Kinetic resolution is one of the most commonly used methods allowing access to enantioenriched compounds.The last two decades have seen the rapid development of kinetic resolutions enabled by N-heterocyclic carbene ca...Kinetic resolution is one of the most commonly used methods allowing access to enantioenriched compounds.The last two decades have seen the rapid development of kinetic resolutions enabled by N-heterocyclic carbene catalysis,and part of the achievements have been summarized in our previous review paper published in 2017.Since then,a series of new advances have been realized,and this review will provide an update of this field covering reports from mid-2017 to 2023.展开更多
To determine the grid resolutions of the WRF model in the typhoon simulation,some sensitivity analysis of horizontal and vertical resolutions in different conditions has been carried out.Different horizontal resolutio...To determine the grid resolutions of the WRF model in the typhoon simulation,some sensitivity analysis of horizontal and vertical resolutions in different conditions has been carried out.Different horizontal resolutions(5,10,20,30 km),nesting grids(15 and 5 km),different vertical resolutions(35-layers,28-layers,20-layers)and different top maximum pressures(1 000,2 000,3 500,5 000 Pa)had been used in the mesoscale numerical model WRF to simulate the Typhoon Kai-tak.The simulation results of typhoon track,wind speed and sea level pressure at different horizontal and vertical resolutions have been compared and analyzed.The horizontal and vertical resolutions of the model have limited effect on the simulation effect of the typhoon track.Different horizontal and vertical resolutions have obvious effects on typhoon strength(defined by wind speed)and intensity(defined by sea level pressure,SLP),especially for sea level pressure.The typhoon intensity simulated by the high-resolution model is closer to the real situation and the nesting grids can improve computational accuracy and efficiency.The simulation results affected by vertical resolution using 35-layers is better than the simulation results using 20-layers and 28-layers simulations.Through comparison and analysis,the horizontal and vertical resolutions of WRF model are finally determined as follows:the two-way nesting grid of 15 and 5 km is comprehensively determined,and the vertical layers is 35-layers,the top maximum pressure is 2 000 Pa.展开更多
Matching soil grid unit resolutions with polygon unit map scales is important to minimize the uncertainty of regional soil organic carbon(SOC) pool simulation due to their strong influences on the modeling.A series of...Matching soil grid unit resolutions with polygon unit map scales is important to minimize the uncertainty of regional soil organic carbon(SOC) pool simulation due to their strong influences on the modeling.A series of soil grid units at varying cell sizes was derived from soil polygon units at six map scales,namely,1:50 000(C5),1:200 000(D2),1:500 000(P5),1:1 000 000(N1),1:4 000 000(N4) and 1:14 000 000(N14),in the Taihu Region of China.Both soil unit formats were used for regional SOC pool simulation with a De Nitrification-DeC omposition(DNDC) process-based model,which spans the time period from 1982 to 2000 at the six map scales.Four indices,namely,soil type number(STN),area(AREA),average SOC density(ASOCD) and total SOC stocks(SOCS) of surface paddy soils that were simulated by the DNDC,were distinguished from all these soil polygon and grid units.Subjecting to the four index values(IV) from the parent polygon units,the variations in an index value(VIV,%) from the grid units were used to assess its dataset accuracy and redundancy,which reflects the uncertainty in the simulation of SOC pools.Optimal soil grid unit resolutions were generated and suggested for the DNDC simulation of regional SOC pools,matching their respective soil polygon unit map scales.With these optimal raster resolutions,the soil grid units datasets can have the same accuracy as their parent polygon units datasets without any redundancy,when VIV < 1% was assumed to be a criterion for all four indices.A quadratic curve regression model,namely,y = – 0.80 × 10^(–6)x^2 + 0.0228 x + 0.0211(R^2 = 0.9994,P < 0.05),and a power function model R? = 10.394?^(0.2153)(R^2 = 0.9759,P < 0.05) were revealed,which describe the relationship between the optimal soil grid unit resolution(y,km) and soil polygon unit map scale(1:10 000x),the ratio(R?,%) of the optimal soil grid size to average polygon patch size(?,km^2) and the ?,with the highest R^2 among different mathematical regressions,respectively.This knowledge may facilitate the grid partitioning of regions during the investigation and simulation of SOC pool dynamics at a certain map scale,and be referenced to other landscape polygon patches' mesh partition.展开更多
A global eddy-permitting ocean-ice coupled model with a horizontal resolution of 0.25° by 0.25° is estab- lished on the basis of Modular Ocean Model version 4 (MOM4) and Sea Ice Simulator (SIS). Simulati...A global eddy-permitting ocean-ice coupled model with a horizontal resolution of 0.25° by 0.25° is estab- lished on the basis of Modular Ocean Model version 4 (MOM4) and Sea Ice Simulator (SIS). Simulation results are compared with those of an intermediate resolution ocean-ice coupled model with a horizontal resolution of about 1° by 1°. The results show that the simulated ocean temperature, ocean current and sea ice concentration from the eddy-permitting model are better than those from the intermediate resolu- tion model. However, both the two models have the common problem of ocean general circulation models (OGCMs) that the majority of the simulated summer sea surface temperature (SST) is too warm while the majority of the simulated subsurface summer temperature is too cold. Further numerical experiments show that this problem can be alleviated by incorporating the non-breaking surface wave-induced vertical mixing into the vertical mixing scheme for both eddy-permitting and intermediate resolution models.展开更多
The summer Asian-Pacific Oscillation (APO) is a major teleconnection pattern that reflects the zonal thermal contrast between East Asia and the North Pacific in the upper troposphere. The performance of Beijing Clim...The summer Asian-Pacific Oscillation (APO) is a major teleconnection pattern that reflects the zonal thermal contrast between East Asia and the North Pacific in the upper troposphere. The performance of Beijing Climate Center Climate System Models (BCC_CSMs) with different horizontal resolutions, i.e., BCC_CSM1.1 and BCC_CSM1.1 (m), in reproducing APO interannual variability, APO-related precipitation anomalies, and associated atmospheric circulation anomalies, is evaluated. The results show that BCC_CSMI.I(m) can successfully capture the interannual variability of the summer APO index. It is also more capable in reproducing the APO's spatial pattern, compared to BCC_CSMI.1, due to its higher horizontal resolution. Associated with a positive APO index, the northward-shifted and intensified South Asian high, strengthened extratropical westerly jet, and tropical easterly jet in the upper troposphere, as well as the southwesterly monsoonal flow over North Africa and the Indian Ocean in the lower troposphere, are realistically represented by BCC_CSM1.1 (m), leading to an improvement in reproducing the increased precipitation over tropical North Africa, South Asia, and East Asia, as well as the decreased precipitation over subtropical North Africa, Japan, and North America. In contrast, these features are less consistent with observations when simulated by BCC_CSM1.1. Regression analysis further indicates that surface temperature anomalies over the North Pacific and the southern and western flanks of the Tibetan Plateau are reasonably reproduced by BCC_CSM 1.1 (m), which contributes to the substantial improvement in the simulation of the characteristics of summer APO compared to that of BCC_CSM1.1.展开更多
Albacore tuna(Thunnus alalunga)is one of the target species of tuna longline fishing,and waters near the Cook Islands are a vital albacore tuna fishing ground.Marine environmental data are usually presented with diffe...Albacore tuna(Thunnus alalunga)is one of the target species of tuna longline fishing,and waters near the Cook Islands are a vital albacore tuna fishing ground.Marine environmental data are usually presented with different spatial resolutions,which leads to different results in tuna fishery prediction.Study on the impact of different spatial resolutions on the prediction accuracy of albacore tuna fishery to select the best spatial resolution can contribute to better management of albacore tuna resources.The nominal catch per unit effort(CPUE)of albacore tuna is calculated according to vessel monitor system(VMS)data collected from Chinese distantwater fishery enterprises from January 1,2017 to May 31,2021.A total of 26 spatiotemporal and environmental factors,including temperature,salinity,dissolved oxygen of 0–300 m water layer,chlorophyll-a concentration in the sea surface,sea surface height,month,longitude,and latitude,were selected as variables.The temporal resolution of the variables was daily and the spatial resolutions were set to be 0.5°×0.5°,1°×1°,2°×2°,and 5°×5°.The relationship between the nominal CPUE and each individual factor was analyzed to remove the factors irrelavant to the nominal CPUE,together with a multicollinearity diagnosis on the factors to remove factors highly related to the other factors within the four spatial resolutions.The relationship models between CPUE and spatiotemporal and environmental factors by four spatial resolutions were established based on the long short-term memory(LSTM)neural network model.The mean absolute error(MAE)and root mean square error(RMSE)were used to analyze the fitness and accuracy of the models,and to determine the effects of different spatial resolutions on the prediction accuracy of the albacore tuna fishing ground.The results show the resolution of 1°×1°can lead to the best prediction accuracy,with the MAE and RMSE being 0.0268 and 0.0452 respectively,followed by 0.5°×0.5°,2°×2°and 5°×5°with declining prediction accuracy.The results suggested that 1)albacore tuna fishing ground can be predicted by LSTM;2)the VMS records the data in detail and can be used scientifically to calculate the CPUE;3)correlation analysis,and multicollinearity diagnosis are necessary to improve the prediction accuracy of the model;4)the spatial resolution should be 1°×1°in the forecast of albacore tuna fishing ground in waters near the Cook Islands.展开更多
The CryoEM single particle structure determination method has recently received broad attention in the field of structural biology. The structures can be resolved to near-atomic resolutions after model reconstructions...The CryoEM single particle structure determination method has recently received broad attention in the field of structural biology. The structures can be resolved to near-atomic resolutions after model reconstructions from a large number of CryoEM images measuring molecules in different orientations. However, the determining factors for reconstructed map resolution need to be further explored. Here, we provide a theoretical framework in conjunction with numerical simulations to gauge the influence of several key factors to CryoEM map resolutions. If the projection image quality allows orientation assignment, then the number of measured projection images and the quality of each measurement(quantified using average signal-to-noise ratio) can be combined to a single factor, which is dominant to the resolution of reconstructed maps. Furthermore, the intrinsic thermal motion of molecules has significant effects on the resolution. These effects can be quantitatively summarized with an analytical formula that provides a theoretical guideline on structure resolutions for given experimental measurements.展开更多
We set four sets of simulation experiments to explore the impacts of horizontal resolution(HR)and vertical resolution(VR)on the microphysical structure and boundary layer fluxes of tropical cyclone(TC)Hato(2017).The s...We set four sets of simulation experiments to explore the impacts of horizontal resolution(HR)and vertical resolution(VR)on the microphysical structure and boundary layer fluxes of tropical cyclone(TC)Hato(2017).The study shows that higher HR tends to strengthen TC.Increasing VR in the upper layers tends to weaken TC,while increasing VR in the lower layers tends to strengthen TC.Simulated amounts of all hydrometeors were larger with higher HR.Increasing VR at the upper level enhanced the mixing ratios of cloud ice and cloud snow,while increasing VR at the lower level elevated the mixing ratios of graupel and rainwater.HR has greater impact on the distributions of hydrometeors.Higher HR has a more complete ring structure of the eyewall and more concentrated hydrometeors along the cloud wall.Increasing VR at the lower level has little impact on the distribution of TC hydrometeors,while increasing VR at the upper level enhances the cloud thickness of the eyewall area.Surface latent heat flux(SLHF)is influenced greatly by resolution.Higher HR leads to larger water vapor fluxes and larger latent heat,which would result in a stronger TC.A large amount of false latent heat was generated when HR was too high,leading to an extremely strong TC,VR has a smaller impact on SLHF than HR.But increasing VR at the upper-level reduces the SLHF and weakens TC,and elevating VR at the lower-level increases the SLHF and strengthens TC.The changes in surface water vapor flux and SLHF were practically identical and the simulation results were improved when HR and VR were more coordinated.The friction velocity was greater with higher VR.Enhancing VR at the lower level increased the friction velocity,while increasing VR at the upper level reduced it.展开更多
Previous studies have revealed a combination mode (C-mode) occurring in the Indo-Pacific region, arising from nonlinear interactions between ENSO and the western Pacific warm pool annual cycle. This paper evaluates ...Previous studies have revealed a combination mode (C-mode) occurring in the Indo-Pacific region, arising from nonlinear interactions between ENSO and the western Pacific warm pool annual cycle. This paper evaluates the simulation of this C-mode and its asymmetric SST response in HadGEM3 and its resolution sensitivity using three sets of simulations at horizontal resolutions of N96, N216 and N512. The results show that HadGEM3 can capture well the spatial pattern of the C-mode associated surface wind anomalies, as well as the asymmetric response of SST in the tropical Pacific, but it strongly overestimates the explained variability of the C-mode compared to the ENSO mode. The model with the three resolutions is able to reproduce the distinct spectral peaks of the C-mode at the near annual combination frequencies, but the performance in simulating the longer periods is not satisfactory, presumably due to the unrealistic simulation of the ENSO mode. Increasing the horizontal resolution can improve the consistency between atmospheric and oceanic representations of the C-mode, but not necessarily enhance the accuracy of C-mode simulation compared with observation.展开更多
To better understand how model resolution affects the formation of Arctic boundary layer clouds,we investigated the influence of grid spacing on simulating cloud streets that occurred near Utqiaġvik(formerly Barrow),A...To better understand how model resolution affects the formation of Arctic boundary layer clouds,we investigated the influence of grid spacing on simulating cloud streets that occurred near Utqiaġvik(formerly Barrow),Alaska,on 2 May 2013 and were observed by MODIS(the Moderate Resolution Imaging Spectroradiometer).The Weather Research and Forecasting model was used to simulate the clouds using nested domains with increasingly fine resolution ranging from a horizontal grid spacing of 27 km in the boundary-layer-parameterized mesoscale domain to a grid spacing of 0.111 km in the large-eddy-permitting domain.We investigated the model-simulated mesoscale environment,horizontal and vertical cloud structures,boundary layer stability,and cloud properties,all of which were subsequently used to interpret the observed roll-cloud case.Increasing model resolution led to a transition from a more buoyant boundary layer to a more shear-driven turbulent boundary layer.The clouds were stratiform-like in the mesoscale domain,but as the model resolution increased,roll-like structures,aligned along the wind field,appeared with ever smaller wavelengths.A stronger vertical water vapor gradient occurred above the cloud layers with decreasing grid spacing.With fixed model grid spacing at 0.333 km,changing the model configuration from a boundary layer parameterization to a large-eddy-permitting scheme produced a more shear-driven and less unstable environment,a stronger vertical water vapor gradient below the cloud layers,and the wavelengths of the rolls decreased slightly.In this study,only the large-eddy-permitting simulation with gird spacing of 0.111 km was sufficient to model the observed roll clouds.展开更多
This study investigated the impacts of increasing model resolutions and shortening forecast lead times on the quantitative precipitation forecast(QPF)for heavy-rainfall events over south China during the rainy seasons...This study investigated the impacts of increasing model resolutions and shortening forecast lead times on the quantitative precipitation forecast(QPF)for heavy-rainfall events over south China during the rainy seasons in 2013-2020.The control experiment,where the analysis-forecast cycles run with model resolutions of about 3 km,was compared to a lower-resolution experiment with model resolutions of about 9 km,and a longer-term experiment activated 12 hours earlier.Rainfall forecasting in the presummer rainy season was significantly improved by improving model resolutions,with more improvements in cases with stronger synoptic-scale forcings.This is partially attributed to the improved initial conditions(ICs)and subsequent forecasts for low-level jets(LLJs).Forecasts of heavy rainfall induced by landfalling tropical cyclones(TCs)benefited from increasing model resolutions in the first 6 hours.Forecast improvements in rainfall due to shortening forecast lead times were more significant at earlier(1-6 h)and later(7-12 h)lead times for cases with stronger and weaker synoptic-scale forcings,respectively,due to the area-and case-dependent improvements in ICs for nonprecipitation variables.Specifically,significant improvements mainly presented over the northern South China Sea for low-level onshore wind of weak-forcing cases but over south China for LLJs of strong-forcing cases during the presummer rainy season,and over south China for all the nonprecipitation variables above the surface during the TC season.However,some disadvantages of higher-resolution and shorter-term forecasts in QPFs highlight the importance of developing ensemble forecasting with proper IC perturbations,which include the complementary advantages of lower-resolution and longer-term forecasts.展开更多
Objectics A convenient method was developed for the determination of the enantioselectivity ofreversible kinetic resolutions with the new equation deduced by us. Methods By using the data of extent ofconversions at t1...Objectics A convenient method was developed for the determination of the enantioselectivity ofreversible kinetic resolutions with the new equation deduced by us. Methods By using the data of extent ofconversions at t1, 2t1, and the equilibrium constant K measured by usual method, the enantiomeric ratio E can beeasily calculated by the newly developed equation. Results We have successfully applied our method to theanalyses of enantioselectivity of three lipasic resolutions. The results are in good agreement with those of otherexperiments. Conclusion The method is simple and practical, and plays an important role in the determination ofkinetic data of reversible resolution.展开更多
In this study, non-cumulative slope length(NCSL) calculation method and spatial analytical calculation(SAC) method were respectively applied to extract slope length and slope length factor from 10 sample areas, which ...In this study, non-cumulative slope length(NCSL) calculation method and spatial analytical calculation(SAC) method were respectively applied to extract slope length and slope length factor from 10 sample areas, which are located in Ansai County, north Shaanxi Province. The comparison of computation precision between variable DEM resolutions showed that NCSL was superior to SAC entirely. And the results were best when the DEM resolutions were 5 and 10 m. Besides, the results of slope length factor were nearly the same under the two conditions. So DEM of 10 m resolution can be used to extract slope length.展开更多
Land use conflicts are complex disputes that contribute at large in terms of negative social and economic impacts within the heterogeneous societies.The mechanisms of success for land use conflict resolution still nee...Land use conflicts are complex disputes that contribute at large in terms of negative social and economic impacts within the heterogeneous societies.The mechanisms of success for land use conflict resolution still need further research because of various mindsets of the people.In this paper,the issues of land conflicts between farmers and pastoralists in Tanzania mainland which could lead to low economic development are reviewed and the general causes and effects of land use conflicts are outlined.Poor land governance,inappropriate of land use plans,inadequate land policies,land tenure insecurity,corruption and population increases are cited as being among of the main offenders fuelling land use conflicts in Tanzania.展开更多
N-heterocyclic carbene-catalyzed enantioselective kinetic resolutions,dynamic kinetic resolutions,and desymmetrization reactions are systematically reviewed.The content is organized according to the activation modes i...N-heterocyclic carbene-catalyzed enantioselective kinetic resolutions,dynamic kinetic resolutions,and desymmetrization reactions are systematically reviewed.The content is organized according to the activation modes involved in these transformations.Future advances within this highly active research field are discussed from our perspectives on the topic.展开更多
Light-sheet fluorescence microscopy(LSFM)has played an important role in bio-imaging due to its advantages of high photon efficiency,fast speed,and long-term imaging capabilities.The perpendicular layout between LSFM ...Light-sheet fluorescence microscopy(LSFM)has played an important role in bio-imaging due to its advantages of high photon efficiency,fast speed,and long-term imaging capabilities.The perpendicular layout between LSFM excitation and detection often limits the 3D resolutions as well as their isotropy.Here,we report on a reflective type light-sheet microscope with a mini-prism used as an optical path reflector.The conventional high NA objectives can be used both in excitation and detection with this design.Isotropic resolutions in 3D down to300 nm could be achieved without deconvolution.The proposed method also enables easy transform of a conventional fluorescence microscope to high performance light-sheet microscopy.展开更多
文摘Kinetic resolution is one of the most commonly used methods allowing access to enantioenriched compounds.The last two decades have seen the rapid development of kinetic resolutions enabled by N-heterocyclic carbene catalysis,and part of the achievements have been summarized in our previous review paper published in 2017.Since then,a series of new advances have been realized,and this review will provide an update of this field covering reports from mid-2017 to 2023.
基金The National Natural Science Foundation of China under contract Nos 51809023,51839002 and 51879015the Open Research Foundation of the Key Laboratory of the Pearl River Estuarine Dynamics and Associated Process Regulation,the Ministry of Water Resources under contract No.2018KJ03
文摘To determine the grid resolutions of the WRF model in the typhoon simulation,some sensitivity analysis of horizontal and vertical resolutions in different conditions has been carried out.Different horizontal resolutions(5,10,20,30 km),nesting grids(15 and 5 km),different vertical resolutions(35-layers,28-layers,20-layers)and different top maximum pressures(1 000,2 000,3 500,5 000 Pa)had been used in the mesoscale numerical model WRF to simulate the Typhoon Kai-tak.The simulation results of typhoon track,wind speed and sea level pressure at different horizontal and vertical resolutions have been compared and analyzed.The horizontal and vertical resolutions of the model have limited effect on the simulation effect of the typhoon track.Different horizontal and vertical resolutions have obvious effects on typhoon strength(defined by wind speed)and intensity(defined by sea level pressure,SLP),especially for sea level pressure.The typhoon intensity simulated by the high-resolution model is closer to the real situation and the nesting grids can improve computational accuracy and efficiency.The simulation results affected by vertical resolution using 35-layers is better than the simulation results using 20-layers and 28-layers simulations.Through comparison and analysis,the horizontal and vertical resolutions of WRF model are finally determined as follows:the two-way nesting grid of 15 and 5 km is comprehensively determined,and the vertical layers is 35-layers,the top maximum pressure is 2 000 Pa.
基金Under the auspices of Special Project of National Key Research and Development Program(No.2016YFD0200301)National Natural Science Foundation of China(No.41571206)Special Project of National Science and Technology Basic Work(No.2015FY110700-S2)
文摘Matching soil grid unit resolutions with polygon unit map scales is important to minimize the uncertainty of regional soil organic carbon(SOC) pool simulation due to their strong influences on the modeling.A series of soil grid units at varying cell sizes was derived from soil polygon units at six map scales,namely,1:50 000(C5),1:200 000(D2),1:500 000(P5),1:1 000 000(N1),1:4 000 000(N4) and 1:14 000 000(N14),in the Taihu Region of China.Both soil unit formats were used for regional SOC pool simulation with a De Nitrification-DeC omposition(DNDC) process-based model,which spans the time period from 1982 to 2000 at the six map scales.Four indices,namely,soil type number(STN),area(AREA),average SOC density(ASOCD) and total SOC stocks(SOCS) of surface paddy soils that were simulated by the DNDC,were distinguished from all these soil polygon and grid units.Subjecting to the four index values(IV) from the parent polygon units,the variations in an index value(VIV,%) from the grid units were used to assess its dataset accuracy and redundancy,which reflects the uncertainty in the simulation of SOC pools.Optimal soil grid unit resolutions were generated and suggested for the DNDC simulation of regional SOC pools,matching their respective soil polygon unit map scales.With these optimal raster resolutions,the soil grid units datasets can have the same accuracy as their parent polygon units datasets without any redundancy,when VIV < 1% was assumed to be a criterion for all four indices.A quadratic curve regression model,namely,y = – 0.80 × 10^(–6)x^2 + 0.0228 x + 0.0211(R^2 = 0.9994,P < 0.05),and a power function model R? = 10.394?^(0.2153)(R^2 = 0.9759,P < 0.05) were revealed,which describe the relationship between the optimal soil grid unit resolution(y,km) and soil polygon unit map scale(1:10 000x),the ratio(R?,%) of the optimal soil grid size to average polygon patch size(?,km^2) and the ?,with the highest R^2 among different mathematical regressions,respectively.This knowledge may facilitate the grid partitioning of regions during the investigation and simulation of SOC pool dynamics at a certain map scale,and be referenced to other landscape polygon patches' mesh partition.
基金The Key Project of the National Science Foundation of China under contract No. 40730842the "973" Project of China under contract No. 2010CB950303+2 种基金the Scientific Research Foundation of the First Institute of Oceanography, State Oceanic Administration of Chinaunder contract No. 2011T02the National Key Technology R&D Program of China under contract No. 2011BAC03B02the Key Supercomputing Science-Technology Project of Shandong Province of China under contract No. 2011YD01107
文摘A global eddy-permitting ocean-ice coupled model with a horizontal resolution of 0.25° by 0.25° is estab- lished on the basis of Modular Ocean Model version 4 (MOM4) and Sea Ice Simulator (SIS). Simulation results are compared with those of an intermediate resolution ocean-ice coupled model with a horizontal resolution of about 1° by 1°. The results show that the simulated ocean temperature, ocean current and sea ice concentration from the eddy-permitting model are better than those from the intermediate resolu- tion model. However, both the two models have the common problem of ocean general circulation models (OGCMs) that the majority of the simulated summer sea surface temperature (SST) is too warm while the majority of the simulated subsurface summer temperature is too cold. Further numerical experiments show that this problem can be alleviated by incorporating the non-breaking surface wave-induced vertical mixing into the vertical mixing scheme for both eddy-permitting and intermediate resolution models.
基金jointly supported by the State Key Program of the National Natural Science of China(Grant No.41130963)the National Natural Science Foundation of China(Grant No.41575071)
文摘The summer Asian-Pacific Oscillation (APO) is a major teleconnection pattern that reflects the zonal thermal contrast between East Asia and the North Pacific in the upper troposphere. The performance of Beijing Climate Center Climate System Models (BCC_CSMs) with different horizontal resolutions, i.e., BCC_CSM1.1 and BCC_CSM1.1 (m), in reproducing APO interannual variability, APO-related precipitation anomalies, and associated atmospheric circulation anomalies, is evaluated. The results show that BCC_CSMI.I(m) can successfully capture the interannual variability of the summer APO index. It is also more capable in reproducing the APO's spatial pattern, compared to BCC_CSMI.1, due to its higher horizontal resolution. Associated with a positive APO index, the northward-shifted and intensified South Asian high, strengthened extratropical westerly jet, and tropical easterly jet in the upper troposphere, as well as the southwesterly monsoonal flow over North Africa and the Indian Ocean in the lower troposphere, are realistically represented by BCC_CSM1.1 (m), leading to an improvement in reproducing the increased precipitation over tropical North Africa, South Asia, and East Asia, as well as the decreased precipitation over subtropical North Africa, Japan, and North America. In contrast, these features are less consistent with observations when simulated by BCC_CSM1.1. Regression analysis further indicates that surface temperature anomalies over the North Pacific and the southern and western flanks of the Tibetan Plateau are reasonably reproduced by BCC_CSM 1.1 (m), which contributes to the substantial improvement in the simulation of the characteristics of summer APO compared to that of BCC_CSM1.1.
基金the National Natural Science Foundation of China(No.32273185)the National Key R&D Program of China(No.2020YFD0901205)the Marine Fishery Resources Investigation and Exploration Program of the Ministry of Agriculture and Rural Affairs of China in 2021(No.D-8006-21-0215)。
文摘Albacore tuna(Thunnus alalunga)is one of the target species of tuna longline fishing,and waters near the Cook Islands are a vital albacore tuna fishing ground.Marine environmental data are usually presented with different spatial resolutions,which leads to different results in tuna fishery prediction.Study on the impact of different spatial resolutions on the prediction accuracy of albacore tuna fishery to select the best spatial resolution can contribute to better management of albacore tuna resources.The nominal catch per unit effort(CPUE)of albacore tuna is calculated according to vessel monitor system(VMS)data collected from Chinese distantwater fishery enterprises from January 1,2017 to May 31,2021.A total of 26 spatiotemporal and environmental factors,including temperature,salinity,dissolved oxygen of 0–300 m water layer,chlorophyll-a concentration in the sea surface,sea surface height,month,longitude,and latitude,were selected as variables.The temporal resolution of the variables was daily and the spatial resolutions were set to be 0.5°×0.5°,1°×1°,2°×2°,and 5°×5°.The relationship between the nominal CPUE and each individual factor was analyzed to remove the factors irrelavant to the nominal CPUE,together with a multicollinearity diagnosis on the factors to remove factors highly related to the other factors within the four spatial resolutions.The relationship models between CPUE and spatiotemporal and environmental factors by four spatial resolutions were established based on the long short-term memory(LSTM)neural network model.The mean absolute error(MAE)and root mean square error(RMSE)were used to analyze the fitness and accuracy of the models,and to determine the effects of different spatial resolutions on the prediction accuracy of the albacore tuna fishing ground.The results show the resolution of 1°×1°can lead to the best prediction accuracy,with the MAE and RMSE being 0.0268 and 0.0452 respectively,followed by 0.5°×0.5°,2°×2°and 5°×5°with declining prediction accuracy.The results suggested that 1)albacore tuna fishing ground can be predicted by LSTM;2)the VMS records the data in detail and can be used scientifically to calculate the CPUE;3)correlation analysis,and multicollinearity diagnosis are necessary to improve the prediction accuracy of the model;4)the spatial resolution should be 1°×1°in the forecast of albacore tuna fishing ground in waters near the Cook Islands.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11774011,11434001,U1530401,and U1430237)
文摘The CryoEM single particle structure determination method has recently received broad attention in the field of structural biology. The structures can be resolved to near-atomic resolutions after model reconstructions from a large number of CryoEM images measuring molecules in different orientations. However, the determining factors for reconstructed map resolution need to be further explored. Here, we provide a theoretical framework in conjunction with numerical simulations to gauge the influence of several key factors to CryoEM map resolutions. If the projection image quality allows orientation assignment, then the number of measured projection images and the quality of each measurement(quantified using average signal-to-noise ratio) can be combined to a single factor, which is dominant to the resolution of reconstructed maps. Furthermore, the intrinsic thermal motion of molecules has significant effects on the resolution. These effects can be quantitatively summarized with an analytical formula that provides a theoretical guideline on structure resolutions for given experimental measurements.
基金National Key R&D Program of China(2016YFA0602701)National Natural Science Foundation of China(42075064)
文摘We set four sets of simulation experiments to explore the impacts of horizontal resolution(HR)and vertical resolution(VR)on the microphysical structure and boundary layer fluxes of tropical cyclone(TC)Hato(2017).The study shows that higher HR tends to strengthen TC.Increasing VR in the upper layers tends to weaken TC,while increasing VR in the lower layers tends to strengthen TC.Simulated amounts of all hydrometeors were larger with higher HR.Increasing VR at the upper level enhanced the mixing ratios of cloud ice and cloud snow,while increasing VR at the lower level elevated the mixing ratios of graupel and rainwater.HR has greater impact on the distributions of hydrometeors.Higher HR has a more complete ring structure of the eyewall and more concentrated hydrometeors along the cloud wall.Increasing VR at the lower level has little impact on the distribution of TC hydrometeors,while increasing VR at the upper level enhances the cloud thickness of the eyewall area.Surface latent heat flux(SLHF)is influenced greatly by resolution.Higher HR leads to larger water vapor fluxes and larger latent heat,which would result in a stronger TC.A large amount of false latent heat was generated when HR was too high,leading to an extremely strong TC,VR has a smaller impact on SLHF than HR.But increasing VR at the upper-level reduces the SLHF and weakens TC,and elevating VR at the lower-level increases the SLHF and strengthens TC.The changes in surface water vapor flux and SLHF were practically identical and the simulation results were improved when HR and VR were more coordinated.The friction velocity was greater with higher VR.Enhancing VR at the lower level increased the friction velocity,while increasing VR at the upper level reduced it.
基金jointly supported by the China Meteorological Administration Special Public Welfare Research Fund(Grant No.GYHY201506013)the China National Science Foundation(Grant No.41606019)the UK-China Research & Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP) China as part of the Newton Fund
文摘Previous studies have revealed a combination mode (C-mode) occurring in the Indo-Pacific region, arising from nonlinear interactions between ENSO and the western Pacific warm pool annual cycle. This paper evaluates the simulation of this C-mode and its asymmetric SST response in HadGEM3 and its resolution sensitivity using three sets of simulations at horizontal resolutions of N96, N216 and N512. The results show that HadGEM3 can capture well the spatial pattern of the C-mode associated surface wind anomalies, as well as the asymmetric response of SST in the tropical Pacific, but it strongly overestimates the explained variability of the C-mode compared to the ENSO mode. The model with the three resolutions is able to reproduce the distinct spectral peaks of the C-mode at the near annual combination frequencies, but the performance in simulating the longer periods is not satisfactory, presumably due to the unrealistic simulation of the ENSO mode. Increasing the horizontal resolution can improve the consistency between atmospheric and oceanic representations of the C-mode, but not necessarily enhance the accuracy of C-mode simulation compared with observation.
基金supported by the U.S. DOE ASR (Atmospheric Systems Research) program (Grant No. DE-SC0013953)
文摘To better understand how model resolution affects the formation of Arctic boundary layer clouds,we investigated the influence of grid spacing on simulating cloud streets that occurred near Utqiaġvik(formerly Barrow),Alaska,on 2 May 2013 and were observed by MODIS(the Moderate Resolution Imaging Spectroradiometer).The Weather Research and Forecasting model was used to simulate the clouds using nested domains with increasingly fine resolution ranging from a horizontal grid spacing of 27 km in the boundary-layer-parameterized mesoscale domain to a grid spacing of 0.111 km in the large-eddy-permitting domain.We investigated the model-simulated mesoscale environment,horizontal and vertical cloud structures,boundary layer stability,and cloud properties,all of which were subsequently used to interpret the observed roll-cloud case.Increasing model resolution led to a transition from a more buoyant boundary layer to a more shear-driven turbulent boundary layer.The clouds were stratiform-like in the mesoscale domain,but as the model resolution increased,roll-like structures,aligned along the wind field,appeared with ever smaller wavelengths.A stronger vertical water vapor gradient occurred above the cloud layers with decreasing grid spacing.With fixed model grid spacing at 0.333 km,changing the model configuration from a boundary layer parameterization to a large-eddy-permitting scheme produced a more shear-driven and less unstable environment,a stronger vertical water vapor gradient below the cloud layers,and the wavelengths of the rolls decreased slightly.In this study,only the large-eddy-permitting simulation with gird spacing of 0.111 km was sufficient to model the observed roll clouds.
基金National Key Research and Development Program of China(2017YFC1501603)National Natural Science Foundation of China(41975136,42075014)+2 种基金Startup Foundation for Introducing Talent of NUIST(2023r121)Guangdong Basic and Applied Basic Research Foundation(2019A1515011118)Guangzhou Municipal Science and Technology Planning Project of China(202103000030)。
文摘This study investigated the impacts of increasing model resolutions and shortening forecast lead times on the quantitative precipitation forecast(QPF)for heavy-rainfall events over south China during the rainy seasons in 2013-2020.The control experiment,where the analysis-forecast cycles run with model resolutions of about 3 km,was compared to a lower-resolution experiment with model resolutions of about 9 km,and a longer-term experiment activated 12 hours earlier.Rainfall forecasting in the presummer rainy season was significantly improved by improving model resolutions,with more improvements in cases with stronger synoptic-scale forcings.This is partially attributed to the improved initial conditions(ICs)and subsequent forecasts for low-level jets(LLJs).Forecasts of heavy rainfall induced by landfalling tropical cyclones(TCs)benefited from increasing model resolutions in the first 6 hours.Forecast improvements in rainfall due to shortening forecast lead times were more significant at earlier(1-6 h)and later(7-12 h)lead times for cases with stronger and weaker synoptic-scale forcings,respectively,due to the area-and case-dependent improvements in ICs for nonprecipitation variables.Specifically,significant improvements mainly presented over the northern South China Sea for low-level onshore wind of weak-forcing cases but over south China for LLJs of strong-forcing cases during the presummer rainy season,and over south China for all the nonprecipitation variables above the surface during the TC season.However,some disadvantages of higher-resolution and shorter-term forecasts in QPFs highlight the importance of developing ensemble forecasting with proper IC perturbations,which include the complementary advantages of lower-resolution and longer-term forecasts.
文摘Objectics A convenient method was developed for the determination of the enantioselectivity ofreversible kinetic resolutions with the new equation deduced by us. Methods By using the data of extent ofconversions at t1, 2t1, and the equilibrium constant K measured by usual method, the enantiomeric ratio E can beeasily calculated by the newly developed equation. Results We have successfully applied our method to theanalyses of enantioselectivity of three lipasic resolutions. The results are in good agreement with those of otherexperiments. Conclusion The method is simple and practical, and plays an important role in the determination ofkinetic data of reversible resolution.
基金Supported by China Postdoctoral Science Foundation(2019T120114,2019M650756)National Natural Science Foundation of China(41801064,71790611)Central Asia Atmosphere Science Research Fund(CAAS201804)
文摘In this study, non-cumulative slope length(NCSL) calculation method and spatial analytical calculation(SAC) method were respectively applied to extract slope length and slope length factor from 10 sample areas, which are located in Ansai County, north Shaanxi Province. The comparison of computation precision between variable DEM resolutions showed that NCSL was superior to SAC entirely. And the results were best when the DEM resolutions were 5 and 10 m. Besides, the results of slope length factor were nearly the same under the two conditions. So DEM of 10 m resolution can be used to extract slope length.
文摘Land use conflicts are complex disputes that contribute at large in terms of negative social and economic impacts within the heterogeneous societies.The mechanisms of success for land use conflict resolution still need further research because of various mindsets of the people.In this paper,the issues of land conflicts between farmers and pastoralists in Tanzania mainland which could lead to low economic development are reviewed and the general causes and effects of land use conflicts are outlined.Poor land governance,inappropriate of land use plans,inadequate land policies,land tenure insecurity,corruption and population increases are cited as being among of the main offenders fuelling land use conflicts in Tanzania.
基金supported by the National Natural Science Foundation of China (21961006,32172459,22371057)Science and Technology Department of Guizhou Province (Qiankehejichu-ZK[2021]Key033)+1 种基金Program of Introducing Talents of Discipline to Universities of China (111 Program,D20023) at Guizhou UniversityFrontiers Science Center for Asymmetric Synthesis and Medicinal Molecules,Department of Education,Guizhou Province (Qianjiaohe KY (2020)004),Guizhou University (China)。
文摘N-heterocyclic carbene-catalyzed enantioselective kinetic resolutions,dynamic kinetic resolutions,and desymmetrization reactions are systematically reviewed.The content is organized according to the activation modes involved in these transformations.Future advances within this highly active research field are discussed from our perspectives on the topic.
基金National Key Research and Development Program of China(2022YFC3401100,2022YFF0712500)Guangdong Major Project of Basic and Applied Basic Research(2020B0301030009)+5 种基金National Natural Science Foundation of China(12204017,12004012,12004013,12041602,91750203,91850111,92150301)China Postdoctoral Science Foundation(2020M680220,2020M680230)Clinical Medicine Plus X-Young Scholars ProjectPeking UniversityFundamental Research Funds for the Central UniversitiesHigh-performance Computing Platform of Peking University。
文摘Light-sheet fluorescence microscopy(LSFM)has played an important role in bio-imaging due to its advantages of high photon efficiency,fast speed,and long-term imaging capabilities.The perpendicular layout between LSFM excitation and detection often limits the 3D resolutions as well as their isotropy.Here,we report on a reflective type light-sheet microscope with a mini-prism used as an optical path reflector.The conventional high NA objectives can be used both in excitation and detection with this design.Isotropic resolutions in 3D down to300 nm could be achieved without deconvolution.The proposed method also enables easy transform of a conventional fluorescence microscope to high performance light-sheet microscopy.