVD_(0.5-1.0DD))of≥83.91μm tended to experience recurrent cerebrovascular events.We established three multivariate Cox proportional hazard regression models:model 1 included traditional risk factors,model 2 added MAD_(0.5-1.0DD)to model 1,and model 3 added MVD0.5-1.0DD to model 1.Model 3 had the greatest potential to predict subsequent cerebrovascular events,followed by model 2,and finally model 1.These findings indicate that combining retinal venular or arteriolar diameter with traditional risk factors could improve the prediction of recurrent cerebrovascular events in patients with acute ischemic stroke,and that retinal imaging could be a useful and non-invasive method for identifying high-risk patients who require closer monitoring and more aggressive management.展开更多
Inherited retinal dystrophies (IRDs) are major causes of visual impairment and irreversible blindness worldwide, while the precise molecular and genetic mechanisms are still elusive. N6-methyladenosine (m^(6)A) modifi...Inherited retinal dystrophies (IRDs) are major causes of visual impairment and irreversible blindness worldwide, while the precise molecular and genetic mechanisms are still elusive. N6-methyladenosine (m^(6)A) modification is the most prevalent internal modification in eukaryotic mRNA. YTH domain containing 2 (YTHDC2), an m^(6)A reader protein, has recently been identified as a key player in germline development and human cancer. However, its contribution to retinal function remains unknown. Here, we explore the role of YTHDC2 in the visual function of retinal rod photoreceptors by generating rod-specific Ythdc2 knockout mice. Results show that Ythdc2 deficiency in rods causes diminished scotopic ERG responses and progressive retinal degeneration. Multi-omics analysis further identifies Ppef2 and Pde6b as the potential targets of YTHDC2 in the retina. Specifically, via its YTH domain, YTHDC2 recognizes and binds m^(6)A-modified Ppef2 mRNA at the coding sequence and Pde6b mRNA at the 5′-UTR, resulting in enhanced translation efficiency without affecting mRNA levels. Compromised translation efficiency of Ppef2 and Pde6b after YTHDC2 depletion ultimately leads to decreased protein levels in the retina, impaired retinal function, and progressive rod death. Collectively, our finding highlights the importance of YTHDC2 in visual function and photoreceptor survival, which provides an unreported elucidation of IRD pathogenesis via epitranscriptomics.展开更多
Taurine is considered a non-essential amino acid because it is synthesized by most mammals.However,dietary intake of taurine may be necessary to achieve the physiological levels required for the development,maintenanc...Taurine is considered a non-essential amino acid because it is synthesized by most mammals.However,dietary intake of taurine may be necessary to achieve the physiological levels required for the development,maintenance,and function of certain tissues.Taurine may be especially important for the retina.The concentration of taurine in the retina is higher than that in any other tissue in the body and taurine deficiency causes retinal oxidative stress,apoptosis,and degeneration of photoreceptors and retinal ganglion cells.Low plasma taurine levels may also underlie retinal degeneration in humans and therefore,taurine administration could exert retinal neuroprotective effects.Taurine has antioxidant,anti-apoptotic,immunomodulatory,and calcium homeostasis-regulatory properties.This review summarizes the role of taurine in retinal health and disease,where it appears that taurine may be a promising nutraceutical.展开更多
Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models.Mesenchymal stromal cells are well positioned as therapeutics because they address the und...Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models.Mesenchymal stromal cells are well positioned as therapeutics because they address the underlying mechanisms of neurodegeneration,namely trophic factor deprivation and neuroinflammation.Most studies have focused on the beneficial effects of mesenchymal stromal cell transplantation on neuronal survival or functional improvement.However,little attention has been paid to the interaction between mesenchymal stromal cells and the host immune system due to the immunomodulatory properties of mesenchymal stromal cells and the long-held belief of the immunoprivileged status of the central nervous system.Here,we review the crosstalk between mesenchymal stromal cells and the immune system in general and in the context of the central nervous system,focusing on recent work in the retina and the importance of the type of transplantation.展开更多
The retina of zebrafish can regenerate completely after injury.M ultiple studies have demonstrated that metabolic alte rations occur during retinal damage;however to date no study has identified a link between metabol...The retina of zebrafish can regenerate completely after injury.M ultiple studies have demonstrated that metabolic alte rations occur during retinal damage;however to date no study has identified a link between metabolites and retinal regeneration of zebrafish.Here,we performed an unbiased metabolome sequencing in the N-methyl-D-aspartic acid-damaged retinas of zebrafish to demonstrate the metabolomic mechanism of retinal regeneration.Among the differentially-ex pressed metabolites,we found a significant decrease in p-aminobenzoic acid in the N-methyl-D-aspartic acid-damaged retinas of zebrafish.Then,we investigated the role of p-aminobenzoic acid in retinal regeneration in adult zebrafish.Impo rtantly,p-aminobenzoic acid activated Achaetescute complex-like 1a expression,thereby promoting Müller glia reprogramming and division,as well as Müller glia-derived progenitor cell proliferation.Finally,we eliminated folic acid and inflammation as downstream effectors of PABA and demonstrated that PABA had little effect on Müller glia distribution.Taken together,these findings show that PABA contributes to retinal regeneration through activation of Achaetescute complex-like 1a expression in the N-methyl-Daspartic acid-damaged retinas of zebrafish.展开更多
Elevated intraocular pressure(IOP)is one of the causes of retinal ischemia/reperfusion injury,which results in NRP3 inflammasome activation and leads to visual damage.Homerla is repo rted to play a protective role in ...Elevated intraocular pressure(IOP)is one of the causes of retinal ischemia/reperfusion injury,which results in NRP3 inflammasome activation and leads to visual damage.Homerla is repo rted to play a protective role in neuroinflammation in the cerebrum.However,the effects of Homerla on NLRP3inflammasomes in retinal ischemia/reperfusion injury caused by elevated IOP remain unknown.In our study,animal models we re constructed using C57BL/6J and Homer1^(flox/-)/Homerla^(+/-)/Nestin-Cre^(+/-)mice with elevated IOP-induced retinal ischemia/repe rfusion injury.For in vitro expe riments,the oxygen-glucose deprivation/repe rfusion injury model was constructed with M uller cells.We found that Homerla ove rexpression amelio rated the decreases in retinal thickness and Muller cell viability after ischemia/reperfusion injury.Furthermore,Homerla knockdown promoted NF-κB P65^(Ser536)activation via caspase-8,NF-κB P65 nuclear translocation,NLRP3 inflammasome formation,and the production and processing of interleukin-1βand inte rleukin-18.The opposite results we re observed with Homerla ove rexpression.Finally,the combined administration of Homerla protein and JSH-23 significantly inhibited the reduction in retinal thickness in Homer1^(flox/-)Homer1a^(+/-)/Nestin-Cre^(+/-)mice and apoptosis in M uller cells after ischemia/reperfusion injury.Taken together,these studies demonstrate that Homer1a exerts protective effects on retinal tissue and M uller cells via the caspase-8/NF-KB P65/NLRP3 pathway after I/R injury.展开更多
Dysfunction in circadian rhythms is a common occurrence in patients with Alzheimer’s disease.A predominant function of the retina is circadian synchronization,carrying information to the brain through the retinohypot...Dysfunction in circadian rhythms is a common occurrence in patients with Alzheimer’s disease.A predominant function of the retina is circadian synchronization,carrying information to the brain through the retinohypothalamic tract,which projects to the suprachiasmatic nucleus.Notably,Alzheimer’s disease hallmarks,including amyloid-β,are present in the retinas of Alzheimer’s disease patients,followed/associated by structural and functional disturbances.However,the mechanistic link between circadian dysfunction and the pathological changes affecting the retina in Alzheimer’s disease is not fully understood,although some studies point to the possibility that retinal dysfunction could be considered an early pathological process that directly modulates the circadian rhythm.展开更多
AIM:To review and summarize the mechanism hypothesis,influencing factors and possible consequences of macular retinal displacement after idiopathic macular hole(IMH)surgery.METHODS:PubMed and Web of Science database w...AIM:To review and summarize the mechanism hypothesis,influencing factors and possible consequences of macular retinal displacement after idiopathic macular hole(IMH)surgery.METHODS:PubMed and Web of Science database was searched for studies published before April 2023 on“Retinal displacement”,“Idiopathic macular holes”,and“Macular displacement”.RESULTS:Recently,more academics have begun to focus on retinal displacement following idiopathic macular holes.They found that internal limiting membrane(ILM)peeling was the main cause of inducing postoperative position shift in the macular region.Moreover,several studies have revealed that the macular hole itself,as well as ILM peeling method,will have an impact on the result.In addition,this phenomenon is related to postoperative changes in macular retinal thickness,cone outer segment tips line recovery,the occurrence of dissociated optic nerve fiber layer(DONFL)and the degree of metamorphopsia.CONCLUSION:As a subclinical phenomenon,the clinical significance of postoperative macular displacement cannot be underestimated as it may affect the recovery of anatomy and function.展开更多
AIM:To examine the disparities in macular retinal vascular density between individuals with connective tissue disease-related interstitial lung disease(CTD-ILD)and healthy controls(HCs)by optical coherence tomography ...AIM:To examine the disparities in macular retinal vascular density between individuals with connective tissue disease-related interstitial lung disease(CTD-ILD)and healthy controls(HCs)by optical coherence tomography angiography(OCTA)and to investigate the changes in microvascular density in abnormal eyes.METHODS:For a retrospective case-control study,a total of 16 patients(32 eyes)diagnosed with CTD-ILD were selected as the ILD group.The 16 healthy volunteers with 32 eyes,matched in terms of age and sex with the patients,were recruited as control group.The macular retina’s superficial retinal layer(SRL)and deep retinal layer(DRL)were examined and scanned using OCTA in each individual eye.The densities of retinal microvascular(MIR),macrovascular(MAR),and total microvascular(TMI)were calculated and compared.Changes in retinal vascular density in the macular region were analyzed using three different segmentation methods:central annuli segmentation method(C1-C6),hemispheric segmentation method[uperior right(SR),superior left(SL),inferior left(IL),and inferior right(IR)],and Early Treatment Diabetic Retinopathy Study(ETDRS)methods[superior(S),inferior(I),left(L),and right(R)].The data were analyzed using Version 9.0 of GraphPad prism and Pearson analysis.RESULTS:The OCTA data demonstrated a statistically significant difference(P<0.05)in macular retinal microvessel density between the two groups.Specifically,in the SRL and DRL analyses,the ILD group exhibited significantly lower surface density of MIR and TMI compared to the HCs group(P<0.05).Furthermore,using the hemispheric segmentation method,the ILD group showed notable reductions in SL,SR,and IL in the superficial retina(P<0.05),as well as marked decreases in SL and IR in the deep retina(P<0.05).Similarly,when employing the ETDRS method,the ILD group displayed substantial drops in superficial retinal S and I(P<0.05),along with notable reductions in deep retinal L,I,and R(P<0.05).In the central annuli segmentation method,the ILD group exhibited a significant decrease in the superficial retinal C2-4 region(P<0.05),whereas the deep retina showed a notable reduction in the C3-5 region(P<0.05).Additionally,there was an observed higher positive likelihood ratio in the superficial SR region and deep MIR.Furthermore,there was a negative correlation between conjunctival vascular density and both deep and superficial retinal TMI(P<0.001).CONCLUSION:Patients with CTD-ILD exhibits a significantly higher conjunctival vascular density compared to the HCs group.Conversely,their fundus retinal microvascular density is significantly lower.Furthermore,CTD-ILD patients display notably lower superficial and deep retinal vascular density in comparison to the HCs group.The inverse correlation between conjunctival vascular density and both superficial and deep retinal TMI suggests that detecting subtle changes in ocular microcirculation could potentially serve as an early diagnostic indicator for connective tissue diseases,thereby enhancing disease management.展开更多
Medical image registration is vital for disease diagnosis and treatment with its ability to merge diverse informa-tion of images,which may be captured under different times,angles,or modalities.Although several survey...Medical image registration is vital for disease diagnosis and treatment with its ability to merge diverse informa-tion of images,which may be captured under different times,angles,or modalities.Although several surveys have reviewed the development of medical image registration,they have not systematically summarized the existing med-ical image registration methods.To this end,a comprehensive review of these methods is provided from traditional and deep-learning-based perspectives,aiming to help audiences quickly understand the development of medical image registration.In particular,we review recent advances in retinal image registration,which has not attracted much attention.In addition,current challenges in retinal image registration are discussed and insights and prospects for future research provided.展开更多
AIM: To elucidate the question of whether the ocular trauma score(OTS) and the zones of injury could be used as a predictive model of traumatic and post traumatic retinal detachment(RD) in patients with open globe inj...AIM: To elucidate the question of whether the ocular trauma score(OTS) and the zones of injury could be used as a predictive model of traumatic and post traumatic retinal detachment(RD) in patients with open globe injury(OGI).METHODS: A retrospective observational chart analysis of OGI patients was performed. The collected variables consisted of age, date, gender, time of injury, time until repair, mechanism of injury, zone of injury, injury associated vitreous hemorrhage, trauma associated RD, post traumatic RD, aphakia at injury, periocular trauma and OTS in cases of OGI. RESULTS: Totally 102 patients with traumatic OGI with a minimum of 12 mo follow-up and a median age at of 48.6 y(range: 3-104 y) were identified. Final best corrected visual acuity(BCVA) was independent from the time of repair, yet a statistically significant difference was present between the final BCVA and the zone of injury. Severe trauma presenting with an OTS score Ⅰ(P<0.0001) or Ⅱ(P<0.0001) revealed a significantly worse BCVA at last follow up when compared to the cohort with an OTS score >Ⅲ. OGI associated RD was observed in 36/102 patients(35.3%), whereas post traumatic RD(defined as RD following 14 d after OGI) occurred in 37 patients(36.3%). OGI associated RD did not correlate with the OTS and the zone of injury(P=0.193), yet post traumatic RD correlated significantly with zone Ⅲ injuries(P=0.013). CONCLUSION: The study shows a significant association between lower OTS score and zone Ⅲ injury with lower final BCVA and a higher number of surgeries, but only zone Ⅲ could be significantly associated with a higher rate of RD.展开更多
The retinal thickness at posterior pole of normal subjects was mea-sured by using retinal thickness analyzer (RTA) to determine the values of retinal thickness and to establish map of retinal thickness in normal subje...The retinal thickness at posterior pole of normal subjects was mea-sured by using retinal thickness analyzer (RTA) to determine the values of retinal thickness and to establish map of retinal thickness in normal subjects. The retina of 6 mm× 6 mm in size (approximately 20°, centered on the macula) at the poste-rior pole was scanned by using RTA to obtain images of 116 normal eyes of 77cases of various age group. The irnages were processed by a computer to obtain the retinal thickness values and the thickness map of this location. The data were analyzed with SAS software package. The mean retinal thickness was 171. 77±26. 13 pm with no significant difference among the various age groups (P>0. 05).The thickness maps of the retina of 6 mm× 6 mm size at the posterior pole around the macula rendered a 'U'-shaped pattern, extending from the disc to the superior and inferior of the fovea. The retina was found to be thin at temporal side of the fovea, with the thinnest area being at the macula central fovea. The U-shaped pattern of the retinal thickness maps was well in agreement with the topography of the ganglion cells and the retinal nerve fibers in human retina. The measurement of the retinal thickness by RTA reflected the changes in the layers of ganglion cells and the retinal nerve fiber. Each scanning session of RTA examination can yield multiple optical cross-section images of the retina and obtain retinal thickness maps of posterior pole of living eyes.展开更多
基金supported by the National Natural Science Foundation of China,Nos.81901156(to ZZ),82271200(to ZZ),82171308(to XC)the Fundamental Research Funds for the Central Universities,No.xzy012022035(to ZZ)+1 种基金the Natural Science Foundation of Shaanxi Province,Nos.2021JM-261(to QK),2023-YBSF-303(to ZZ)Traditional Chinese Medicine Project of Shaanxi Province,No.2019-ZZ-JC047(to QK)。
文摘The organotypic retinal explant culture has been established for more than a decade and offers a range of unique advantages compared with in vivo experiments and cell cultures.However,the lack of systematic and continuous comparison between in vivo retinal development and the organotypic retinal explant culture makes this model controversial in postnatal retinal development studies.Thus,we aimed to verify the feasibility of using this model for postnatal retinal development studies by comparing it with the in vivo retina.In this study,we showed that postnatal retinal explants undergo normal development,and exhibit a consistent structure and timeline with retinas in vivo.Initially,we used SOX2 and PAX6 immunostaining to identify retinal progenitor cells.We then examined cell proliferation and migration by immunostaining with Ki-67 and doublecortin,respectively.Ki-67-and doublecortin-positive cells decreased in both in vivo and explants during postnatal retinogenesis,and exhibited a high degree of similarity in abundance and distribution between groups.Additionally,we used Ceh-10 homeodomain-containing homolog,glutamate-ammonia ligase(glutamine synthetase),neuronal nuclei,and ionized calcium-binding adapter molecule 1 immunostaining to examine the emergence of bipolar cells,Müller glia,mature neurons,and microglia,respectively.The timing and spatial patterns of the emergence of these cell types were remarkably consistent between in vivo and explant retinas.Our study showed that the organotypic retinal explant culture model had a high degree of consistency with the progression of in vivo early postnatal retina development.The findings confirm the accuracy and credibility of this model and support its use for long-term,systematic,and continuous observation.
基金supported by the National Natural Science Foundation of China(No.12205224)the Research Foundation of Education Bureau of Hubei Province China(No.Q20221703)+1 种基金the National Natural Science Foundation of China(Nos.12035006,U2032140)the National Key Research and Development Program of China(No.2020YFE0202000)。
文摘This study presents a real-time tracking algorithm derived from the retina algorithm,designed for the rapid,real-time tracking of straight-line particle trajectories.These trajectories are detected by pixel detectors to localize single-event effects in two-dimensional space.Initially,we developed a retina algorithm to track the trajectory of a single heavy ion and achieved a positional accuracy of 40μm.This was accomplished by analyzing trajectory samples from the simulations using a pixel sensor with a 72×72 pixel array and an 83μm pixel pitch.Subsequently,we refined this approach to create an iterative retina algorithm for tracking multiple heavy-ion trajectories in single events.This iterative version demonstrated a tracking efficiency of over 97%,with a positional resolution comparable to that of single-track events.Furthermore,it exhibits significant parallelism,requires fewer resources,and is ideally suited for implementation in field-programmable gate arrays on board-level systems,facilitating real-time online trajectory tracking.
基金Hongguang Wu,Both authors contributed equally to this work and share first authorshipLing Dong,Both authors contributed equally to this work and share first authorship。
文摘The human retina,a complex and highly specialized structure,includes multiple cell types that work synergistically to generate and transmit visual signals.However,genetic predisposition or age-related degeneration can lead to retinal damage that severely impairs vision or causes blindness.Treatment options for retinal diseases are limited,and there is an urgent need for innovative therapeutic strategies.Cell and gene therapies are promising because of the efficacy of delivery systems that transport therapeutic genes to targeted retinal cells.Gene delivery systems hold great promise for treating retinal diseases by enabling the targeted delivery of therapeutic genes to affected cells or by converting endogenous cells into functional ones to facilitate nerve regeneration,potentially restoring vision.This review focuses on two principal categories of gene delivery vectors used in the treatment of retinal diseases:viral and non-viral systems.Viral vectors,including lentiviruses and adeno-associated viruses,exploit the innate ability of viruses to infiltrate cells,which is followed by the introduction of therapeutic genetic material into target cells for gene correction.Lentiviruses can accommodate exogenous genes up to 8 kb in length,but their mechanism of integration into the host genome presents insertion mutation risks.Conversely,adeno-associated viruses are safer,as they exist as episomes in the nucleus,yet their limited packaging capacity constrains their application to a narrower spectrum of diseases,which necessitates the exploration of alternative delivery methods.In parallel,progress has also occurred in the development of novel non-viral delivery systems,particularly those based on liposomal technology.Manipulation of the ratios of hydrophilic and hydrophobic molecules within liposomes and the development of new lipid formulations have led to the creation of advanced non-viral vectors.These innovative systems include solid lipid nanoparticles,polymer nanoparticles,dendrimers,polymeric micelles,and polymeric nanoparticles.Compared with their viral counterparts,non-viral delivery systems offer markedly enhanced loading capacities that enable the direct delivery of nucleic acids,mRNA,or protein molecules into cells.This bypasses the need for DNA transcription and processing,which significantly enhances therapeutic efficiency.Nevertheless,the immunogenic potential and accumulation toxicity associated with non-viral particulate systems necessitates continued optimization to reduce adverse effects in vivo.This review explores the various delivery systems for retinal therapies and retinal nerve regeneration,and details the characteristics,advantages,limitations,and clinical applications of each vector type.By systematically outlining these factors,our goal is to guide the selection of the optimal delivery tool for a specific retinal disease,which will enhance treatment efficacy and improve patient outcomes while paving the way for more effective and targeted therapeutic interventions.
基金supported by the National Key Research and Development Program of China(No.2023YFD2400900)the National Natural Science Foundation of China(Nos.32171619 and 32201388)+2 种基金the Youth project of the Natural Science Foundation of Hubei Province(No.2021CFB243)Hubei Province Excellent Young and Middle aged Science and Technology Innovation Team Project(No.T2022028)the Youth Talent Project of Science and Technology Research Program of Hubei Provincial Department of Education(No.Q20212503)。
文摘Microcystin-LR(MC-LR)is a highly toxic category of biotoxins that can damage eye development and retinal structure in zebrafish,while probiotics can largely benefit the function of the retina.Although they both act on the visual system,whether probiotics can alleviate the visual damage caused by MC-LR in fish and the underlying mechanisms remains unclear.In this study,we exposed adult zebrafish for 28 days at MC-LR concentrations of 0,2.20,and 22.00μg/L with or without the probiotic Lactobacillus rhamnosus in the diet.MC-LR exposure alone resulted in structural damage to the retina and abnormal phototropic behavior,whereas L.rhamnosus could alleviate these damages.Biochemical analyses showed thatMCLR-induced abnormalities in apoptosis of ocular cells,retinal inflammatory responses,neurotransmission,and phototransduction were restored in the L.rhamnosus treatment group,indicating L.rhamnosus alleviated MC-LR-induced defects in the visual system and dysfunctions.This study underlines the defensive role of probiotics in protecting the host from environmental pollutants,which may provide guidance for the application of probiotics in aquaculture.
基金Supported by the Anhui Medical University Research Fund(No.2023xkj035)National Natural Science Foundation Incubation Program Project of the Second Affiliated Hospital of Anhui Medical University(No.2023GQFY05)the Key Research and Development Technology project of Anhui Province(No.2022j11020013).
文摘AIM:To examined the effects of a high-fat diet(HFD)on retinal pathological changes and dysfunction using peroxisome proliferator-activated receptor-alpha(PPARα)knockout mice.METHODS:For four months,C57BL/6J and PPARαknockout mice received either HFD or a standard diet(SD).A fluorometric method was used to determine the retinal triglycerides.The retinal malondialdehyde(MDA)content was measured.Hematoxylin-eosin was used to evaluate retinal pathological changes.Protein expression was analyzed by Western blot and immunofluorescence,while mRNA expression was evaluated by quantitative reverse transcription-polymerase chain reaction.Electroretinogram was used to assess retinal function.RESULTS:HFD resulted in increased fatty acidβ-oxidation in the inner retina,particularly retinal ganglion cells(RGCs),as well as increased weight and accumulation of retinal triglyceride.Retinal fatty acid β-oxidation and triglyceride accumulation were affected by PPARα^(−/−)abnormalities.PPARαknockdown increased the infiltration and activation of inflammatory cells,as well as it upregulated the nuclear factor kappa B(NF-κB)signaling pathway and corresponding proinflammatory cytokine levels in the most retina subjected to the HFD.In the HFD mice,oxidative stress levels were elevated in the inner retina,particularly in the HFD PPARα^(−/−)mice.HFD-induced RGCs apoptosis initiation was exacerbated by PPARαdeficiency.Lastly,HFD feeding resulted in the lower amplitudes of scotopic a-wave,b-wave and photopic negative response(PhNR)wave,particularly in HFD PPARα^(−/−)mice.CONCLUSION:In HFD-fed mice retina,particularly in the inner retina,PPARα knockout increases lipid metabolic abnormalities,inflammatory responses,oxidative stress,apoptosis initiation and dysfunction.
基金Supported by the Tianjin Health Research Project(No.ZC20069No.TJWJ2022MS040)+1 种基金the Foundation of the Committee of Integrated Traditional Chinese and Western Medicine(No.2021011)the Science and Technology Foundation of Tianjin Eye Hospital(No.YKYB1901).
文摘AIM:To explore the effect and mechanism of Lycium barbarum polysaccharide(LBP)inhibiting retinal neovascularization.METHODS:In vitro tests were performed on human retinal microvascular endothelial cells(HRECs)from three groups,including control group(normal oxygen),hypoxic group(hypoxia at 37℃,1%O_(2),5%CO_(2),and 94%N_(2)),and LBP group(hypoxic group with LBP 100μg/mL).In vivo experiments,C57 mice were divided into three groups:control group(normal rearing group),the oxygen-induced ischemic retinopathy(OIR)group,and the OIR with 50 mg/kg LBP group.Retinal neovascularization was observed by fluorescein angiography and quantified.Retinal thickness was evaluated by Hematoxylin and eosin(HE)stain.The expression of epidermal growth factor receptor(EGFR),phosphatidylinositol 3-kinase(PI3K),mammalian target of rapamycin(mTOR),phosphorylated mammalian target of rapamycin(p-mTOR),protein kinase B(AKT),phosphorylated protein kinase B(p-AKT),interleukin-1β(IL-1β),inducible nitric oxide synthase(iNOS),and tumor necrosis factor-α(TNF-α)in each group were analyzed by Western blot.IL-1βlevel in retina was analyzed using immunohistochemical staining.RESULTS:The increased area of neovascular clusters in OIR mice was significantly decreased by LBP.Retinal thickness of OIR mice was significantly thinner compared with normal oxygenated mice and was increased in LBP group.Compared with those in the hypoxic groups,Western blotting of HRECs and retinal tissues revealed that the expression of EGFR,PI3K,p-mTOR,p-AKT,IL-1β,iNOS,and TNF-αdecreased in the LBP group but was still greater than that in control group.Moreover,IL-1βwas reduced in retinal sections treated with LBP.In the scratch test,the cell migration of the hypoxic group was significantly greater than that of the control group,while LBP treatment attenuated this increase in migration.CONCLUSION:LBP reduces retinal neovascularization and inflammation in vivo and inhibits the migration of HRECs in vitro by regulating the EGFR/PI3K/Akt/mTOR signaling pathway.
基金supported by the National Natural Science Foundation of China,Nos.81970820(to HX),31771644(to JL),31930068(to JL),82371176(to JL),81801331(to LC)National Key Research and Development Project of China.Nos.2017YFA0104100(to JL),2017YFA0701304(to HX)+1 种基金Shanghai Yangzhi Rehabilitation Hospital(Shanghai Sunshine Rehabilitation Center)Talent Introduction Plan,No.KYPT202204(to LC)the Fundamental Research Funds for the Central Universities,No.22120230292(to JL)。
文摘Inflammation plays a crucial role in the regeneration of fish and avian retinas.However,how inflammation regulates Müller glia(MG)reprogramming remains unclear.Here,we used single-cell RNA sequencing to investigate the cell heterogeneity and interactions of MG and immune cells in the regenerating zebrafish retina.We first showed that two types of quiescent MG(resting MG1 and MG2)reside in the uninjured retina.Following retinal injury,resting MG1 transitioned into an activated state expressing known reprogramming genes,while resting MG2 gave rise to rod progenitors.We further showed that retinal microglia can be categorized into three subtypes(microglia-1,microglia-2,and proliferative)and pseudotime analysis demonstrated dynamic changes in microglial status following retinal injury.Analysis of cell–cell interactions indicated extensive crosstalk between immune cells and MG,with many interactions shared among different immune cell types.Finally,we showed that inflammation activated Jak1–Stat3 signaling in MG,promoting their transition from a resting to an activated state.Our study reveals the cell heterogeneity and crosstalk of immune cells and MG in zebrafish retinal repair,and may provide valuable insights into future mammalian retina regeneration.
基金supported by the National Natural Science Foundation of China,No.82371051(to DW)the Natural Science Foundation of Beijing,No.7212092(to DW)+1 种基金the Capital’s Funds for Health Improvement and Research,No.2022-2-5041(to DW)the Fund of Science and Technology Development of Beijing Rehabilitation Hospital,Capital Medical University,No.2021R-001(to YL).
文摘High intraocular pressure causes retinal ganglion cell injury in primary and secondary glaucoma diseases,yet the molecular landscape characteristics of retinal cells under high intraocular pressure remain unknown.Rat models of acute hypertension ocular pressure were established by injection of cross-linked hyaluronic acid hydrogel(Healaflow■).Single-cell RNA sequencing was then used to describe the cellular composition and molecular profile of the retina following high intraocular pressure.Our results identified a total of 12 cell types,namely retinal pigment epithelial cells,rod-photoreceptor cells,bipolar cells,Müller cells,microglia,cone-photoreceptor cells,retinal ganglion cells,endothelial cells,retinal progenitor cells,oligodendrocytes,pericytes,and fibroblasts.The single-cell RNA sequencing analysis of the retina under acute high intraocular pressure revealed obvious changes in the proportions of various retinal cells,with ganglion cells decreased by 23%.Hematoxylin and eosin staining and TUNEL staining confirmed the damage to retinal ganglion cells under high intraocular pressure.We extracted data from retinal ganglion cells and analyzed the retinal ganglion cell cluster with the most distinct expression.We found upregulation of the B3gat2 gene,which is associated with neuronal migration and adhesion,and downregulation of the Tsc22d gene,which participates in inhibition of inflammation.This study is the first to reveal molecular changes and intercellular interactions in the retina under high intraocular pressure.These data contribute to understanding of the molecular mechanism of retinal injury induced by high intraocular pressure and will benefit the development of novel therapies.
基金supported by the Youth Fund of Fundamental Research Fund for the Central Universities of Jinan University,No.11622303(to YZ).
文摘Microvasculature of the retina is considered an alternative marker of cerebral vascular risk in healthy populations.However,the ability of retinal vasculature changes,specifically focusing on retinal vessel diameter,to predict the recurrence of cerebrovascular events in patients with ischemic stroke has not been determined comprehensively.While previous studies have shown a link between retinal vessel diameter and recurrent cerebrovascular events,they have not incorporated this information into a predictive model.Therefore,this study aimed to investigate the relationship between retinal vessel diameter and subsequent cerebrovascular events in patients with acute ischemic stroke.Additionally,we sought to establish a predictive model by combining retinal veessel diameter with traditional risk factors.We performed a prospective observational study of 141 patients with acute ischemic stroke who were admitted to the First Affiliated Hospital of Jinan University.All of these patients underwent digital retinal imaging within 72 hours of admission and were followed up for 3 years.We found that,after adjusting for related risk factors,patients with acute ischemic stroke with mean arteriolar diameter within 0.5-1.0 disc diameters of the disc margin(MAD_(0.5-1.0DD))of≥74.14μm and mean venular diameter within 0.5-1.0 disc diameters of the disc margin(MVD_(0.5-1.0DD))of≥83.91μm tended to experience recurrent cerebrovascular events.We established three multivariate Cox proportional hazard regression models:model 1 included traditional risk factors,model 2 added MAD_(0.5-1.0DD)to model 1,and model 3 added MVD0.5-1.0DD to model 1.Model 3 had the greatest potential to predict subsequent cerebrovascular events,followed by model 2,and finally model 1.These findings indicate that combining retinal venular or arteriolar diameter with traditional risk factors could improve the prediction of recurrent cerebrovascular events in patients with acute ischemic stroke,and that retinal imaging could be a useful and non-invasive method for identifying high-risk patients who require closer monitoring and more aggressive management.
基金supported by the National Natural Science Foundation of China(81970841,82101160,82121003)the Department of Science and Technology of Sichuan Province(2023ZYD0172,2023YFS0161)+3 种基金the program of Science and Technology International Cooperation Project of Qinghai province(China)(No.2022-HZ-814)Sichuan Intellectual Property Office(China)(No.2022-ZS-0070)the CAMS Innovation Fund for Medical Sciences(2019-12M-5-032)Open Project of Henan Provincial Key Laboratory of Ophthalmology and Visual Science(20KFKT02).
文摘Inherited retinal dystrophies (IRDs) are major causes of visual impairment and irreversible blindness worldwide, while the precise molecular and genetic mechanisms are still elusive. N6-methyladenosine (m^(6)A) modification is the most prevalent internal modification in eukaryotic mRNA. YTH domain containing 2 (YTHDC2), an m^(6)A reader protein, has recently been identified as a key player in germline development and human cancer. However, its contribution to retinal function remains unknown. Here, we explore the role of YTHDC2 in the visual function of retinal rod photoreceptors by generating rod-specific Ythdc2 knockout mice. Results show that Ythdc2 deficiency in rods causes diminished scotopic ERG responses and progressive retinal degeneration. Multi-omics analysis further identifies Ppef2 and Pde6b as the potential targets of YTHDC2 in the retina. Specifically, via its YTH domain, YTHDC2 recognizes and binds m^(6)A-modified Ppef2 mRNA at the coding sequence and Pde6b mRNA at the 5′-UTR, resulting in enhanced translation efficiency without affecting mRNA levels. Compromised translation efficiency of Ppef2 and Pde6b after YTHDC2 depletion ultimately leads to decreased protein levels in the retina, impaired retinal function, and progressive rod death. Collectively, our finding highlights the importance of YTHDC2 in visual function and photoreceptor survival, which provides an unreported elucidation of IRD pathogenesis via epitranscriptomics.
基金supported by Instituto de Salud CarlosⅢ(ISCⅢ):PI19/00203cofunded by ERDF+9 种基金"A way to make Europe"to MPVP and DGAP122/00900RD16/0008/0026 co-funded by ERDF"A way to make Europe"to MPVP and RD21/0002/0014financiado porla Unión Europea-NextGenerationEUFundación Robles Chillida to DGARED2018-102499-TPID201 9-106498GB-I00funded by MCIN/AEI/10.13039/501100011 033 to MVSIHU FOReSIGHT[ANR-18-IAHU-0001] to SP
文摘Taurine is considered a non-essential amino acid because it is synthesized by most mammals.However,dietary intake of taurine may be necessary to achieve the physiological levels required for the development,maintenance,and function of certain tissues.Taurine may be especially important for the retina.The concentration of taurine in the retina is higher than that in any other tissue in the body and taurine deficiency causes retinal oxidative stress,apoptosis,and degeneration of photoreceptors and retinal ganglion cells.Low plasma taurine levels may also underlie retinal degeneration in humans and therefore,taurine administration could exert retinal neuroprotective effects.Taurine has antioxidant,anti-apoptotic,immunomodulatory,and calcium homeostasis-regulatory properties.This review summarizes the role of taurine in retinal health and disease,where it appears that taurine may be a promising nutraceutical.
基金funded by the Spanish Ministry of Economy and Competitiveness,No.PID(2019)-106498GB-100 (to MVS)by the Instituto de Salud CarlosⅢ,Fondo Europeo de Desarrollo Regional"Una manera de hacer Europa",No.PI19/00071 (to MAB)+2 种基金the RETICS subprograms of Spanish Networks OftoRed,Nos.RD16/0008/0026 (to DGB) and RD16/0008/0016 (to DGB)RICORS Terav,No.RD16/0011/0001 (to DGB)from Instituto de Salud CarlosⅢby the Fundacion Seneca,Agencia de Cienciay Tecnologia Región de Murcia,No.19881/GERM/15 (all to MVS)
文摘Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models.Mesenchymal stromal cells are well positioned as therapeutics because they address the underlying mechanisms of neurodegeneration,namely trophic factor deprivation and neuroinflammation.Most studies have focused on the beneficial effects of mesenchymal stromal cell transplantation on neuronal survival or functional improvement.However,little attention has been paid to the interaction between mesenchymal stromal cells and the host immune system due to the immunomodulatory properties of mesenchymal stromal cells and the long-held belief of the immunoprivileged status of the central nervous system.Here,we review the crosstalk between mesenchymal stromal cells and the immune system in general and in the context of the central nervous system,focusing on recent work in the retina and the importance of the type of transplantation.
基金supported by the National Natural Science Foundation of China,Nos.81974134(to XX)and 82000895(to HL)National Key Research and Development Program of China,Nos.2021YFA1101200&2021YFA1101202National Natural Science Foundation of Hunan Province,China,No.2022JJ30071(to HL)。
文摘The retina of zebrafish can regenerate completely after injury.M ultiple studies have demonstrated that metabolic alte rations occur during retinal damage;however to date no study has identified a link between metabolites and retinal regeneration of zebrafish.Here,we performed an unbiased metabolome sequencing in the N-methyl-D-aspartic acid-damaged retinas of zebrafish to demonstrate the metabolomic mechanism of retinal regeneration.Among the differentially-ex pressed metabolites,we found a significant decrease in p-aminobenzoic acid in the N-methyl-D-aspartic acid-damaged retinas of zebrafish.Then,we investigated the role of p-aminobenzoic acid in retinal regeneration in adult zebrafish.Impo rtantly,p-aminobenzoic acid activated Achaetescute complex-like 1a expression,thereby promoting Müller glia reprogramming and division,as well as Müller glia-derived progenitor cell proliferation.Finally,we eliminated folic acid and inflammation as downstream effectors of PABA and demonstrated that PABA had little effect on Müller glia distribution.Taken together,these findings show that PABA contributes to retinal regeneration through activation of Achaetescute complex-like 1a expression in the N-methyl-Daspartic acid-damaged retinas of zebrafish.
基金supported by the Youth Development Project of Air Force Military Medical University,No.21 QNPY072Key Project of Shaanxi Provincial Natural Science Basic Research Program,No.2023-JC-ZD-48(both to FF)。
文摘Elevated intraocular pressure(IOP)is one of the causes of retinal ischemia/reperfusion injury,which results in NRP3 inflammasome activation and leads to visual damage.Homerla is repo rted to play a protective role in neuroinflammation in the cerebrum.However,the effects of Homerla on NLRP3inflammasomes in retinal ischemia/reperfusion injury caused by elevated IOP remain unknown.In our study,animal models we re constructed using C57BL/6J and Homer1^(flox/-)/Homerla^(+/-)/Nestin-Cre^(+/-)mice with elevated IOP-induced retinal ischemia/repe rfusion injury.For in vitro expe riments,the oxygen-glucose deprivation/repe rfusion injury model was constructed with M uller cells.We found that Homerla ove rexpression amelio rated the decreases in retinal thickness and Muller cell viability after ischemia/reperfusion injury.Furthermore,Homerla knockdown promoted NF-κB P65^(Ser536)activation via caspase-8,NF-κB P65 nuclear translocation,NLRP3 inflammasome formation,and the production and processing of interleukin-1βand inte rleukin-18.The opposite results we re observed with Homerla ove rexpression.Finally,the combined administration of Homerla protein and JSH-23 significantly inhibited the reduction in retinal thickness in Homer1^(flox/-)Homer1a^(+/-)/Nestin-Cre^(+/-)mice and apoptosis in M uller cells after ischemia/reperfusion injury.Taken together,these studies demonstrate that Homer1a exerts protective effects on retinal tissue and M uller cells via the caspase-8/NF-KB P65/NLRP3 pathway after I/R injury.
文摘Dysfunction in circadian rhythms is a common occurrence in patients with Alzheimer’s disease.A predominant function of the retina is circadian synchronization,carrying information to the brain through the retinohypothalamic tract,which projects to the suprachiasmatic nucleus.Notably,Alzheimer’s disease hallmarks,including amyloid-β,are present in the retinas of Alzheimer’s disease patients,followed/associated by structural and functional disturbances.However,the mechanistic link between circadian dysfunction and the pathological changes affecting the retina in Alzheimer’s disease is not fully understood,although some studies point to the possibility that retinal dysfunction could be considered an early pathological process that directly modulates the circadian rhythm.
文摘AIM:To review and summarize the mechanism hypothesis,influencing factors and possible consequences of macular retinal displacement after idiopathic macular hole(IMH)surgery.METHODS:PubMed and Web of Science database was searched for studies published before April 2023 on“Retinal displacement”,“Idiopathic macular holes”,and“Macular displacement”.RESULTS:Recently,more academics have begun to focus on retinal displacement following idiopathic macular holes.They found that internal limiting membrane(ILM)peeling was the main cause of inducing postoperative position shift in the macular region.Moreover,several studies have revealed that the macular hole itself,as well as ILM peeling method,will have an impact on the result.In addition,this phenomenon is related to postoperative changes in macular retinal thickness,cone outer segment tips line recovery,the occurrence of dissociated optic nerve fiber layer(DONFL)and the degree of metamorphopsia.CONCLUSION:As a subclinical phenomenon,the clinical significance of postoperative macular displacement cannot be underestimated as it may affect the recovery of anatomy and function.
基金Supported by National Natural Science Foundation of China(No.82160195)Key R&D Program of Jiangxi Province(No.20223BBH80014)General Science and Technology Program of the Department of Traditional Chinese Medicine,Jiangxi Provincial Health Commission(No.2017A241).
文摘AIM:To examine the disparities in macular retinal vascular density between individuals with connective tissue disease-related interstitial lung disease(CTD-ILD)and healthy controls(HCs)by optical coherence tomography angiography(OCTA)and to investigate the changes in microvascular density in abnormal eyes.METHODS:For a retrospective case-control study,a total of 16 patients(32 eyes)diagnosed with CTD-ILD were selected as the ILD group.The 16 healthy volunteers with 32 eyes,matched in terms of age and sex with the patients,were recruited as control group.The macular retina’s superficial retinal layer(SRL)and deep retinal layer(DRL)were examined and scanned using OCTA in each individual eye.The densities of retinal microvascular(MIR),macrovascular(MAR),and total microvascular(TMI)were calculated and compared.Changes in retinal vascular density in the macular region were analyzed using three different segmentation methods:central annuli segmentation method(C1-C6),hemispheric segmentation method[uperior right(SR),superior left(SL),inferior left(IL),and inferior right(IR)],and Early Treatment Diabetic Retinopathy Study(ETDRS)methods[superior(S),inferior(I),left(L),and right(R)].The data were analyzed using Version 9.0 of GraphPad prism and Pearson analysis.RESULTS:The OCTA data demonstrated a statistically significant difference(P<0.05)in macular retinal microvessel density between the two groups.Specifically,in the SRL and DRL analyses,the ILD group exhibited significantly lower surface density of MIR and TMI compared to the HCs group(P<0.05).Furthermore,using the hemispheric segmentation method,the ILD group showed notable reductions in SL,SR,and IL in the superficial retina(P<0.05),as well as marked decreases in SL and IR in the deep retina(P<0.05).Similarly,when employing the ETDRS method,the ILD group displayed substantial drops in superficial retinal S and I(P<0.05),along with notable reductions in deep retinal L,I,and R(P<0.05).In the central annuli segmentation method,the ILD group exhibited a significant decrease in the superficial retinal C2-4 region(P<0.05),whereas the deep retina showed a notable reduction in the C3-5 region(P<0.05).Additionally,there was an observed higher positive likelihood ratio in the superficial SR region and deep MIR.Furthermore,there was a negative correlation between conjunctival vascular density and both deep and superficial retinal TMI(P<0.001).CONCLUSION:Patients with CTD-ILD exhibits a significantly higher conjunctival vascular density compared to the HCs group.Conversely,their fundus retinal microvascular density is significantly lower.Furthermore,CTD-ILD patients display notably lower superficial and deep retinal vascular density in comparison to the HCs group.The inverse correlation between conjunctival vascular density and both superficial and deep retinal TMI suggests that detecting subtle changes in ocular microcirculation could potentially serve as an early diagnostic indicator for connective tissue diseases,thereby enhancing disease management.
基金supported in part by General Program of National Natural Science Foundation of China,Nos.82102189 and 82272086Guangdong Provincial Department of Education,No.SJZLGC202202.
文摘Medical image registration is vital for disease diagnosis and treatment with its ability to merge diverse informa-tion of images,which may be captured under different times,angles,or modalities.Although several surveys have reviewed the development of medical image registration,they have not systematically summarized the existing med-ical image registration methods.To this end,a comprehensive review of these methods is provided from traditional and deep-learning-based perspectives,aiming to help audiences quickly understand the development of medical image registration.In particular,we review recent advances in retinal image registration,which has not attracted much attention.In addition,current challenges in retinal image registration are discussed and insights and prospects for future research provided.
文摘AIM: To elucidate the question of whether the ocular trauma score(OTS) and the zones of injury could be used as a predictive model of traumatic and post traumatic retinal detachment(RD) in patients with open globe injury(OGI).METHODS: A retrospective observational chart analysis of OGI patients was performed. The collected variables consisted of age, date, gender, time of injury, time until repair, mechanism of injury, zone of injury, injury associated vitreous hemorrhage, trauma associated RD, post traumatic RD, aphakia at injury, periocular trauma and OTS in cases of OGI. RESULTS: Totally 102 patients with traumatic OGI with a minimum of 12 mo follow-up and a median age at of 48.6 y(range: 3-104 y) were identified. Final best corrected visual acuity(BCVA) was independent from the time of repair, yet a statistically significant difference was present between the final BCVA and the zone of injury. Severe trauma presenting with an OTS score Ⅰ(P<0.0001) or Ⅱ(P<0.0001) revealed a significantly worse BCVA at last follow up when compared to the cohort with an OTS score >Ⅲ. OGI associated RD was observed in 36/102 patients(35.3%), whereas post traumatic RD(defined as RD following 14 d after OGI) occurred in 37 patients(36.3%). OGI associated RD did not correlate with the OTS and the zone of injury(P=0.193), yet post traumatic RD correlated significantly with zone Ⅲ injuries(P=0.013). CONCLUSION: The study shows a significant association between lower OTS score and zone Ⅲ injury with lower final BCVA and a higher number of surgeries, but only zone Ⅲ could be significantly associated with a higher rate of RD.
文摘The retinal thickness at posterior pole of normal subjects was mea-sured by using retinal thickness analyzer (RTA) to determine the values of retinal thickness and to establish map of retinal thickness in normal subjects. The retina of 6 mm× 6 mm in size (approximately 20°, centered on the macula) at the poste-rior pole was scanned by using RTA to obtain images of 116 normal eyes of 77cases of various age group. The irnages were processed by a computer to obtain the retinal thickness values and the thickness map of this location. The data were analyzed with SAS software package. The mean retinal thickness was 171. 77±26. 13 pm with no significant difference among the various age groups (P>0. 05).The thickness maps of the retina of 6 mm× 6 mm size at the posterior pole around the macula rendered a 'U'-shaped pattern, extending from the disc to the superior and inferior of the fovea. The retina was found to be thin at temporal side of the fovea, with the thinnest area being at the macula central fovea. The U-shaped pattern of the retinal thickness maps was well in agreement with the topography of the ganglion cells and the retinal nerve fibers in human retina. The measurement of the retinal thickness by RTA reflected the changes in the layers of ganglion cells and the retinal nerve fiber. Each scanning session of RTA examination can yield multiple optical cross-section images of the retina and obtain retinal thickness maps of posterior pole of living eyes.