The present paper is an analysis of the female resisters under the patriarchy in the African-American female writer, Toni Morrison's Song of Solomon, which was published in 1977 and won the National Book Critics Circ...The present paper is an analysis of the female resisters under the patriarchy in the African-American female writer, Toni Morrison's Song of Solomon, which was published in 1977 and won the National Book Critics Circle Award and American Academy and Institute of Arts and Letters Award. The paper focuses on how the females in Song of Solomon--Ruth and her Daughters--resist the patriarchy.展开更多
The interaction between metabolic dysfunction and inflammation is central to the development of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease.Obesity-related conditions like type 2 d...The interaction between metabolic dysfunction and inflammation is central to the development of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease.Obesity-related conditions like type 2 diabetes and non-alcoholic fatty liver disease exacerbate this relationship.Peripheral lipid accumulation,particularly in the liver,initiates a cascade of inflammatory processes that extend to the brain,influencing critical metabolic regulatory regions.Ceramide and palmitate,key lipid components,along with lipid transporters lipocalin-2 and apolipoprotein E,contribute to neuroinflammation by disrupting blood–brain barrier integrity and promoting gliosis.Peripheral insulin resistance further exacerbates brain insulin resistance and neuroinflammation.Preclinical interventions targeting peripheral lipid metabolism and insulin signaling pathways have shown promise in reducing neuroinflammation in animal models.However,translating these findings to clinical practice requires further investigation into human subjects.In conclusion,metabolic dysfunction,peripheral inflammation,and insulin resistance are integral to neuroinflammation and neurodegeneration.Understanding these complex mechanisms holds potential for identifying novel therapeutic targets and improving outcomes for neurodegenerative diseases.展开更多
With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h...With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h.展开更多
In-situ formed high Mn steel coating reinforced by carbides was formed by laser surface alloying(LSA).Laser alloyed layers on 1Cr18Ni9Ti steel with Mn+W_(2)C(specimen A),Mn+NiWC(specimen B)and Mn+SiC(specimen C)powder...In-situ formed high Mn steel coating reinforced by carbides was formed by laser surface alloying(LSA).Laser alloyed layers on 1Cr18Ni9Ti steel with Mn+W_(2)C(specimen A),Mn+NiWC(specimen B)and Mn+SiC(specimen C)powders were fabricated to improve the wear and corrosion behavior of 1Cr18Ni9Ti steel blades in high speed mixers.Microstructure evolution,phases,element distribution,microhardness,wear and corrosion behavior of the laser alloyed layers were investigated.Results indicated that high Mn steel matrix composites with undissolved W_(2)C,WC and other in-situ formed carbides were formed by LSA with Mn+W_(2)C and Mn+NiWC while SiC totally dissolved into the high Mn matrix when adding Mn+SiC.Ni as the binding phase in Ni-WC powder decreased the crack sensitivity of the alloyed layer as compared with the addition of W_(2)C powder.An improvement in average microhardness was achieved in the matrix in specimen A,B and C,with the value of 615,602 and 277 HV_(0.5),while that of the substrate was 212 HV_(0.5).The increase of microhardness,wear and corrosion resistance is highly corelated to microstructure,formed phases,type and content of carbides,micro-hardness and toughness of the alloyed layers.展开更多
BACKGROUND Acute hyperglycemia due to insulin resistance is common in critically ill patients,typically managed with insulin infusion.However,the occurrence of transient extreme insulin resistance(EIR)requiring except...BACKGROUND Acute hyperglycemia due to insulin resistance is common in critically ill patients,typically managed with insulin infusion.However,the occurrence of transient extreme insulin resistance(EIR)requiring exceptional high-dose insulin is rare.CASE SUMMARY We present the case of a 68-year-old woman with pneumonia who suffered an out-of-hospital cardiac arrest,subsequently developing transient EIR following a new episode of sepsis.Remarkably,insulin resistance rapidly reversed when the insulin infusion rate peaked at 960 units/hour(a total of 18224 units on that day),and it was promptly titrated down to zero upon achieving the target glucose level.CONCLUSION Exceptional high-dose insulin infusion may be required in critically ill patients with stress-related EIR,which is typically transient.Clinicians should be aware of the phenomenon and cautious to avoid hypoglycemia and fluid overload during the steep titration of high-dose insulin infusion.展开更多
Powdery mildew negatively impacts wheat yield and quality.Emmer wheat(Triticum dicoccum),an ancestral species of common wheat,is a gene donor for wheat improvement.Cultivated emmer accession H1-707 exhibited all-stage...Powdery mildew negatively impacts wheat yield and quality.Emmer wheat(Triticum dicoccum),an ancestral species of common wheat,is a gene donor for wheat improvement.Cultivated emmer accession H1-707 exhibited all-stage resistance to powdery mildew over consecutive years.Genetic analysis of H1-707 at the seedling stage revealed a dominant monogenic inheritance pattern,and the underlying gene was designated Pm71.By employing bulked segregant exome sequencing(BSE-Seq)and using 2000 F2:3 families,Pm71 was fine mapped to a 336-kb interval on chromosome arm 6AS by referencing to the durum cv.Svevo RefSeq 1.0.Collinearity analysis revealed high homology in the candidate interval between Svevo and six Triticum species.Among six high-confidence genes annotated within this interval,TRITD6Av1G005050 encoding a GDSL esterase/lipase was identified as a key candidate for Pm71.展开更多
Proton exchange membrane water electrolysis(PEMWE)is one of the most promising strategies to pro-duce green hydrogen energy,and it is crucial to exploit highly conductive and good corrosion-resistant coatings on bipol...Proton exchange membrane water electrolysis(PEMWE)is one of the most promising strategies to pro-duce green hydrogen energy,and it is crucial to exploit highly conductive and good corrosion-resistant coatings on bipolar plates(BPs),one of the core components in PEMWE cells.In this work,NbN coatings are deposited on Ti BPs by magnetron sputtering to improve the corrosion resistance and conductivity,for which the critical process parameters,such as the working pressure,partial nitrogen pressure and de-position temperature are well optimized.It is found that the compact microstructure,highly conductive δ-NbN and uniform nanoparticles play a dominant role in the synergistic improvement of the corrosion resistance and electrical conductivity of NbN coatings.The optimized NbN coatings exhibit excellent cor-rosion resistance with the low corrosion current density of 1.1×10^(-8) A cm^(-2),a high potential value of-0.005 V vs.SCE and a low ICR value of 15.8 mΩcm2@1.5 MPa.Accordingly,NbN coatings can be a promising candidate for the development of the low-cost and high-anti-corrosion Ti BPs of PEMWE.展开更多
Triple-negative breast cancer(TNBC)is currently the most heterogeneous and aggressive breast cancer type.It has a high recurrence rate,poor clinical prospects,and lack of predictive markers and potential treatment opt...Triple-negative breast cancer(TNBC)is currently the most heterogeneous and aggressive breast cancer type.It has a high recurrence rate,poor clinical prospects,and lack of predictive markers and potential treatment options.Dysregulated microRNAs(miRNAs)are involved in various cellular processes in TNBC.Moreover,variations in the miRNA levels in TNBC may act as a dependable indicator for predicting the effectiveness and specificity of treatments.Currently,the application of miRNAs for breast cancer therapy is primarily in the preclinical stage,with a focus on identifying highly specific and sensitive miRNAs that could offer new possibilities for early diagnosis,clinical treat-ment,and prognostic monitoring of TNBC.展开更多
Exploring high-efficiency and broadband microwave absorption(MA)materials with corrosion resistance and low cost is ur-gently needed for wide practical applications.Herein,the natural porous attapulgite(ATP)nanorods e...Exploring high-efficiency and broadband microwave absorption(MA)materials with corrosion resistance and low cost is ur-gently needed for wide practical applications.Herein,the natural porous attapulgite(ATP)nanorods embedded with TiO_(2)and polyaniline(PANI)nanoparticles are synthesized via heterogeneous precipitation and in-situ polymerization.The obtained PANI-TiO_(2)-ATP one-di-mensional(1D)nanostructures can intertwine into three-dimensional(3D)conductive network,which favors energy dissipation.The min-imum reflection loss(RL_(min))of the PANI-TiO_(2)-ATP coating(20wt%)reaches-49.36 dB at 9.53 GHz,and the effective absorption band-width(EAB)can reach 6.53 GHz with a thickness of 2.1 mm.The excellent MA properties are attributed to interfacial polarization,mul-tiple loss mechanisms,and good impedance matching induced by the synergistic effect of PANI-TiO_(2)nanoparticle shells and ATP nanor-ods.In addition,salt spray and Tafel polarization curve tests reveal that the PANI-TiO_(2)-ATP coating shows outstanding corrosion resist-ance performance.This study provides a low-cost and high-efficiency strategy for constructing 1D nanonetwork composites for MA and corrosion resistance applications using natural porous ATP nanorods as carriers.展开更多
BACKGROUND Liver transplant(LT)recipients are susceptible to carbapenem-resistant Klebsiella pneumoniae(CRKP)infections.Comprehensive research addressing the incidence,timing,infection sites,resistance patterns,treatm...BACKGROUND Liver transplant(LT)recipients are susceptible to carbapenem-resistant Klebsiella pneumoniae(CRKP)infections.Comprehensive research addressing the incidence,timing,infection sites,resistance patterns,treatment options,and associated risk factors among LT recipients with CRKP is now lacking.AIM To assess the incidence,resistance,therapy,and risk factors of CRKP infections post-LT,and to evaluate the impact of them on prognosis.METHODS A retrospective study was conducted,including 430 consecutive patients who underwent LT between January 2015 and June 2023.This study aimed to investigate the risk factors for CRKP infections and their influence on outcomes using logistic regression analysis.RESULTS Among the 430 patients who underwent LT,20(4.7%)experienced at least one documented CRKP infection within 3 months post-transplantation.The median time from LT to the onset of CRKP infections was 6.5 days.The lungs and bloodstream were the most common sites of CRKP infections.CRKP isolates were relatively susceptible to ceftazidime/avibactam(93.7%),polymyxin B(90.6%),and tigecycline(75.0%)treatment.However,all isolates were resistant to piperacillin/tazobactam,ceftazidime,cefepime,aztreonam,meropenem,and levofloxacin treatment.Recipients with CRKP infections had a mortality rate of 35%,the rate was 12.5%for those receiving ceftazidime/avibactam therapy.Multivariate analysis identified female sex[odds ratio(OR)=3.306;95%confidence interval(CI):1.239-8.822;P=0.017],intraoperative bleeding≥3000 mL(OR=3.269;95%CI:1.018-10.490;P=0.047),alanine aminotransferase on day 1 post-LT≥1500 U/L(OR=4.370;95%CI:1.686-11.326;P=0.002),and post-LT mechanical ventilation(OR=2.772;95%CI:1.077-7.135;P=0.035)as significant variables associated with CRKP.CRKP infections were related to an intensive care unit length(ICU)of stay≥7 days and 6-month all-cause mortality post-LT.CONCLUSION CRKP infections were frequent complications following LT,with poor associated outcomes.Risk factors for post-LT CRKP infections included female sex,significant intraoperative bleeding,elevated alanine aminotransferase levels,and the need for mechanical ventilation.CRKP infections negatively impacted survival and led to prolonged ICU stays.展开更多
Antimicrobial resistance is a global health crisis and carbapenem-resistant Klebsiella pneumoniae(CRKp)is listed as one of the top high-priority pathogens by the World Health Organization.Meanwhile,hypervirulent K.pne...Antimicrobial resistance is a global health crisis and carbapenem-resistant Klebsiella pneumoniae(CRKp)is listed as one of the top high-priority pathogens by the World Health Organization.Meanwhile,hypervirulent K.pneumoniae(hvKp)causes severe community-associated infections,such as liver abscesses and meningitis,in otherwise healthy individuals.Both CRKp and hvKp infections are associated with high mortality rates.The convergence of carbapenem resistance and hypervirulence within a single bacterial strain may lead to significantly more severe clinical outcomes.展开更多
Silicide coatings have proven to be promising for improving the high-temperature oxidation resistance of niobium alloy.However,the long-term protective property of single silicide coating remains a long-time endeavor ...Silicide coatings have proven to be promising for improving the high-temperature oxidation resistance of niobium alloy.However,the long-term protective property of single silicide coating remains a long-time endeavor due to the deficiency of oxygen-consuming phases,as well as the self-healing ability of the protective layer.Herein,a silicide-based composite coating is constructed on niobium alloy by incor-poration of nano-SiC particles for enhancing the high-temperature oxidation resistance.Isothermal oxi-dation results at 1250℃ for 50 h indicate that NbSi_(2)/Nb_(2)O_(5)-SiO_(2)/SiC multilayer coated sample with a low mass gain of 2.49 mg/cm^(2) shows an improved oxidation resistance compared with NbSi_(2) coating(6.49 mg/cm^(2)).The enhanced high-temperature antioxidant performance of NbSi_(2)/Nb_(2)O_(5)-SiO_(2)/SiC multi-layer coating is mainly attributed to the formation of the protective SiO_(2) self-healing film and the high-temperature diffusion behavior of NbSi_(2)/substrate.展开更多
Reductive soil disinfestation(RSD)is commonly employed for soil remediation in greenhouse cultivation.However,its influence on antibiotic resistance genes(ARGs)in soil remains uncertain.This study investigated the dyn...Reductive soil disinfestation(RSD)is commonly employed for soil remediation in greenhouse cultivation.However,its influence on antibiotic resistance genes(ARGs)in soil remains uncertain.This study investigated the dynamic changes in soil communities,potential bacterial pathogens,and ARG profiles under various organicmaterial treatments during RSD,including distillers’grains,potato peel,peanut vine,and peanut vine combined with charcoal.Results revealed that applying diverse organic materials in RSD significantly altered bacterial community composition and diminished the relative abundance of potential bacterial pathogens(P<0.05).The relative abundance of high-risk ARGs decreased by 10.7%-30.6%after RSD treatments,the main decreased ARG subtypeswere AAC(3)_Via,dfrA1,ErmB,lnuB,aadA.Actinobacteria was the primary host of ARGs and was suppressed by RSD.Soil physicochemical properties,such as total nitrogen,soil pH,total carbon,were crucial factors affecting ARG profiles.Our findings demonstrated that RSD treatment inhibited pathogenic bacteria and could be an option for reducing high-risk ARG proliferation in soil.展开更多
Nosocomial pathogen carbapenem-resistant Klebsiella pneumoniae(CRKP)poses a heightened risk to public health through carbapenem resistance and virulence convergence,particularly in China’s dominant sequence type 11(S...Nosocomial pathogen carbapenem-resistant Klebsiella pneumoniae(CRKP)poses a heightened risk to public health through carbapenem resistance and virulence convergence,particularly in China’s dominant sequence type 11(ST11)clone[1,2].Monoclonal K.pneumoniae exhibits within-host diversity during prolonged infections[3–5],with certain variants surviving through adaptation[4,6].CRKP strains from the blood of a single patient are heterogeneous in terms of antibiotic susceptibility,capsular polysaccharide production,and mucoviscosity[3].Intra-host evolution drives novel resistance via cumulative mutations(e.g.,the transcriptional regulator gene ramR mutations and the outer membrane porin gene OmpK35 loss)[4].展开更多
Background:Under hypoxia,exaggerated compensatory responses may lead to acute mountain sickness.The excessive vasodilatory effect of nitric oxide(NO)can lower the hypoxic pulmonary vasoconstriction(HPV)and peripheral ...Background:Under hypoxia,exaggerated compensatory responses may lead to acute mountain sickness.The excessive vasodilatory effect of nitric oxide(NO)can lower the hypoxic pulmonary vasoconstriction(HPV)and peripheral blood pressure.While NO is catalyzed by various nitric oxide synthase(NOS)isoforms,the regulatory roles of these types in the hemodynamics of pulmonary and systemic circulation in living hypoxic animals remain unclear.Therefore,this study aims to investigate the regu-latory effects of different NOS isoforms on pulmonary and systemic circulation in hypoxic rats by employing selective NOS inhibitors and continuously monitoring hemodynamic parameters of both pulmonary and systemic circulation.Methods:Forty healthy male Sprague–Dawley(SD)rats were randomly divided into four groups:Control group(NG-nitro-D-arginine methyl ester,D-NAME),L-NAME group(non-selective NOS inhibitor,NG-nitro-L-arginine methyl ester),AG group(in-ducible NOS inhibitor group,aminoguanidine),and 7-NI group(neurological NOS in-hibitor,7-nitroindazole).Hemodynamic parameters of rats were monitored for 10 min after inhibitor administration and 5 min after induction of hypoxia[15%O2,2200 m a.sl.,582 mmHg(76.5 kPa),Xining,China]using the real-time dynamic monitoring model for pulmonary and systemic circulation hemodynamics in vivo.Serum NO concentra-tions and blood gas analysis were measured.Results:Under normoxia,mean arterial pressure and total peripheral vascular resist-ance were increased,and ascending aortic blood flow and serum NO concentration were decreased in the L-NAME and AG groups.During hypoxia,pulmonary arterial pressure and pulmonary vascular resistance were significantly increased in the L-NAME and AG groups.Conclusions:This compensatory mechanism activated by inducible NOS and en-dothelial NOS effectively counteracts the pulmonary hemodynamic changes induced by hypoxic stress.It plays a crucial role in alleviating hypoxia-induced pulmonary arte-rial hypertension.展开更多
Because of the recent widespread usage of antibiotics,the acquisition and dissemination of antibiotic-resistance genes(ARGs)were prevalent in the majority of habitats.Generally,the biological wastewater treatment proc...Because of the recent widespread usage of antibiotics,the acquisition and dissemination of antibiotic-resistance genes(ARGs)were prevalent in the majority of habitats.Generally,the biological wastewater treatment processes used in wastewater treatment plants have a limited efficiencies of antibiotics resistant bacteria(ARB)disinfection and ARGs degradation and even promote the proliferation of ARGs.Problematically,ARB and ARGs in effluent pose potential risks if they are not further treated.Photocatalytic oxidation is considered a promising disinfection technology,where the photocatalytic process generates many free radicals that enhance the interaction between light and deoxyribonucleic acid(DNA)for ARB elimination and subsequent degradation of ARGs.This reviewaims to illustrate the progress of photocatalytic oxidation technology for removing antibiotics resistant(AR)from wastewater in recent years.We discuss the sources and transfer of ARGs in wastewater.The overall removal efficiencies of ultraviolet radiation(UV)/chlorination,UV/ozone,UV/H_(2)O_(2),and UV/sulfate-radical based system for ARB and ARGs,as well as the experimental parameters and removal mechanisms,are systematically discussed.The contribution of photocatalytic materials based on TiO_(2) and g-C_(3)N_(4) to the inactivation of ARB and degradation of ARGs is highlighted,producingmany free radicals to attack ARB and ARGs while effectively limiting the horizontal gene transfer(HGT)in wastewater.Finally,based on the reviewed studies,future research directions are proposed to realize specific photocatalytic oxidation technology applications and overcome current challenges.展开更多
The rapid development of industrialization requires the advancement of multifunctional coatings.In this study,successful self-assembly of iron porphyrin on BP nanosheets resulted in the synthesis of IBP nanosheets wit...The rapid development of industrialization requires the advancement of multifunctional coatings.In this study,successful self-assembly of iron porphyrin on BP nanosheets resulted in the synthesis of IBP nanosheets with a sandwich structure.Characterization tests including SEM,XPS,SPM,and XRD confirmed the successful preparation of IBP nanosheets with robust structural stability and antioxidation.Subsequently,a water-based epoxy resin(WEP)coating containing IBP nanosheets was prepared.Test results revealed that the composite coating containing 0.4 wt.%IBP nanosheets exhibited outstanding anti-corrosion,wear-resistant,and flame-retardant properties.After 42 days of immersion in a 3.5 wt.%NaCl solution,the Rct value of the 4-IBP/WEP coating was 1.79×10^(9)Ωcm^(2),surpassing the Pure WEP coating by more than 3 orders of magnitude.Additionally,the peak heat release rate(PHRR)and wear rate of the 4-IBP/WEP coating decreased by 19.29%and 90.97%compared to the Pure WEP coating.This research presents a novel idea for the utilization of BP nanosheets in multifunctional coatings.展开更多
Magnesium alloy is a promising biodegradable metal material for hard tissue engineering.However,its high corrosion rate limits its application.In our previous study,we biomimetically deposited a calcium carbonate coat...Magnesium alloy is a promising biodegradable metal material for hard tissue engineering.However,its high corrosion rate limits its application.In our previous study,we biomimetically deposited a calcium carbonate coating on the surface of magnesium alloy using siloxane induction.This calcium carbonate coating demonstrated excellent in vitro biocompatibility and provided partial protection for the magnesium alloy substrate.In this study,we further enhanced the corrosion resistance of the calcium carbonate coating by treating it with stearic acid and its derivative,sodium stearate.Electrochemical corrosion tests revealed that the sodium stearate-treated calcium carbonate coating reduced the corrosion rate by two orders of magnitude.Additionally,in vitro biocompatibility assessments showed that while the biocompatibility of the sodium stearate-treated coating was slightly reduced,it remained acceptable compared to the magnesium substrate.This study builds on our previous work and offers a promising reinforcement strategy for degradable magnesium alloys in medical applications.展开更多
WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content o...WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content on microstructure and wear property of the composite coatings was studied in detail.Large numbers of carbides with four main types:primary carbide crystals,eutectic structures,massive crystals growing along the periphery of the remaining WC particles and incompletely fused WC particles,were found to exist in the WC/CoCrFeNiMo composite coatings.With increasing WC content,the microhardness of coatings is gradually improved while the average friction coefficients follow the opposite trend due to solid solution strengthening and second phase strengthening effect.The maximum microhardness and minimum friction coefficient are HV_(0.2)689.7 and 0.72,respectively,for the composite coating with 30 wt.%WC,the wear resistance of the substrate is improved significantly,the wear mechanisms are spalling wear and abrasive wear due to their high microhardness.展开更多
文摘The present paper is an analysis of the female resisters under the patriarchy in the African-American female writer, Toni Morrison's Song of Solomon, which was published in 1977 and won the National Book Critics Circle Award and American Academy and Institute of Arts and Letters Award. The paper focuses on how the females in Song of Solomon--Ruth and her Daughters--resist the patriarchy.
基金supported by a Presidential Postdoctoral Fellowship (021229-00001) from Nanyang Technological University,Singapore (to JZ)a Lee Kong Chian School of Medicine Dean’s Postdoctoral Fellowship (021207-00001) from NTU Singaporea Mistletoe Research Fellowship (022522-00001) from the Momental Foundaton,USA (to CHL)
文摘The interaction between metabolic dysfunction and inflammation is central to the development of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease.Obesity-related conditions like type 2 diabetes and non-alcoholic fatty liver disease exacerbate this relationship.Peripheral lipid accumulation,particularly in the liver,initiates a cascade of inflammatory processes that extend to the brain,influencing critical metabolic regulatory regions.Ceramide and palmitate,key lipid components,along with lipid transporters lipocalin-2 and apolipoprotein E,contribute to neuroinflammation by disrupting blood–brain barrier integrity and promoting gliosis.Peripheral insulin resistance further exacerbates brain insulin resistance and neuroinflammation.Preclinical interventions targeting peripheral lipid metabolism and insulin signaling pathways have shown promise in reducing neuroinflammation in animal models.However,translating these findings to clinical practice requires further investigation into human subjects.In conclusion,metabolic dysfunction,peripheral inflammation,and insulin resistance are integral to neuroinflammation and neurodegeneration.Understanding these complex mechanisms holds potential for identifying novel therapeutic targets and improving outcomes for neurodegenerative diseases.
基金sponsored by National Natural Science Foundation of China(No.52302121,No.52203386)Shanghai Sailing Program(No.23YF1454700)+1 种基金Shanghai Natural Science Foundation(No.23ZR1472700)Shanghai Post-doctoral Excellent Program(No.2022664).
文摘With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h.
文摘In-situ formed high Mn steel coating reinforced by carbides was formed by laser surface alloying(LSA).Laser alloyed layers on 1Cr18Ni9Ti steel with Mn+W_(2)C(specimen A),Mn+NiWC(specimen B)and Mn+SiC(specimen C)powders were fabricated to improve the wear and corrosion behavior of 1Cr18Ni9Ti steel blades in high speed mixers.Microstructure evolution,phases,element distribution,microhardness,wear and corrosion behavior of the laser alloyed layers were investigated.Results indicated that high Mn steel matrix composites with undissolved W_(2)C,WC and other in-situ formed carbides were formed by LSA with Mn+W_(2)C and Mn+NiWC while SiC totally dissolved into the high Mn matrix when adding Mn+SiC.Ni as the binding phase in Ni-WC powder decreased the crack sensitivity of the alloyed layer as compared with the addition of W_(2)C powder.An improvement in average microhardness was achieved in the matrix in specimen A,B and C,with the value of 615,602 and 277 HV_(0.5),while that of the substrate was 212 HV_(0.5).The increase of microhardness,wear and corrosion resistance is highly corelated to microstructure,formed phases,type and content of carbides,micro-hardness and toughness of the alloyed layers.
文摘BACKGROUND Acute hyperglycemia due to insulin resistance is common in critically ill patients,typically managed with insulin infusion.However,the occurrence of transient extreme insulin resistance(EIR)requiring exceptional high-dose insulin is rare.CASE SUMMARY We present the case of a 68-year-old woman with pneumonia who suffered an out-of-hospital cardiac arrest,subsequently developing transient EIR following a new episode of sepsis.Remarkably,insulin resistance rapidly reversed when the insulin infusion rate peaked at 960 units/hour(a total of 18224 units on that day),and it was promptly titrated down to zero upon achieving the target glucose level.CONCLUSION Exceptional high-dose insulin infusion may be required in critically ill patients with stress-related EIR,which is typically transient.Clinicians should be aware of the phenomenon and cautious to avoid hypoglycemia and fluid overload during the steep titration of high-dose insulin infusion.
基金financially supported by National Natural Science Foundation of China(32301800,32301923 and 32072053)Wheat Industrial Technology System of Shandong Province(SDAIT-01-01)Key Research and Development Project of Shandong Province(2022LZG002-4,2023LZGC009-4-4).
文摘Powdery mildew negatively impacts wheat yield and quality.Emmer wheat(Triticum dicoccum),an ancestral species of common wheat,is a gene donor for wheat improvement.Cultivated emmer accession H1-707 exhibited all-stage resistance to powdery mildew over consecutive years.Genetic analysis of H1-707 at the seedling stage revealed a dominant monogenic inheritance pattern,and the underlying gene was designated Pm71.By employing bulked segregant exome sequencing(BSE-Seq)and using 2000 F2:3 families,Pm71 was fine mapped to a 336-kb interval on chromosome arm 6AS by referencing to the durum cv.Svevo RefSeq 1.0.Collinearity analysis revealed high homology in the candidate interval between Svevo and six Triticum species.Among six high-confidence genes annotated within this interval,TRITD6Av1G005050 encoding a GDSL esterase/lipase was identified as a key candidate for Pm71.
基金supported by the National Key Re-search and Development Program of China(No.2022YFB4002100)the National Natural Science Foundation of China(No.52271136)the Natural Science Foundation of Shaanxi Province(Nos.2019TD-020 and 2021JC-06).
文摘Proton exchange membrane water electrolysis(PEMWE)is one of the most promising strategies to pro-duce green hydrogen energy,and it is crucial to exploit highly conductive and good corrosion-resistant coatings on bipolar plates(BPs),one of the core components in PEMWE cells.In this work,NbN coatings are deposited on Ti BPs by magnetron sputtering to improve the corrosion resistance and conductivity,for which the critical process parameters,such as the working pressure,partial nitrogen pressure and de-position temperature are well optimized.It is found that the compact microstructure,highly conductive δ-NbN and uniform nanoparticles play a dominant role in the synergistic improvement of the corrosion resistance and electrical conductivity of NbN coatings.The optimized NbN coatings exhibit excellent cor-rosion resistance with the low corrosion current density of 1.1×10^(-8) A cm^(-2),a high potential value of-0.005 V vs.SCE and a low ICR value of 15.8 mΩcm2@1.5 MPa.Accordingly,NbN coatings can be a promising candidate for the development of the low-cost and high-anti-corrosion Ti BPs of PEMWE.
基金supported by Shandong Provincial Natural Science Foundation(no.ZR2020MH319).
文摘Triple-negative breast cancer(TNBC)is currently the most heterogeneous and aggressive breast cancer type.It has a high recurrence rate,poor clinical prospects,and lack of predictive markers and potential treatment options.Dysregulated microRNAs(miRNAs)are involved in various cellular processes in TNBC.Moreover,variations in the miRNA levels in TNBC may act as a dependable indicator for predicting the effectiveness and specificity of treatments.Currently,the application of miRNAs for breast cancer therapy is primarily in the preclinical stage,with a focus on identifying highly specific and sensitive miRNAs that could offer new possibilities for early diagnosis,clinical treat-ment,and prognostic monitoring of TNBC.
基金support from the National Key Research and Development Program of China(No.2021YFB3701503)the Key Research and Development Program of Ningbo,China(No.2023Z107)+1 种基金the Jiangsu Key R&D program,China(No.BE2019072)the special project of Gansu regional science and technology cooperation,China(No.20JR10 QA579).
文摘Exploring high-efficiency and broadband microwave absorption(MA)materials with corrosion resistance and low cost is ur-gently needed for wide practical applications.Herein,the natural porous attapulgite(ATP)nanorods embedded with TiO_(2)and polyaniline(PANI)nanoparticles are synthesized via heterogeneous precipitation and in-situ polymerization.The obtained PANI-TiO_(2)-ATP one-di-mensional(1D)nanostructures can intertwine into three-dimensional(3D)conductive network,which favors energy dissipation.The min-imum reflection loss(RL_(min))of the PANI-TiO_(2)-ATP coating(20wt%)reaches-49.36 dB at 9.53 GHz,and the effective absorption band-width(EAB)can reach 6.53 GHz with a thickness of 2.1 mm.The excellent MA properties are attributed to interfacial polarization,mul-tiple loss mechanisms,and good impedance matching induced by the synergistic effect of PANI-TiO_(2)nanoparticle shells and ATP nanor-ods.In addition,salt spray and Tafel polarization curve tests reveal that the PANI-TiO_(2)-ATP coating shows outstanding corrosion resist-ance performance.This study provides a low-cost and high-efficiency strategy for constructing 1D nanonetwork composites for MA and corrosion resistance applications using natural porous ATP nanorods as carriers.
文摘BACKGROUND Liver transplant(LT)recipients are susceptible to carbapenem-resistant Klebsiella pneumoniae(CRKP)infections.Comprehensive research addressing the incidence,timing,infection sites,resistance patterns,treatment options,and associated risk factors among LT recipients with CRKP is now lacking.AIM To assess the incidence,resistance,therapy,and risk factors of CRKP infections post-LT,and to evaluate the impact of them on prognosis.METHODS A retrospective study was conducted,including 430 consecutive patients who underwent LT between January 2015 and June 2023.This study aimed to investigate the risk factors for CRKP infections and their influence on outcomes using logistic regression analysis.RESULTS Among the 430 patients who underwent LT,20(4.7%)experienced at least one documented CRKP infection within 3 months post-transplantation.The median time from LT to the onset of CRKP infections was 6.5 days.The lungs and bloodstream were the most common sites of CRKP infections.CRKP isolates were relatively susceptible to ceftazidime/avibactam(93.7%),polymyxin B(90.6%),and tigecycline(75.0%)treatment.However,all isolates were resistant to piperacillin/tazobactam,ceftazidime,cefepime,aztreonam,meropenem,and levofloxacin treatment.Recipients with CRKP infections had a mortality rate of 35%,the rate was 12.5%for those receiving ceftazidime/avibactam therapy.Multivariate analysis identified female sex[odds ratio(OR)=3.306;95%confidence interval(CI):1.239-8.822;P=0.017],intraoperative bleeding≥3000 mL(OR=3.269;95%CI:1.018-10.490;P=0.047),alanine aminotransferase on day 1 post-LT≥1500 U/L(OR=4.370;95%CI:1.686-11.326;P=0.002),and post-LT mechanical ventilation(OR=2.772;95%CI:1.077-7.135;P=0.035)as significant variables associated with CRKP.CRKP infections were related to an intensive care unit length(ICU)of stay≥7 days and 6-month all-cause mortality post-LT.CONCLUSION CRKP infections were frequent complications following LT,with poor associated outcomes.Risk factors for post-LT CRKP infections included female sex,significant intraoperative bleeding,elevated alanine aminotransferase levels,and the need for mechanical ventilation.CRKP infections negatively impacted survival and led to prolonged ICU stays.
基金supported by the National Natural Science Foundation of China(grant numbers 81991531 to M.W.,82102440 to J.J.,and 32400149 to J.Z.).
文摘Antimicrobial resistance is a global health crisis and carbapenem-resistant Klebsiella pneumoniae(CRKp)is listed as one of the top high-priority pathogens by the World Health Organization.Meanwhile,hypervirulent K.pneumoniae(hvKp)causes severe community-associated infections,such as liver abscesses and meningitis,in otherwise healthy individuals.Both CRKp and hvKp infections are associated with high mortality rates.The convergence of carbapenem resistance and hypervirulence within a single bacterial strain may lead to significantly more severe clinical outcomes.
基金supported by the National Natural Science Foundation of China(Nos.U21B2053,52071114,52001100,and 523B2010)Outstanding Youth Project of Natural Science Foundation of Heilongjiang Province(No.YQ2023E008)+1 种基金Young Elite Scientists Sponsorship Program by CAST(NO.2021QNRC001)Heilongjiang Touyan Team Program.
文摘Silicide coatings have proven to be promising for improving the high-temperature oxidation resistance of niobium alloy.However,the long-term protective property of single silicide coating remains a long-time endeavor due to the deficiency of oxygen-consuming phases,as well as the self-healing ability of the protective layer.Herein,a silicide-based composite coating is constructed on niobium alloy by incor-poration of nano-SiC particles for enhancing the high-temperature oxidation resistance.Isothermal oxi-dation results at 1250℃ for 50 h indicate that NbSi_(2)/Nb_(2)O_(5)-SiO_(2)/SiC multilayer coated sample with a low mass gain of 2.49 mg/cm^(2) shows an improved oxidation resistance compared with NbSi_(2) coating(6.49 mg/cm^(2)).The enhanced high-temperature antioxidant performance of NbSi_(2)/Nb_(2)O_(5)-SiO_(2)/SiC multi-layer coating is mainly attributed to the formation of the protective SiO_(2) self-healing film and the high-temperature diffusion behavior of NbSi_(2)/substrate.
基金supported by the Key Research and Development Program of Shandong Province,China(No 2021CXGC010803)Pan’an County Chinese Medicine Industry Project(No.PZYF202103).
文摘Reductive soil disinfestation(RSD)is commonly employed for soil remediation in greenhouse cultivation.However,its influence on antibiotic resistance genes(ARGs)in soil remains uncertain.This study investigated the dynamic changes in soil communities,potential bacterial pathogens,and ARG profiles under various organicmaterial treatments during RSD,including distillers’grains,potato peel,peanut vine,and peanut vine combined with charcoal.Results revealed that applying diverse organic materials in RSD significantly altered bacterial community composition and diminished the relative abundance of potential bacterial pathogens(P<0.05).The relative abundance of high-risk ARGs decreased by 10.7%-30.6%after RSD treatments,the main decreased ARG subtypeswere AAC(3)_Via,dfrA1,ErmB,lnuB,aadA.Actinobacteria was the primary host of ARGs and was suppressed by RSD.Soil physicochemical properties,such as total nitrogen,soil pH,total carbon,were crucial factors affecting ARG profiles.Our findings demonstrated that RSD treatment inhibited pathogenic bacteria and could be an option for reducing high-risk ARG proliferation in soil.
基金Guangdong Basic and Applied Basic Research Foundation(grant number 2024A1515010319 to J.Q.)Science and Technology Program of Shenzhen(grant numbers KCXFZ20230731100901003 to J.Q.and L.L.,KJZD20230923115116032 to J.Q.,JCYJ20190809144005609 to J.Q.)+1 种基金Shenzhen Key Laboratory of Biochip(grant number ZDSYS201504301534057 to J.Q.)Shenzhen High-level Hospital Construction Fund(to J.Q.).
文摘Nosocomial pathogen carbapenem-resistant Klebsiella pneumoniae(CRKP)poses a heightened risk to public health through carbapenem resistance and virulence convergence,particularly in China’s dominant sequence type 11(ST11)clone[1,2].Monoclonal K.pneumoniae exhibits within-host diversity during prolonged infections[3–5],with certain variants surviving through adaptation[4,6].CRKP strains from the blood of a single patient are heterogeneous in terms of antibiotic susceptibility,capsular polysaccharide production,and mucoviscosity[3].Intra-host evolution drives novel resistance via cumulative mutations(e.g.,the transcriptional regulator gene ramR mutations and the outer membrane porin gene OmpK35 loss)[4].
基金This work was supported by the National Natural Science Foundation of China(grant numbers 81560301 and 81160012)the Natural Science Foundation of Qinghai Province(grant number 2022-ZJ-905)‘2022 Qinghai Province Kunlun Talents High-end Innovation and Entrepreneurship Talents’Outstanding Talent Project.
文摘Background:Under hypoxia,exaggerated compensatory responses may lead to acute mountain sickness.The excessive vasodilatory effect of nitric oxide(NO)can lower the hypoxic pulmonary vasoconstriction(HPV)and peripheral blood pressure.While NO is catalyzed by various nitric oxide synthase(NOS)isoforms,the regulatory roles of these types in the hemodynamics of pulmonary and systemic circulation in living hypoxic animals remain unclear.Therefore,this study aims to investigate the regu-latory effects of different NOS isoforms on pulmonary and systemic circulation in hypoxic rats by employing selective NOS inhibitors and continuously monitoring hemodynamic parameters of both pulmonary and systemic circulation.Methods:Forty healthy male Sprague–Dawley(SD)rats were randomly divided into four groups:Control group(NG-nitro-D-arginine methyl ester,D-NAME),L-NAME group(non-selective NOS inhibitor,NG-nitro-L-arginine methyl ester),AG group(in-ducible NOS inhibitor group,aminoguanidine),and 7-NI group(neurological NOS in-hibitor,7-nitroindazole).Hemodynamic parameters of rats were monitored for 10 min after inhibitor administration and 5 min after induction of hypoxia[15%O2,2200 m a.sl.,582 mmHg(76.5 kPa),Xining,China]using the real-time dynamic monitoring model for pulmonary and systemic circulation hemodynamics in vivo.Serum NO concentra-tions and blood gas analysis were measured.Results:Under normoxia,mean arterial pressure and total peripheral vascular resist-ance were increased,and ascending aortic blood flow and serum NO concentration were decreased in the L-NAME and AG groups.During hypoxia,pulmonary arterial pressure and pulmonary vascular resistance were significantly increased in the L-NAME and AG groups.Conclusions:This compensatory mechanism activated by inducible NOS and en-dothelial NOS effectively counteracts the pulmonary hemodynamic changes induced by hypoxic stress.It plays a crucial role in alleviating hypoxia-induced pulmonary arte-rial hypertension.
基金supported by the National Natural Science Foundation of China (Nos.52100182 and 52300204)the the Science and Technology Innovation Program of Hunan Province (No.2023RC3122).
文摘Because of the recent widespread usage of antibiotics,the acquisition and dissemination of antibiotic-resistance genes(ARGs)were prevalent in the majority of habitats.Generally,the biological wastewater treatment processes used in wastewater treatment plants have a limited efficiencies of antibiotics resistant bacteria(ARB)disinfection and ARGs degradation and even promote the proliferation of ARGs.Problematically,ARB and ARGs in effluent pose potential risks if they are not further treated.Photocatalytic oxidation is considered a promising disinfection technology,where the photocatalytic process generates many free radicals that enhance the interaction between light and deoxyribonucleic acid(DNA)for ARB elimination and subsequent degradation of ARGs.This reviewaims to illustrate the progress of photocatalytic oxidation technology for removing antibiotics resistant(AR)from wastewater in recent years.We discuss the sources and transfer of ARGs in wastewater.The overall removal efficiencies of ultraviolet radiation(UV)/chlorination,UV/ozone,UV/H_(2)O_(2),and UV/sulfate-radical based system for ARB and ARGs,as well as the experimental parameters and removal mechanisms,are systematically discussed.The contribution of photocatalytic materials based on TiO_(2) and g-C_(3)N_(4) to the inactivation of ARB and degradation of ARGs is highlighted,producingmany free radicals to attack ARB and ARGs while effectively limiting the horizontal gene transfer(HGT)in wastewater.Finally,based on the reviewed studies,future research directions are proposed to realize specific photocatalytic oxidation technology applications and overcome current challenges.
基金supports from the Science and Technology Program of Guangzhou(No.2024A04J3710)the National Natural Science Foundation of China(No.22268025).
文摘The rapid development of industrialization requires the advancement of multifunctional coatings.In this study,successful self-assembly of iron porphyrin on BP nanosheets resulted in the synthesis of IBP nanosheets with a sandwich structure.Characterization tests including SEM,XPS,SPM,and XRD confirmed the successful preparation of IBP nanosheets with robust structural stability and antioxidation.Subsequently,a water-based epoxy resin(WEP)coating containing IBP nanosheets was prepared.Test results revealed that the composite coating containing 0.4 wt.%IBP nanosheets exhibited outstanding anti-corrosion,wear-resistant,and flame-retardant properties.After 42 days of immersion in a 3.5 wt.%NaCl solution,the Rct value of the 4-IBP/WEP coating was 1.79×10^(9)Ωcm^(2),surpassing the Pure WEP coating by more than 3 orders of magnitude.Additionally,the peak heat release rate(PHRR)and wear rate of the 4-IBP/WEP coating decreased by 19.29%and 90.97%compared to the Pure WEP coating.This research presents a novel idea for the utilization of BP nanosheets in multifunctional coatings.
基金supported by the National Natural Science Foundation of China(No.52205310)the TUA research funding,UmeåUniversity/Region Västerbotten,Sweden(RV-937838)+1 种基金the Kempe foundation(JCSMK22-0122)the Natural Science Foundation of Shandong Province(No.ZR2021QE263).
文摘Magnesium alloy is a promising biodegradable metal material for hard tissue engineering.However,its high corrosion rate limits its application.In our previous study,we biomimetically deposited a calcium carbonate coating on the surface of magnesium alloy using siloxane induction.This calcium carbonate coating demonstrated excellent in vitro biocompatibility and provided partial protection for the magnesium alloy substrate.In this study,we further enhanced the corrosion resistance of the calcium carbonate coating by treating it with stearic acid and its derivative,sodium stearate.Electrochemical corrosion tests revealed that the sodium stearate-treated calcium carbonate coating reduced the corrosion rate by two orders of magnitude.Additionally,in vitro biocompatibility assessments showed that while the biocompatibility of the sodium stearate-treated coating was slightly reduced,it remained acceptable compared to the magnesium substrate.This study builds on our previous work and offers a promising reinforcement strategy for degradable magnesium alloys in medical applications.
基金Project(2021YFC2801904)supported by the National Key R&D Program of ChinaProject(KY10100230067)supported by the Basic Product Innovation Research Project,China+3 种基金Projects(52271130,52305344)supported by the National Natural Science Foundation of ChinaProjects(ZR2020ME017,ZR2020QE186)supported by the Natural Science Foundation of Shandong Province,ChinaProjects(AMGM2024F11,AMGM2021F10,AMGM2023F06)supported by the Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai,ChinaProject(KY90200210015)supported by Leading Scientific Research Project of China National Nuclear Corporation(CNNC),China。
文摘WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content on microstructure and wear property of the composite coatings was studied in detail.Large numbers of carbides with four main types:primary carbide crystals,eutectic structures,massive crystals growing along the periphery of the remaining WC particles and incompletely fused WC particles,were found to exist in the WC/CoCrFeNiMo composite coatings.With increasing WC content,the microhardness of coatings is gradually improved while the average friction coefficients follow the opposite trend due to solid solution strengthening and second phase strengthening effect.The maximum microhardness and minimum friction coefficient are HV_(0.2)689.7 and 0.72,respectively,for the composite coating with 30 wt.%WC,the wear resistance of the substrate is improved significantly,the wear mechanisms are spalling wear and abrasive wear due to their high microhardness.