Collisions between objects are a relatively common phenomenon in nature.Analyses of collision processes can greatly contribute to solving problems such as impact-rub faults and particle impacts.The coefficient of rest...Collisions between objects are a relatively common phenomenon in nature.Analyses of collision processes can greatly contribute to solving problems such as impact-rub faults and particle impacts.The coefficient of restitution is a critical parameter in the analysis of collision processes.Many experiments have shown that the coefficient of restitution is closely related to the plate thickness,and the smaller the plate thickness,the more inaccurate the coefficient of restitution predicted by the existing model,which seriously affects the process of collision analysis.To remedy this shortcoming,this paper proposes a plate thickness influence factor with the ratio of sphere diameter to plate thickness as the variable.The plate thickness influence factor can optimize the coefficient of restitution model to effectively predict the coefficient of restitution of impacting elastoplastic spheres with finite plate thickness.Finally,the validity of the new model is verified using a large amount of experimental data.展开更多
AIM: To investigate the functional, morphological changes of the gut barrier during the restitution process after hemorrhagic shock, and the regional differences of the large intestine and small intestine in response...AIM: To investigate the functional, morphological changes of the gut barrier during the restitution process after hemorrhagic shock, and the regional differences of the large intestine and small intestine in response to ischemia/ reperfusion injury. METHODS: Forty-seven Sprague-Dawley rats with body weight of 250-300 g were divided into two groups: control group (sham shock n = 5) and experimental group (n = 42). Experimental group was further divided into six groups (n = 7 each) according to different time points after the hemorrhagic shock, including 0^th group, 1^st group, 3^rd group, 6th h group, 12^th group and 24^th group. All the rats were gavaged with 2 mL of suspension of lactulose (L) (100 mg/2 mL) and mannitol (M) (50 mg/each) at the beginning and then an experimental rat model of hemorrhagic shock was set up. The specimens from jejunum, ileum and colon tissues and the blood samples from the portal vein were taken at 0, 1, 3, 6, 12 and 24 h after shock resuscitation, respectively. The morphological changes of the intestinal mucosa, including the histology of intestinal mucosa, the thickness of mucosa, the height of villi, the index of mucosal damage and the numbers of goblet cells, were determined by light microscope and/or electron microscope. The concentrations of the bacterial endotoxin lipopolysaccharides (LPS) from the portal vein blood, which reflected the gut barrier function, were examined by using Limulus test. At the same time point, to evaluate intestinal permeability, all urine was collected and the concentrations of the metabolically inactive markers such as L and M in urine were measured by using GC-9A gas chromatographic instrument.RESULTS: After the hemorrhagic shock, the mucosal epithelial injury was obvious in small intestine even at the 0th h, and it became more serious at the 1^stand the 3^rd h. The tissue restitution was also found after 3 h, though the injury was still serious. Most of the injured mucosal restitution was established after 6 h and completed in 24 h. Two distinct models of cell deathapoptosis and necrosis-were involved in the destruction of rat intestinal epithelial cells. The number of goblet cells on intestinal mucosa was reduced significantly from 0 to 24 h (the number from 243±13 to 157±9 for ileum, 310±19 to 248±18 for colon; r= -0.910 and -0.437 respectively, all P〈0.001), which was the same with the large intestine, but the grade of injury was lighter with the values of mucosal damage index in 3 h for jejunum, ileum, and colon being 2.8, 2.6, 1.2, respectively. The mucosal thickness and the height of villi in jejunum and ileum diminished in 1 h (the average height decreased from 309±24 to 204±23 pm and 271±31 to 231±28 pm, r = -0.758 and -0.659, all P〈0.001, the thickness from 547±23 to 418±28μm and 483±45 to 364±35μm, r= -0.898 and -0.829, all P〈0.001), but there was no statistical difference in the colon (F= 0.296, P = 0.934). Compared with control group, the urine L/M ratio and the blood LPS concentration in the experimental groups raised significantly, reaching the peak in 3-6 h (L/M: control vs 3 h vs6 h was 0.029±0.09 vs 0.063±0.012 vs 0.078±0.021, r = -0.786, P〈0.001; LPS: control vs3 h vs6 h was 0.09±0.021 vs 0.063±0.012 vs0.25±0.023, r=- -0.623, P〈0.001), and it kept increasing in 24 h. CONCLUSION: The gut barrier of the rats was seriously damaged at the early phase of ischemic reperfusion injury after hemorrhagic shock, which included the injury and atrophy in intestinal mucosa and the increasing of intestinal permeability. Simultaneously, the intestinal mucosa also showed its great repairing potentiality, such as the improvement of the intestinal permeability and the recovery of the morphology at different phases after ischemic reperfusion injury. The restitution of gut barrier function was obviously slower than that of the morphology and there was no direct correlation between them. Compared with the small intestine, the large intestine had stronger potentiality against injury. The reduction of the amount of intestinal goblet cells by injury did not influence the ability of intestinal mucosal restitution at a certain extent and it appeared to be intimately involved in the restitution of the epithelium.展开更多
Inflammatory bowel disease is characterized by a chronic inflammation of the intestinal mucosa. The mucosal epithelium of the alimentary tract constitutes a key element of the mucosal barrier to a broad spectrum of de...Inflammatory bowel disease is characterized by a chronic inflammation of the intestinal mucosa. The mucosal epithelium of the alimentary tract constitutes a key element of the mucosal barrier to a broad spectrum of deleterious substances present within the intestinal lumen including bacterial microorganisms, various dietary factors, gastrointestinal secretory products and drugs. In addition, this mucosal barrier can be disturbed in the course of various intestinal disorders including inflammatory bowel diseases. Fortunately, the integrity of the gastrointestinal surface epithelium is rapidly reestablished even after extensive destruction. Rapid resealing of the epithelial barrier following injuries is accomplished by a process termed epithelial restitution, followed by more delayed mechanisms of epithelial wound healing including increased epithelial cell proliferation and epithelial cell differentiation. Restitution of the intestinal surface epithelium is modulated by a range of highly divergent factors among them a broad spectrum of structurally distinct regulatory peptides, variously described as growth factors or cytokines. Several regulatory peptide factors act from the basolateral site of the epithelial surface and enhance epithelial cell restitution through TGF-13-dependent pathways. In contrast, members of the trefoil factor family (TFF peptides) appear to stimulate epithelial restitution in conjunction with mucin glycoproteins through a TGF-13-independent mechanism from the apical site of the intestinal epithelium. In addition, a number of other peptide molecules like extracellular matrix factors and blood clotting factors and also non- peptide molecules including phospholipids~ short-chain fatty acids (SCFA), adenine nucleotides, trace elements and pharmacological agents modulate intestinal epithelial repair mechanisms. Repeated damage and injury of the intestinal surface are key features of various intestinal disorders including inflammatory bowel diseases and require constant repair of the epithelium. Enhancement of intestinal repair mechanisms by regulatory peptides or other modulatory factors may provide future approaches for the treatment of diseases that are characterized by injuries of the epithelial surface.展开更多
Fertile F1 hybrids were obtained between durum wheat (Triticum durum Desf.) Langdon (LDN) and its 10 disomic substitution (LDN DS) lines with Aegilops tauschii accession AS60 without embryo rescue. Selfed seedse...Fertile F1 hybrids were obtained between durum wheat (Triticum durum Desf.) Langdon (LDN) and its 10 disomic substitution (LDN DS) lines with Aegilops tauschii accession AS60 without embryo rescue. Selfed seedset rates for hybrids of LDN with AS60 were 36.87% and 49.45% in 2005 and 2006, respectively. Similar or higher selfed seedset rates were observed in the hybrids of 1D (1A), 1D (1B), 3D (3A), 4D (4B), 7D (7A), and 2D (2B) with AS60, while lower in hybrids of 3D (3B) + 3BL, 5D (5A) + 5AL, 5D (5B) + 5B and 6D (6B) + 6BS with AS60 compared with the hybrids of LDN with AS60. Observation of male gametogenesis showed that meiotic restitution, both first-division restitution (FDR) and single-division meiosis (SDM) resulted in the formation of functional unreduced gametes, which in turn produced seeds. Both euhaploid and aneuhaploid gametes were produced in F1 hybrids. This suggested a strategy to simultaneously transfer and locate major genes from the ancestral species T. turgidum or Ae. tauschii. Moreover, there was no significant difference in the aneuhaploid rates between the F1 hybrids of LDN and LDN DS lines with AS60, suggesting that meiotic pairing between the two D chromosomes in the hybrids of LDN DS lines with AS60 did not promote the formation of aneuhaploid gametes.展开更多
The ultimate goal in phosphoinositides cellular metabolism is to decipher their global functional organization and coordination of the com- partmentalized signaling processes. In this report we present evidence linkin...The ultimate goal in phosphoinositides cellular metabolism is to decipher their global functional organization and coordination of the com- partmentalized signaling processes. In this report we present evidence linking nuclear phos- phoinositides cycle with endoplasmic reticulum synthesis and function. The rapid transformation of [3H]inositol-labeled phosphoinositides in the intact nuclei (IN) was captured in chase studies for 0-5 min, followed by examination of phosphatidylinositides in the inner nuclear me- mbrane (INM), the outer nuclear membrane (ONM) and endoplasmic reticulum (ER). We revealed that synthesis of phosphatidylinositol phosphates (PIPs) occurs in ONM and the de- phosphorylation takes place in the INM. The rapid transformation of the radiolabeled PIPs in ONM reverberated in their appearance and successive transformation in INM, and in the 5min chased nuclei was tracked to ONM as the re- emerging radiolabeled phosphatidylinositol (PI). These chase-uncovered changes in ONM and INM PIPs profiles allow us to conclude that the observed conversions in the nuclear membrane continuum are induced by the lateral movement of the membrane and its transit from the cytosolic to nuclear and back to cytosolic environment. The suggested membrane synthesisinduced movement provides the means to transport the membrane- and the membrane lipid ligand-associated cytosolic proteins to the intranuclear spaces and renewal of INM. Export of the nuclear components interacting with the modified INM, by exiting from nuclear to cytosolic site, endows ER with a steady influx of the membrane that is conditioned to generate vesicles according to the nucleus delivered templates.展开更多
Brugada syndrome is a primary electrical disorder of theheart, predisposing affected individuals to potentially lethal,ventricular tachy-arrhythmias. A number of mechanismshave been identified as being important incre...Brugada syndrome is a primary electrical disorder of theheart, predisposing affected individuals to potentially lethal,ventricular tachy-arrhythmias. A number of mechanismshave been identified as being important increasing the riskof these rhythms. Wavelength (γ) restitution has beensuggested to predict the onset of action potential duration(APD) alternans in mouse Scn5a^+/- hearts modelling Bru-gada syndrome.展开更多
This letter presents a theoretical model of the normal (head-on) collisions between two soft spheres for predicting the experimental characteristic of the coefficient of restitution dependent on impact velocity. Aft...This letter presents a theoretical model of the normal (head-on) collisions between two soft spheres for predicting the experimental characteristic of the coefficient of restitution dependent on impact velocity. After the contact force law between the contacted spheres during a collision is phenomenologically formulated in terms of the compression or overlap displacement under considera- tion of an elastic-plastic loading and a plastic unloading subprocesses, the coefficient of restitution is gained by the dynamic equation of the contact process once an initial impact velocity is input. It is found that the theoretical predictions of the coefficient of restitution varying with the impact velocity are well in agreement with the existing experimental characteristics which are fitted by the explicit formula.展开更多
The processes of mitochondrial restitution are controlled by nuclear genes that encode proteins synthesized in ER and cytosol and delivered as organelle- and membrane-specific transport vesicles. The analysis of the t...The processes of mitochondrial restitution are controlled by nuclear genes that encode proteins synthesized in ER and cytosol and delivered as organelle- and membrane-specific transport vesicles. The analysis of the transporters recovered from inner mitochondrial space (Mitosol) revealed that the ER-synthesized mitochondria-specific transport vesicles consist of two carriers, one remaining in outer mitochondrial membrane (OMM), and the other that transfers specific membrane segments to the inner mitochondrial membrane (IMM). The ER-assembled and IMM-committed membrane segments, while first integrated into OMM, undergo intra-mitochondrial lipid modification reflected in the synthesis of cardiolipin (CL) and inversion into Mitosol with load of IMM associated cytosolic proteins. Then, the CL-bedecked vesicles are released from OMM to Mitosol and upon contact with IMM fuse with the membrane, and the release of cytosolic cargo ensues. While ER-assembled mitochondria-specific transport vesicles fuse with OMM with the aid of the cytosolic, phosphatidylglycerol (PG)-specific phospholipase A2 (PLA2), the Mitosol-contained CL-specific PLA guides vesicles fusion with IMM. The described path of translocation of the membrane segments and the cytosol synthesized proteins into the designated mitochondrial compartments sustains growth and identity of OMM, IMM, maintains protein delivery for intra-mitochondrial lipid and protein modification in Mitosol, and ensures conformity of the cytosolic proteins cargo delivered to matrix.展开更多
Restitution of the cell organelles and the membrane implicates serine palmitoyltransferase (SPT) in signal-specific and selective assembly of the transport vesicles. Here, we reveal that SPT, embedded in the outer lea...Restitution of the cell organelles and the membrane implicates serine palmitoyltransferase (SPT) in signal-specific and selective assembly of the transport vesicles. Here, we reveal that SPT, embedded in the outer leaflet (OL) of endoplasmic reticulum (ER), is engaged in the synthesis of ER transport vesicles that recondition cell organelles, and the inner leaflet (IL) SPT in the restitution of the cell membrane. The OL SPT impacts assembly of sphingomyelinase (SMase)—susceptible ER vesicles but not the SMase-resistant and sphingolipid (SPhL) core—carrying vesicles that refurbish the cell membrane. The investigation of the SPT-initiated differences in the placement of SPhL in vesicular membranes by utilizing ER depleted of OL SPT, allows us to conclude that the restitution of endosomal and lysosomal membranes is achieved with the involvement of OL SPT, whereas the IL SPT is involved in formation of the lipid core for glycosphingolipids (GSL) and sphingomyelin (SM) of the apical and basolateral cell membrane. These findings along with our previously published report (Slomiany and Slomiany, Advances in Biological Chemistry, 2013, 3, 275-287), provide a clear distinction between the processes that renovate cell membrane and its organelles from that of the endocytotic cell debridement, and show that vesicles are navigated to the specific organelles and the cell membrane by the biomembrane constituents programmed in ER.展开更多
In this paper we present a graphical method for decision of restitution coefficient based on ODE. To simulate and illustrate our proposed method and efficient characteristics that demonstrate for two colliding bodies ...In this paper we present a graphical method for decision of restitution coefficient based on ODE. To simulate and illustrate our proposed method and efficient characteristics that demonstrate for two colliding bodies we used MatLab. In simulation to approach to the real case we used an assumption of additional virtual body’s position and velocity for characterizing material of the body which is involved to express the restitution coefficient. The graphic animation program is developed based on ODE for the computer simulation of the proposed graphical method. Additionally, we determined this new characteristic for some sport game balls such as basketball, volleyball, etc.展开更多
The structure known today as St.Jacob’s Church represents one of the oldest Christian medieval monuments in the region.With the emergence of findings suggesting that the structure was the world’s first university du...The structure known today as St.Jacob’s Church represents one of the oldest Christian medieval monuments in the region.With the emergence of findings suggesting that the structure was the world’s first university during recent excavation efforts,it has gained even more significance.Since 2006,the excavation works conducted by the Mardin Museum Directorate in the vicinity of Mor Yakup Church have yielded information about various phases of the structure.However,assessments regarding the nature of the structure are still debated within the academic environment.This study aimed to thoroughly investigate the functional changes and periods that St.Jacob’s Church underwent throughout history and to provide a detailed description and restitution for each period.In this study,we utilized excavation reports,data from written sources related to the settlement and structure,information obtained from the structure itself,traces existing on the structure,and data derived from architectural necessities(logic/scenario).The results indicate that this structure served three different functions(baptistry,church,university)and went through two main periods(pre-Christianity and post-Christianity).展开更多
In this paper, the dynamics of a transverse plane of a rotary coating disk of a binary mixture system comprising sand and urea particles were simulated using the two-fluid model along with the kinetic theory of granul...In this paper, the dynamics of a transverse plane of a rotary coating disk of a binary mixture system comprising sand and urea particles were simulated using the two-fluid model along with the kinetic theory of granular flow in Fluent 19.1. Although some parameters relating to the material properties and size of the rotary coating disk have been researched, the effects of both drag force and restitution coefficient on the flow characteristics have yet to be examined. Thus, this paper numerically examines the effect of the inclusion of drag models and particle-particle restitution coefficients on particle dynamics in a rotary disk operating in the rolling regime of the granular bed. Three particle-particle drag models were considered: the Schiller-Naumann, Syamlal-O’Brien, and Gidaspow. The Syamlal-O’Brien and Gidaspow models were both able to successfully simulate particle segregation in a perfect rolling regime, whereas the Schiller-Naumann drag model appeared to be unable to predict the segregation of the particles and the rolling flow regime under the assumed conditions. Four different values of the restitution coefficient were also investigated: 0.7, 0.8, 0.9, and 0.95. The higher restitution values of 0.9 and 0.95 were found to substantially affect flow characteristics, ensuring suitable rolling regime behaviour for the bed during the rotational movement. The lower restitution coefficients of 0.7 and 0.8, on the other hand, indicated that irregular velocity vectors could be obtained in the active region of the granular bed.展开更多
The coefficient of restitution(CoR)is an important parameter for designing vibration-harvesting machinery.There are three main types of fruit-to-fruit collisions during vibration harvesting:collision between fruits co...The coefficient of restitution(CoR)is an important parameter for designing vibration-harvesting machinery.There are three main types of fruit-to-fruit collisions during vibration harvesting:collision between fruits collected using a collection device and falling fruits,collision between fruits on branches before being removed,and collision of fruits in the air.The CoR for the first two types of collision was investigated separately using drop and pendulum methods.However,there have been few studies on CoR for the collision of fruits in the air.In this study,a platform was designed to simulate the collision of fruits in the air during vibration harvesting for the‘Gala’apple,where influences of collision velocity on CoR were studied.Images from a high-speed camera were processed based on RGB to Lab conversion to extract the bruise surface and calculate the bruise volume.Total bruise volume,the sum of two apple bruise volumes,was calculated and analyzed in relation to the CoR.Results showed that the CoR decreased with collision velocity increasing from 1.0 m/s to 1.4 m/s,where the CoR reached 0.93 or higher when collision velocity was 1.0 m/s,making fruits not bruise,while fruits began to bruise when collision velocity increased from 1.2 m/s.The CoR did not continue to decrease when collision velocity exceeded 1.4 m/s due to rotation.There was little correlation between total bruise volume and the CoR due to the composite motion of fruits in the air,indicating that the CoR may not be an indicator to determine the degree of fruit bruise when the fruit made a composite motion during the collision.Therefore,this research is expected to guide the establishment of a more accurate fruit model to design optimal vibration harvesting machinery.展开更多
Rockfall kinematic characteristics exhibit significant randomness and are influenced by factors such as rock mass properties,slope morphology,impact angle,and slope materials.Accurately determining the key parameters ...Rockfall kinematic characteristics exhibit significant randomness and are influenced by factors such as rock mass properties,slope morphology,impact angle,and slope materials.Accurately determining the key parameters of rockfall movement is critical for understanding motion patterns and effectively preventing and controlling rockfall hazards.In this study,a monitoring system consisting of selfdeveloped inertial navigation equipment,high-speed cameras,and an unmanned aerial vehicle was used to conduct onsite motion tests involving four differently shaped rock specimens on three types of slopes(bedrock,detritus,and clast bedding).The selfdeveloped inertial navigation system integrated a highdynamic-range accelerometer(±400 g)and a shockresistant gyroscope(±4000°/s),capable of robustly collecting data during the test.The data collected from these tests were processed to extract key kinematic parameters such as velocity,trajectory,restitution coefficients,and friction coefficients.The test results demonstrated that the inertial navigation system accurately recorded the acceleration and angular velocity of the rocks during motion,with these measurements closely aligning with the field data.The normal and tangential restitution coefficients were found to be influenced primarily by the slope material and impact angle,with higher normal restitution coefficients observed for low-angle impacts.The normal restitution coefficients ranged from 0.35 to 0.86,whereas the tangential restitution coefficients ranged from 0.46 to 0.91,depending on the slope materials.Additionally,the sliding friction coefficient was calculated to be between 0.66 and 0.78,whereas the rolling friction coefficient for the slab-shaped specimen was determined to be 0.53.These findings provide valuable data for improving the accuracy of rockfall trajectory predictions and the design of protective structures.展开更多
The restitution coefficient is an important elementary physical parameter related to the research and development of agricultural machinery.The kinematic model of maize seed in the falling and impacting processes was ...The restitution coefficient is an important elementary physical parameter related to the research and development of agricultural machinery.The kinematic model of maize seed in the falling and impacting processes was developed to measure the restitution coefficient between maize seed and soil.A test bench for measuring the restitution coefficient was designed and built referred to the theory of mirror reflection.The velocities for impacting maize seed were measured and analyzed in a three-dimensional space via high-speed photography,and then restitution coefficients of in different impact conditions were obtained.On this basis,this study took flat dent seed and round seed as samples.Single factor tests were conducted to analyze the influences of these factors on the restitution coefficient.The impact angle,falling height,soil compaction,soil moisture,maize moisture content and different parts of seed were selected as test factors.The corresponding regression equations were obtained by analysis.The results showed that,as the impact angle was bigger than 25°,the restitution coefficient increased with the increase of impact angle.The restitution coefficient had a linear decreasing trend with the increase of falling height.As the soil compaction strength was 200-350 kPa,the restitution coefficient increased with the increase of soil compaction.As the soil compaction strength was larger than 350 kPa,the changing trend of the restitution coefficient was relatively stable.As the soil moisture content was 13.5%-18%,the restitution coefficient decreased with the increase of soil moisture.As the soil moisture content was 18%,the restitution coefficient was the minimum.As the maize moisture content was 11%-16%,the restitution coefficient decreased with the increase of maize moisture content.The rotational motion always occurred in falling process of flat dent seed and round seed.The probabilities of crown part and lateral part of maize seed impacting with soil were the highest,and the restitution coefficient between crown part and soil was higher than that of other parts in the same condition.展开更多
Restitution is an important physical and mechanical property of granular materials. However, measuring its values in instantaneous collisions between particles is very difficult, especially for ore particles of irregu...Restitution is an important physical and mechanical property of granular materials. However, measuring its values in instantaneous collisions between particles is very difficult, especially for ore particles of irregular shapes. In this paper, restitution is measured indirectly and statistically with two cameras recording from different angles the trajectories of the ore particles rebounding from a steel plate. The momenta of the particles prior to and after the collision are calculated from the trajectories to give the restitutions of these collisions. The restitution between ore particles is then derived from the restitution of a steel ball with the steel plate measured in the same way. The approach has been proved to be practical and reliable for a variety of ore particles with moderate restitutions.展开更多
in this report, we compared transcriptomic differ- ences between a synthetic Populus section Tacamahaca triploid driven by second-division restitution and its parents using a high-throughput RNA-seq method. A total of...in this report, we compared transcriptomic differ- ences between a synthetic Populus section Tacamahaca triploid driven by second-division restitution and its parents using a high-throughput RNA-seq method. A total of 4,080 genes were differentially expressed between the high-growth vigor allotriploids (SDR-H) and their parents, and 719 genes were non-additively expressed in SDR-H. Differences in gene expres- sion between the allotriploid and male parent were more significant than those between the allotriploid and female parent, which may be caused by maternal effects. We observed 3,559 differentially expressed genes (DEGs) between the SDR-H and male parent. Notably, the genes were mainly involved in metabolic process, cell proliferation, DNA methylation, cell division, and meristem and developmental growth. Among the 1,056 DEGs between SDR-H and female parent, many genes were associated with metabolic process and carbon utilization. In addition, 1,789 DEGs between high- and low-growth vigorallotriploid were mainly associated with metabolic process, auxin poplar transport, and regulation of meristem growth. Our results indicated that the higher poplar ploidy level can generate extensive transcriptomic diversity compared with its parents. Overall, these results increased our understanding of the driving force for phenotypic variation and adaptation in allopolyploids driven by second-division restitution.展开更多
Restitution coefficient(RC)of garlic bulb is an important mechanical property that is required to establish the kinematics model of bulb collision and research the damage mechanism of bulb collision.In this study,kine...Restitution coefficient(RC)of garlic bulb is an important mechanical property that is required to establish the kinematics model of bulb collision and research the damage mechanism of bulb collision.In this study,kinetic equations of bulb collision were established based on Hertz's contact theory.The kinematics characteristics,elastoplastic deformation and contact damage during bulb collision were analyzed by using high-speed photography.The effects of bulb mass,moisture content,collision material,material thickness and release height on the RC were investigated by mixed orthogonal experiments and single-factor experiments.The results showed that the movement of bulb in the compression stage was translation,and the movement in the rebound stage was translation and rotation.During collision,the larger the rotational angular velocity of the bulb was,the smaller the measured RC would be.The contact damage of bulb included internal damage of the tissue,epidermis stretch and tear.The significance of effects of factors on RC decreased with the following sequence:collision material,release height,material thickness,bulb mass,and moisture content.Collision material,release height,material thickness,and bulb mass were significant factors.The RC between the bulb and Q235,nylon,and rubber decreased sequentially.The RC decreased with the increase of release height and bulb mass.The RC increased with the increase of material thickness of Q235,while it decreased with the increase of material thickness of rubber or Nylon.The determination coefficients of the regression equations between the significant factors and the RC were all greater than 0.96.The results will be helpful for damage mechanism analysis and design of garlic production equipment.展开更多
The restitution coefficient(RC)of cotton stalks is an important elementary physical parameter that is required to establish the crushing mechanical model and research the film residue separation machinery.In this stud...The restitution coefficient(RC)of cotton stalks is an important elementary physical parameter that is required to establish the crushing mechanical model and research the film residue separation machinery.In this study,the calculation method of restitution coefficient considering the rotation motion of stalk-shaped agricultural materials was derived based on the principle of kinematics and the energy restitution coefficient method,and a test bench for measuring the RC was designed and built.The effects of collision material,moisture content,length,diameter,release height,and collision angle respectively on the RC were investigated by single-factor experiments and orthogonal experiments,and the regression models between influence factors and the RC were established.The results showed that Q235 showed the highest value of the RC,and it was followed by cotton stalks and soil lumps,sequentially.The RC of cotton stalks decreased with the increase of moisture content and diameter,while it increased at first and then decreased with the increase of length.As the release height was less than 500 mm,the RC increased with the increased release height.As the collision angle was less than 40°,the RC showed a linear increasing trend.The significance of the effects of factors on RC decreased with the following sequence:collision angle,length,release height,diameter,and moisture content.Length,collision angle,and release height were extremely significant.The contrast test results showed that the values based on Newton’s restitution coefficient method were smaller than that based on the energy restitution coefficient method.The verification test showed that the predicted rebound height of cotton stalks calculated based on the energy restitution coefficient method was closer to the actual rebound height,and the relative error was less than 5%.展开更多
Collision between particles plays an important role in determining the hydrodynamic characteristics of gas-solid flow in a fluidized bed. In the present work, earlier work (Loha, Chattopadhyay, & Chatterjee, 2013) ...Collision between particles plays an important role in determining the hydrodynamic characteristics of gas-solid flow in a fluidized bed. In the present work, earlier work (Loha, Chattopadhyay, & Chatterjee, 2013) was extended to study the effect of the elasticity of particle collision on the hydrodynamic behavior of a bubbling fluidized bed filled with 530-~m particles. The Eulerian-Eulerian two-fluid model was used to simulate the hydrodynamics of the bubbling fluidized bed, where the solid-phase properties were calculated by applying the kinetic theory of granular flow. To investigate the effect of the elasticity of particle collision, different values of the coefficient of restitution were applied in the simulation and their effects were studied in detail. Simulations were performed for two different solid-phase wall boundary conditions. No bubble formation was observed for perfectly elastic collision. The bubble formation started as soon as the coefficient of restitution was set below 1.0, and the space occupied by bubbles in the bed increased with a decrease in the coefficient of restitution. Simulation results were also compared with experimental data available in the literature, and good agreement was found for coefficients of restitution of 0.95 and 0.99.展开更多
基金Supported by Joint Fund of the Ministry of Education of China (Grant No.8091B022203)Youth Talent Support Project (Grant No.2022-JCJQ-QT-059)。
文摘Collisions between objects are a relatively common phenomenon in nature.Analyses of collision processes can greatly contribute to solving problems such as impact-rub faults and particle impacts.The coefficient of restitution is a critical parameter in the analysis of collision processes.Many experiments have shown that the coefficient of restitution is closely related to the plate thickness,and the smaller the plate thickness,the more inaccurate the coefficient of restitution predicted by the existing model,which seriously affects the process of collision analysis.To remedy this shortcoming,this paper proposes a plate thickness influence factor with the ratio of sphere diameter to plate thickness as the variable.The plate thickness influence factor can optimize the coefficient of restitution model to effectively predict the coefficient of restitution of impacting elastoplastic spheres with finite plate thickness.Finally,the validity of the new model is verified using a large amount of experimental data.
基金Supported by the Grants from the Health Research Foundation (A2003189) and the Science Research Project (2004B30601001) of Guangdong Province, China
文摘AIM: To investigate the functional, morphological changes of the gut barrier during the restitution process after hemorrhagic shock, and the regional differences of the large intestine and small intestine in response to ischemia/ reperfusion injury. METHODS: Forty-seven Sprague-Dawley rats with body weight of 250-300 g were divided into two groups: control group (sham shock n = 5) and experimental group (n = 42). Experimental group was further divided into six groups (n = 7 each) according to different time points after the hemorrhagic shock, including 0^th group, 1^st group, 3^rd group, 6th h group, 12^th group and 24^th group. All the rats were gavaged with 2 mL of suspension of lactulose (L) (100 mg/2 mL) and mannitol (M) (50 mg/each) at the beginning and then an experimental rat model of hemorrhagic shock was set up. The specimens from jejunum, ileum and colon tissues and the blood samples from the portal vein were taken at 0, 1, 3, 6, 12 and 24 h after shock resuscitation, respectively. The morphological changes of the intestinal mucosa, including the histology of intestinal mucosa, the thickness of mucosa, the height of villi, the index of mucosal damage and the numbers of goblet cells, were determined by light microscope and/or electron microscope. The concentrations of the bacterial endotoxin lipopolysaccharides (LPS) from the portal vein blood, which reflected the gut barrier function, were examined by using Limulus test. At the same time point, to evaluate intestinal permeability, all urine was collected and the concentrations of the metabolically inactive markers such as L and M in urine were measured by using GC-9A gas chromatographic instrument.RESULTS: After the hemorrhagic shock, the mucosal epithelial injury was obvious in small intestine even at the 0th h, and it became more serious at the 1^stand the 3^rd h. The tissue restitution was also found after 3 h, though the injury was still serious. Most of the injured mucosal restitution was established after 6 h and completed in 24 h. Two distinct models of cell deathapoptosis and necrosis-were involved in the destruction of rat intestinal epithelial cells. The number of goblet cells on intestinal mucosa was reduced significantly from 0 to 24 h (the number from 243±13 to 157±9 for ileum, 310±19 to 248±18 for colon; r= -0.910 and -0.437 respectively, all P〈0.001), which was the same with the large intestine, but the grade of injury was lighter with the values of mucosal damage index in 3 h for jejunum, ileum, and colon being 2.8, 2.6, 1.2, respectively. The mucosal thickness and the height of villi in jejunum and ileum diminished in 1 h (the average height decreased from 309±24 to 204±23 pm and 271±31 to 231±28 pm, r = -0.758 and -0.659, all P〈0.001, the thickness from 547±23 to 418±28μm and 483±45 to 364±35μm, r= -0.898 and -0.829, all P〈0.001), but there was no statistical difference in the colon (F= 0.296, P = 0.934). Compared with control group, the urine L/M ratio and the blood LPS concentration in the experimental groups raised significantly, reaching the peak in 3-6 h (L/M: control vs 3 h vs6 h was 0.029±0.09 vs 0.063±0.012 vs 0.078±0.021, r = -0.786, P〈0.001; LPS: control vs3 h vs6 h was 0.09±0.021 vs 0.063±0.012 vs0.25±0.023, r=- -0.623, P〈0.001), and it kept increasing in 24 h. CONCLUSION: The gut barrier of the rats was seriously damaged at the early phase of ischemic reperfusion injury after hemorrhagic shock, which included the injury and atrophy in intestinal mucosa and the increasing of intestinal permeability. Simultaneously, the intestinal mucosa also showed its great repairing potentiality, such as the improvement of the intestinal permeability and the recovery of the morphology at different phases after ischemic reperfusion injury. The restitution of gut barrier function was obviously slower than that of the morphology and there was no direct correlation between them. Compared with the small intestine, the large intestine had stronger potentiality against injury. The reduction of the amount of intestinal goblet cells by injury did not influence the ability of intestinal mucosal restitution at a certain extent and it appeared to be intimately involved in the restitution of the epithelium.
文摘Inflammatory bowel disease is characterized by a chronic inflammation of the intestinal mucosa. The mucosal epithelium of the alimentary tract constitutes a key element of the mucosal barrier to a broad spectrum of deleterious substances present within the intestinal lumen including bacterial microorganisms, various dietary factors, gastrointestinal secretory products and drugs. In addition, this mucosal barrier can be disturbed in the course of various intestinal disorders including inflammatory bowel diseases. Fortunately, the integrity of the gastrointestinal surface epithelium is rapidly reestablished even after extensive destruction. Rapid resealing of the epithelial barrier following injuries is accomplished by a process termed epithelial restitution, followed by more delayed mechanisms of epithelial wound healing including increased epithelial cell proliferation and epithelial cell differentiation. Restitution of the intestinal surface epithelium is modulated by a range of highly divergent factors among them a broad spectrum of structurally distinct regulatory peptides, variously described as growth factors or cytokines. Several regulatory peptide factors act from the basolateral site of the epithelial surface and enhance epithelial cell restitution through TGF-13-dependent pathways. In contrast, members of the trefoil factor family (TFF peptides) appear to stimulate epithelial restitution in conjunction with mucin glycoproteins through a TGF-13-independent mechanism from the apical site of the intestinal epithelium. In addition, a number of other peptide molecules like extracellular matrix factors and blood clotting factors and also non- peptide molecules including phospholipids~ short-chain fatty acids (SCFA), adenine nucleotides, trace elements and pharmacological agents modulate intestinal epithelial repair mechanisms. Repeated damage and injury of the intestinal surface are key features of various intestinal disorders including inflammatory bowel diseases and require constant repair of the epithelium. Enhancement of intestinal repair mechanisms by regulatory peptides or other modulatory factors may provide future approaches for the treatment of diseases that are characterized by injuries of the epithelial surface.
基金the National Natural Science Foundation of China (No 30700495)Education Department of Sichuan province (No 07ZZ025)Science and Technology Department of Sichuan province (No 08ZQ026-060)
文摘Fertile F1 hybrids were obtained between durum wheat (Triticum durum Desf.) Langdon (LDN) and its 10 disomic substitution (LDN DS) lines with Aegilops tauschii accession AS60 without embryo rescue. Selfed seedset rates for hybrids of LDN with AS60 were 36.87% and 49.45% in 2005 and 2006, respectively. Similar or higher selfed seedset rates were observed in the hybrids of 1D (1A), 1D (1B), 3D (3A), 4D (4B), 7D (7A), and 2D (2B) with AS60, while lower in hybrids of 3D (3B) + 3BL, 5D (5A) + 5AL, 5D (5B) + 5B and 6D (6B) + 6BS with AS60 compared with the hybrids of LDN with AS60. Observation of male gametogenesis showed that meiotic restitution, both first-division restitution (FDR) and single-division meiosis (SDM) resulted in the formation of functional unreduced gametes, which in turn produced seeds. Both euhaploid and aneuhaploid gametes were produced in F1 hybrids. This suggested a strategy to simultaneously transfer and locate major genes from the ancestral species T. turgidum or Ae. tauschii. Moreover, there was no significant difference in the aneuhaploid rates between the F1 hybrids of LDN and LDN DS lines with AS60, suggesting that meiotic pairing between the two D chromosomes in the hybrids of LDN DS lines with AS60 did not promote the formation of aneuhaploid gametes.
文摘The ultimate goal in phosphoinositides cellular metabolism is to decipher their global functional organization and coordination of the com- partmentalized signaling processes. In this report we present evidence linking nuclear phos- phoinositides cycle with endoplasmic reticulum synthesis and function. The rapid transformation of [3H]inositol-labeled phosphoinositides in the intact nuclei (IN) was captured in chase studies for 0-5 min, followed by examination of phosphatidylinositides in the inner nuclear me- mbrane (INM), the outer nuclear membrane (ONM) and endoplasmic reticulum (ER). We revealed that synthesis of phosphatidylinositol phosphates (PIPs) occurs in ONM and the de- phosphorylation takes place in the INM. The rapid transformation of the radiolabeled PIPs in ONM reverberated in their appearance and successive transformation in INM, and in the 5min chased nuclei was tracked to ONM as the re- emerging radiolabeled phosphatidylinositol (PI). These chase-uncovered changes in ONM and INM PIPs profiles allow us to conclude that the observed conversions in the nuclear membrane continuum are induced by the lateral movement of the membrane and its transit from the cytosolic to nuclear and back to cytosolic environment. The suggested membrane synthesisinduced movement provides the means to transport the membrane- and the membrane lipid ligand-associated cytosolic proteins to the intranuclear spaces and renewal of INM. Export of the nuclear components interacting with the modified INM, by exiting from nuclear to cytosolic site, endows ER with a steady influx of the membrane that is conditioned to generate vesicles according to the nucleus delivered templates.
文摘Brugada syndrome is a primary electrical disorder of theheart, predisposing affected individuals to potentially lethal,ventricular tachy-arrhythmias. A number of mechanismshave been identified as being important increasing the riskof these rhythms. Wavelength (γ) restitution has beensuggested to predict the onset of action potential duration(APD) alternans in mouse Scn5a^+/- hearts modelling Bru-gada syndrome.
基金supported by the Innovation Team Fund of the National Natural Science Foundation of China(11121202)
文摘This letter presents a theoretical model of the normal (head-on) collisions between two soft spheres for predicting the experimental characteristic of the coefficient of restitution dependent on impact velocity. After the contact force law between the contacted spheres during a collision is phenomenologically formulated in terms of the compression or overlap displacement under considera- tion of an elastic-plastic loading and a plastic unloading subprocesses, the coefficient of restitution is gained by the dynamic equation of the contact process once an initial impact velocity is input. It is found that the theoretical predictions of the coefficient of restitution varying with the impact velocity are well in agreement with the existing experimental characteristics which are fitted by the explicit formula.
文摘The processes of mitochondrial restitution are controlled by nuclear genes that encode proteins synthesized in ER and cytosol and delivered as organelle- and membrane-specific transport vesicles. The analysis of the transporters recovered from inner mitochondrial space (Mitosol) revealed that the ER-synthesized mitochondria-specific transport vesicles consist of two carriers, one remaining in outer mitochondrial membrane (OMM), and the other that transfers specific membrane segments to the inner mitochondrial membrane (IMM). The ER-assembled and IMM-committed membrane segments, while first integrated into OMM, undergo intra-mitochondrial lipid modification reflected in the synthesis of cardiolipin (CL) and inversion into Mitosol with load of IMM associated cytosolic proteins. Then, the CL-bedecked vesicles are released from OMM to Mitosol and upon contact with IMM fuse with the membrane, and the release of cytosolic cargo ensues. While ER-assembled mitochondria-specific transport vesicles fuse with OMM with the aid of the cytosolic, phosphatidylglycerol (PG)-specific phospholipase A2 (PLA2), the Mitosol-contained CL-specific PLA guides vesicles fusion with IMM. The described path of translocation of the membrane segments and the cytosol synthesized proteins into the designated mitochondrial compartments sustains growth and identity of OMM, IMM, maintains protein delivery for intra-mitochondrial lipid and protein modification in Mitosol, and ensures conformity of the cytosolic proteins cargo delivered to matrix.
文摘Restitution of the cell organelles and the membrane implicates serine palmitoyltransferase (SPT) in signal-specific and selective assembly of the transport vesicles. Here, we reveal that SPT, embedded in the outer leaflet (OL) of endoplasmic reticulum (ER), is engaged in the synthesis of ER transport vesicles that recondition cell organelles, and the inner leaflet (IL) SPT in the restitution of the cell membrane. The OL SPT impacts assembly of sphingomyelinase (SMase)—susceptible ER vesicles but not the SMase-resistant and sphingolipid (SPhL) core—carrying vesicles that refurbish the cell membrane. The investigation of the SPT-initiated differences in the placement of SPhL in vesicular membranes by utilizing ER depleted of OL SPT, allows us to conclude that the restitution of endosomal and lysosomal membranes is achieved with the involvement of OL SPT, whereas the IL SPT is involved in formation of the lipid core for glycosphingolipids (GSL) and sphingomyelin (SM) of the apical and basolateral cell membrane. These findings along with our previously published report (Slomiany and Slomiany, Advances in Biological Chemistry, 2013, 3, 275-287), provide a clear distinction between the processes that renovate cell membrane and its organelles from that of the endocytotic cell debridement, and show that vesicles are navigated to the specific organelles and the cell membrane by the biomembrane constituents programmed in ER.
文摘In this paper we present a graphical method for decision of restitution coefficient based on ODE. To simulate and illustrate our proposed method and efficient characteristics that demonstrate for two colliding bodies we used MatLab. In simulation to approach to the real case we used an assumption of additional virtual body’s position and velocity for characterizing material of the body which is involved to express the restitution coefficient. The graphic animation program is developed based on ODE for the computer simulation of the proposed graphical method. Additionally, we determined this new characteristic for some sport game balls such as basketball, volleyball, etc.
文摘The structure known today as St.Jacob’s Church represents one of the oldest Christian medieval monuments in the region.With the emergence of findings suggesting that the structure was the world’s first university during recent excavation efforts,it has gained even more significance.Since 2006,the excavation works conducted by the Mardin Museum Directorate in the vicinity of Mor Yakup Church have yielded information about various phases of the structure.However,assessments regarding the nature of the structure are still debated within the academic environment.This study aimed to thoroughly investigate the functional changes and periods that St.Jacob’s Church underwent throughout history and to provide a detailed description and restitution for each period.In this study,we utilized excavation reports,data from written sources related to the settlement and structure,information obtained from the structure itself,traces existing on the structure,and data derived from architectural necessities(logic/scenario).The results indicate that this structure served three different functions(baptistry,church,university)and went through two main periods(pre-Christianity and post-Christianity).
文摘In this paper, the dynamics of a transverse plane of a rotary coating disk of a binary mixture system comprising sand and urea particles were simulated using the two-fluid model along with the kinetic theory of granular flow in Fluent 19.1. Although some parameters relating to the material properties and size of the rotary coating disk have been researched, the effects of both drag force and restitution coefficient on the flow characteristics have yet to be examined. Thus, this paper numerically examines the effect of the inclusion of drag models and particle-particle restitution coefficients on particle dynamics in a rotary disk operating in the rolling regime of the granular bed. Three particle-particle drag models were considered: the Schiller-Naumann, Syamlal-O’Brien, and Gidaspow. The Syamlal-O’Brien and Gidaspow models were both able to successfully simulate particle segregation in a perfect rolling regime, whereas the Schiller-Naumann drag model appeared to be unable to predict the segregation of the particles and the rolling flow regime under the assumed conditions. Four different values of the restitution coefficient were also investigated: 0.7, 0.8, 0.9, and 0.95. The higher restitution values of 0.9 and 0.95 were found to substantially affect flow characteristics, ensuring suitable rolling regime behaviour for the bed during the rotational movement. The lower restitution coefficients of 0.7 and 0.8, on the other hand, indicated that irregular velocity vectors could be obtained in the active region of the granular bed.
基金supported by the National Natural Science Foundation of China(Grant No.32171897)National Foreign Expert Project,Ministry of Human Resources and Social Security,China(Grant No.H20240238,No.Y20240046)Science and Technology Program of Yulin City,China(Grant No.2023-CXY-183).
文摘The coefficient of restitution(CoR)is an important parameter for designing vibration-harvesting machinery.There are three main types of fruit-to-fruit collisions during vibration harvesting:collision between fruits collected using a collection device and falling fruits,collision between fruits on branches before being removed,and collision of fruits in the air.The CoR for the first two types of collision was investigated separately using drop and pendulum methods.However,there have been few studies on CoR for the collision of fruits in the air.In this study,a platform was designed to simulate the collision of fruits in the air during vibration harvesting for the‘Gala’apple,where influences of collision velocity on CoR were studied.Images from a high-speed camera were processed based on RGB to Lab conversion to extract the bruise surface and calculate the bruise volume.Total bruise volume,the sum of two apple bruise volumes,was calculated and analyzed in relation to the CoR.Results showed that the CoR decreased with collision velocity increasing from 1.0 m/s to 1.4 m/s,where the CoR reached 0.93 or higher when collision velocity was 1.0 m/s,making fruits not bruise,while fruits began to bruise when collision velocity increased from 1.2 m/s.The CoR did not continue to decrease when collision velocity exceeded 1.4 m/s due to rotation.There was little correlation between total bruise volume and the CoR due to the composite motion of fruits in the air,indicating that the CoR may not be an indicator to determine the degree of fruit bruise when the fruit made a composite motion during the collision.Therefore,this research is expected to guide the establishment of a more accurate fruit model to design optimal vibration harvesting machinery.
基金supported by Guizhou Provincial Basic Research Program(Natural Science,Grant No.QKHJC-ZK[2022]YB075)the National Natural Science Foundation of China(Grant No.42067046)+2 种基金the Guizhou Provincial Program on Commercialization of Scientific and Technological Achievements(N0.QKHCG-LH2024-ZD025)the Science and Technology Planning Project of Guiyang City(Grant No.ZKHT[2023]13-10)Undergraduate Training Program for Innovation and Entrepreneurship of Guizhou Province(Project No.S202110657053)。
文摘Rockfall kinematic characteristics exhibit significant randomness and are influenced by factors such as rock mass properties,slope morphology,impact angle,and slope materials.Accurately determining the key parameters of rockfall movement is critical for understanding motion patterns and effectively preventing and controlling rockfall hazards.In this study,a monitoring system consisting of selfdeveloped inertial navigation equipment,high-speed cameras,and an unmanned aerial vehicle was used to conduct onsite motion tests involving four differently shaped rock specimens on three types of slopes(bedrock,detritus,and clast bedding).The selfdeveloped inertial navigation system integrated a highdynamic-range accelerometer(±400 g)and a shockresistant gyroscope(±4000°/s),capable of robustly collecting data during the test.The data collected from these tests were processed to extract key kinematic parameters such as velocity,trajectory,restitution coefficients,and friction coefficients.The test results demonstrated that the inertial navigation system accurately recorded the acceleration and angular velocity of the rocks during motion,with these measurements closely aligning with the field data.The normal and tangential restitution coefficients were found to be influenced primarily by the slope material and impact angle,with higher normal restitution coefficients observed for low-angle impacts.The normal restitution coefficients ranged from 0.35 to 0.86,whereas the tangential restitution coefficients ranged from 0.46 to 0.91,depending on the slope materials.Additionally,the sliding friction coefficient was calculated to be between 0.66 and 0.78,whereas the rolling friction coefficient for the slab-shaped specimen was determined to be 0.53.These findings provide valuable data for improving the accuracy of rockfall trajectory predictions and the design of protective structures.
基金the National Science and Technology Support Plan Project(2014BAD06B04).
文摘The restitution coefficient is an important elementary physical parameter related to the research and development of agricultural machinery.The kinematic model of maize seed in the falling and impacting processes was developed to measure the restitution coefficient between maize seed and soil.A test bench for measuring the restitution coefficient was designed and built referred to the theory of mirror reflection.The velocities for impacting maize seed were measured and analyzed in a three-dimensional space via high-speed photography,and then restitution coefficients of in different impact conditions were obtained.On this basis,this study took flat dent seed and round seed as samples.Single factor tests were conducted to analyze the influences of these factors on the restitution coefficient.The impact angle,falling height,soil compaction,soil moisture,maize moisture content and different parts of seed were selected as test factors.The corresponding regression equations were obtained by analysis.The results showed that,as the impact angle was bigger than 25°,the restitution coefficient increased with the increase of impact angle.The restitution coefficient had a linear decreasing trend with the increase of falling height.As the soil compaction strength was 200-350 kPa,the restitution coefficient increased with the increase of soil compaction.As the soil compaction strength was larger than 350 kPa,the changing trend of the restitution coefficient was relatively stable.As the soil moisture content was 13.5%-18%,the restitution coefficient decreased with the increase of soil moisture.As the soil moisture content was 18%,the restitution coefficient was the minimum.As the maize moisture content was 11%-16%,the restitution coefficient decreased with the increase of maize moisture content.The rotational motion always occurred in falling process of flat dent seed and round seed.The probabilities of crown part and lateral part of maize seed impacting with soil were the highest,and the restitution coefficient between crown part and soil was higher than that of other parts in the same condition.
文摘Restitution is an important physical and mechanical property of granular materials. However, measuring its values in instantaneous collisions between particles is very difficult, especially for ore particles of irregular shapes. In this paper, restitution is measured indirectly and statistically with two cameras recording from different angles the trajectories of the ore particles rebounding from a steel plate. The momenta of the particles prior to and after the collision are calculated from the trajectories to give the restitutions of these collisions. The restitution between ore particles is then derived from the restitution of a steel ball with the steel plate measured in the same way. The approach has been proved to be practical and reliable for a variety of ore particles with moderate restitutions.
基金supported in part by Special Fund for Forest Scientific Research in the Public Welfare (201404113)a Foundation for the Author of National Excellent Doctoral Dissertation of P. R. China (201267)111 Project (B13007)
文摘in this report, we compared transcriptomic differ- ences between a synthetic Populus section Tacamahaca triploid driven by second-division restitution and its parents using a high-throughput RNA-seq method. A total of 4,080 genes were differentially expressed between the high-growth vigor allotriploids (SDR-H) and their parents, and 719 genes were non-additively expressed in SDR-H. Differences in gene expres- sion between the allotriploid and male parent were more significant than those between the allotriploid and female parent, which may be caused by maternal effects. We observed 3,559 differentially expressed genes (DEGs) between the SDR-H and male parent. Notably, the genes were mainly involved in metabolic process, cell proliferation, DNA methylation, cell division, and meristem and developmental growth. Among the 1,056 DEGs between SDR-H and female parent, many genes were associated with metabolic process and carbon utilization. In addition, 1,789 DEGs between high- and low-growth vigorallotriploid were mainly associated with metabolic process, auxin poplar transport, and regulation of meristem growth. Our results indicated that the higher poplar ploidy level can generate extensive transcriptomic diversity compared with its parents. Overall, these results increased our understanding of the driving force for phenotypic variation and adaptation in allopolyploids driven by second-division restitution.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51805282)Funds for Central Universities,China(XDJK2018AC001)National Key R&D Program of China(2017YFD0701305-02).
文摘Restitution coefficient(RC)of garlic bulb is an important mechanical property that is required to establish the kinematics model of bulb collision and research the damage mechanism of bulb collision.In this study,kinetic equations of bulb collision were established based on Hertz's contact theory.The kinematics characteristics,elastoplastic deformation and contact damage during bulb collision were analyzed by using high-speed photography.The effects of bulb mass,moisture content,collision material,material thickness and release height on the RC were investigated by mixed orthogonal experiments and single-factor experiments.The results showed that the movement of bulb in the compression stage was translation,and the movement in the rebound stage was translation and rotation.During collision,the larger the rotational angular velocity of the bulb was,the smaller the measured RC would be.The contact damage of bulb included internal damage of the tissue,epidermis stretch and tear.The significance of effects of factors on RC decreased with the following sequence:collision material,release height,material thickness,bulb mass,and moisture content.Collision material,release height,material thickness,and bulb mass were significant factors.The RC between the bulb and Q235,nylon,and rubber decreased sequentially.The RC decreased with the increase of release height and bulb mass.The RC increased with the increase of material thickness of Q235,while it decreased with the increase of material thickness of rubber or Nylon.The determination coefficients of the regression equations between the significant factors and the RC were all greater than 0.96.The results will be helpful for damage mechanism analysis and design of garlic production equipment.
基金This work was financially supported by the funding of the Southern Xinjiang Key Industry Innovation and Development Support Program(Grant No.2020DB008)the Graduate Education Innovation Project of Xinjiang Uygur Autonomous Region(Grant No.XJ2022G085)+1 种基金the Open Fund of Jiangsu Province and Education Ministry Co-sponsored Synergistic Innovation Center of Modern Agricultural Equipment(Grant No.XTCX2006)the National Natural Science Foundation of China(Grant No.52065058).
文摘The restitution coefficient(RC)of cotton stalks is an important elementary physical parameter that is required to establish the crushing mechanical model and research the film residue separation machinery.In this study,the calculation method of restitution coefficient considering the rotation motion of stalk-shaped agricultural materials was derived based on the principle of kinematics and the energy restitution coefficient method,and a test bench for measuring the RC was designed and built.The effects of collision material,moisture content,length,diameter,release height,and collision angle respectively on the RC were investigated by single-factor experiments and orthogonal experiments,and the regression models between influence factors and the RC were established.The results showed that Q235 showed the highest value of the RC,and it was followed by cotton stalks and soil lumps,sequentially.The RC of cotton stalks decreased with the increase of moisture content and diameter,while it increased at first and then decreased with the increase of length.As the release height was less than 500 mm,the RC increased with the increased release height.As the collision angle was less than 40°,the RC showed a linear increasing trend.The significance of the effects of factors on RC decreased with the following sequence:collision angle,length,release height,diameter,and moisture content.Length,collision angle,and release height were extremely significant.The contrast test results showed that the values based on Newton’s restitution coefficient method were smaller than that based on the energy restitution coefficient method.The verification test showed that the predicted rebound height of cotton stalks calculated based on the energy restitution coefficient method was closer to the actual rebound height,and the relative error was less than 5%.
文摘Collision between particles plays an important role in determining the hydrodynamic characteristics of gas-solid flow in a fluidized bed. In the present work, earlier work (Loha, Chattopadhyay, & Chatterjee, 2013) was extended to study the effect of the elasticity of particle collision on the hydrodynamic behavior of a bubbling fluidized bed filled with 530-~m particles. The Eulerian-Eulerian two-fluid model was used to simulate the hydrodynamics of the bubbling fluidized bed, where the solid-phase properties were calculated by applying the kinetic theory of granular flow. To investigate the effect of the elasticity of particle collision, different values of the coefficient of restitution were applied in the simulation and their effects were studied in detail. Simulations were performed for two different solid-phase wall boundary conditions. No bubble formation was observed for perfectly elastic collision. The bubble formation started as soon as the coefficient of restitution was set below 1.0, and the space occupied by bubbles in the bed increased with a decrease in the coefficient of restitution. Simulation results were also compared with experimental data available in the literature, and good agreement was found for coefficients of restitution of 0.95 and 0.99.