期刊文献+
共找到169篇文章
< 1 2 9 >
每页显示 20 50 100
A review of electroslag remelting composite technologies
1
作者 Yu Wang Yan-chun Lou +5 位作者 Fang Wang Heng Cao Yun-bao Gao Ling Zhao Zhi Han Meng Li 《China Foundry》 2026年第1期1-19,共19页
Electroslag remelting(ESR) is an important metallurgical process for producing high-purity materials with homogeneous compositions and sound microstructures,and its typical products are ingots or simple castings.The c... Electroslag remelting(ESR) is an important metallurgical process for producing high-purity materials with homogeneous compositions and sound microstructures,and its typical products are ingots or simple castings.The core principle involves the resistive melting of a consumable electrode within a slag pool,followed by the refining of molten metal droplets as they traverse the slag,and subsequent sequential solidification in a water-cooled mold.However,conventional ESR processes face limitations in producing large or complex-shaped components,enhancing production efficiency,achieving highly specialized microstructures,and meeting ultra-high purity demands for advanced applications.Advanced composite ESR technologies have been developed to overcome these limitations by innovatively modifying key process aspects.For instance,electrode systems are improved using vibration,rotation,or multiple electrodes.Enhanced mold design and solidification control are achieved through techniques including conductive molds,mold rotation,and ingot withdrawal.Precise control of the process is realized through the use of protective gas,vacuum,or elevated pressure,as well as the application of external fields such as magnetic fields or ultrasonic vibration.This review comprehensively summarizes these advanced techniques,examining their principles and characteristics,and discussing their specific advantages and challenges. 展开更多
关键词 electroslag remelting(ESR) composite electroslag technology near-net shape casting high purity materials process modification external field assisted casting
在线阅读 下载PDF
Effect of magnetic field on molten pool behavior in vacuum arc remelting process of large-sized titanium alloy ingot
2
作者 Yong-tao Xiong Zhong-qiu Liu +4 位作者 Fang Wang Zi-bo Zhao Hai-bing Tan Jakov Baleta Bao-kuan Li 《Journal of Iron and Steel Research International》 2025年第9期2771-2783,共13页
Large-sized titanium alloy ingots produced by vacuum arc remelting(VAR)technology are susceptible to metallurgical imperfections such as compositional segregation,inconsistent solidification microstructures,black spot... Large-sized titanium alloy ingots produced by vacuum arc remelting(VAR)technology are susceptible to metallurgical imperfections such as compositional segregation,inconsistent solidification microstructures,black spots,and inclusions.These defects are intricately linked to the electromagnetic effects,temperature distribution,and fluid dynamics during the melting process.The self-induced magnetic field created by the electric current,along with the axial magnetic field applied to stabilize the arc,significantly influences the solidification of titanium alloy ingots.A mathematical model optimized for the integrated analysis of multiple fields—electromagnetic,fluid,and thermal—was developed for the VAR solidification process of titanium alloys.The influence mechanism of electromagnetic field on the macroscopic solidification process of titanium alloy was investigated.The findings indicate the presence of two competing forces within the VAR molten pool,namely,thermal buoyancy and the Lorentz force.Introducing a coupled self-induced magnetic field and elevating the current to 15 kA led to an increase in the molten pool depth by 42.9%and a reduction in the thickness of the mushy zone by 25.2%.The application of a constant axial magnetic field enhances a unidirectional momentum buildup within the molten pool,thereby enhancing the flow velocity and cooling efficiency of melt. 展开更多
关键词 Magnetic field Titanium alloy Vacuum arc remelting Molten pool Numerical simulation
原文传递
Physics-informed neural network for simulation of electromagnetic and temperature fields in electroslag remelting process
3
作者 Xiao-qing Jiang Wen-yue Hu +2 位作者 Xiao-na Liu Hong-ru Li Fu-bin Liu 《Journal of Iron and Steel Research International》 2025年第11期3826-3837,共12页
In the electroslag remelting(ESR)process,it mainly relies on thermal experiments or analysis via mechanistic models to realize the physical fields simulation of the electromagnetic field and temperature field coupled ... In the electroslag remelting(ESR)process,it mainly relies on thermal experiments or analysis via mechanistic models to realize the physical fields simulation of the electromagnetic field and temperature field coupled transfer,which has the limitations of high cost,a large amount of calculating data and high computing power requirements.A novel network based on physics-informed neural network(PINN)was designed to realize the fast and high-fidelity prediction of the distribution of electromagnetic field and temperature field in ESR process.The physical laws were combined with the deep learning network through PINN,and physical constraints were embedded to achieve effective solution of partial differential equations(PDEs).PINN was used to minimize the loss function consisting of data error,physical information error and boundary condition error.The physical laws and boundary condition constraints in the ESR process were considered to maintain high PDE solution accuracy under different spatial and temporal resolutions.Automatic differentiation(Autodiff)technique and gradient descent algorithm were used to optimize the network parameters.The experimental results show that compared with the mechanistic models,PINN can effectively replace thermal experiments to realize the physical field simulation of ESR process with only a few experimental data,which can avoid the disadvantages of pure data-driven network simulation that requires a large amount of training data.Moreover,the solution of PINN has good physical interpretability and reliability of simulation results.For simulating electromagnetic field and temperature field distribution,the training time of the network is only 140 and 203 s,and the regression indicators of root mean square error can reach 12.65 and 13.76,respectively. 展开更多
关键词 Physics-informed neural network Electroslag remelting process Electromagnetic field Temperature field SIMULATION
原文传递
Effect of TIG surface remelting on microstructure and mechanical properties of ZL109G Al alloy
4
作者 Si-zhe NIU Ze-long WANG +6 位作者 Zi-xuan CHEN Ran ZONG Bao-tao CHI Jun WANG Shi-ying LIU Yun-wu MA Shan-qing HU 《Transactions of Nonferrous Metals Society of China》 2025年第11期3662-3676,共15页
TIG surface remelting was performed to strengthen the surface of ZL109G alloy piston.The macrostructure indicates that surface remelting leads to the production of a remelted zone(RZ).The diameter of the primary Si de... TIG surface remelting was performed to strengthen the surface of ZL109G alloy piston.The macrostructure indicates that surface remelting leads to the production of a remelted zone(RZ).The diameter of the primary Si decreases from 65.8μm in the base metal(BM)to 7.1μm in RZ.The grain size of the RZ is refined to be approximately one-seventh that of the BM.The cellular microstructure in the RZ is characterised by theα(Al)in the centre and intermetallics preferentially located at the cellular boundaries.The results of the mechanical properties demonstrate that the average hardness value of RZ increases by 39%compared to that of BM.For the transverse samples,the ultimate tensile strength increases by~24.5%,which can be attributed to the solution strengthening of Si inα(Al).The average fracture toughness values are 15.0 and 12.7 MPa·m^(1/2)forα(Al)in BM and RZ,respectively. 展开更多
关键词 TIG surface remelting ZL109G microstructure refinement tensile properties fracture toughness
在线阅读 下载PDF
Effect of alternative magnetic fields with different intensities on microstructure and mechanical properties of M50 steel during vacuum arc remelting
5
作者 Guo-dong Deng Zhi-bin Xia +10 位作者 Cheng-kuan Ma Yi-feng Guo Zhong-hao Sun Ming-liang Zhang Qi-zheng Chen Qiang Li Zhe Shen Biao Ding Tian-xiang Zheng Chun-mei Liu Yun-bo Zhong 《Journal of Iron and Steel Research International》 2025年第3期629-645,共17页
The use of an alternative magnetic field during vacuum arc remelting(VAR)can have significant effects on the primary carbide and mechanical properties of M50-bearing steel.The solidification structure and the primary ... The use of an alternative magnetic field during vacuum arc remelting(VAR)can have significant effects on the primary carbide and mechanical properties of M50-bearing steel.The solidification structure and the primary carbide morphology of the VAR ingot were analyzed by optical microscopy and scanning electron microscopy.Characterization and analysis of the growth direction of primary carbides were conducted using high-resolution rapid electron backscatter diffraction.Solute elements segregation was analyzed using an electron probe microanalyzer.FLUENT was utilized to conduct numerical simulations to validate the experimental findings and elucidate the underlying mechanism.Compared to traditional VAR,magnetic-controlled VAR generates a horizontal circulation,which makes a shallower and flatter molten pool and a more even temperature distribution.In the time dimension,the local solidification time is shortened,and the concentration of solute elements will be alleviated.In the spatial dimension,the secondary dendrite arm spacing decreases,alleviating the degree of inter-dendritic segregation.Consequently,the possibility of forming a segregation diminishes.Both aspects promote the even distribution of solute atoms,resulting in less segregation and hindering the development of primary carbide.This leads to the refinement of primary carbide size and its uniform distribution.The magnetic-controlled vacuum arc melting not only refines the dendritic structure in the M50 ingot,causing it to expand more axially along the ingot,but also refines primary carbides and improves tensile and wear-resistant mechanical properties. 展开更多
关键词 Primary carbide Microstructure Magnetic-controlled vacuum arc remelting M50-bearing steel Alternative magnetic field
原文传递
Numerical simulation of electrode fragmentation in vacuum arc remelting of titanium alloy ingots
6
作者 LI Yanying MIN Xinhua LIANG Gaofei 《Baosteel Technical Research》 2025年第3期35-40,共6页
To investigate the reason for Mn segregation in TC2 titanium alloy bars,a multiphysics-coupled mathematical model was established using the BMPS-VAR numerical simulation software,incorporating electro-magnetic,thermal... To investigate the reason for Mn segregation in TC2 titanium alloy bars,a multiphysics-coupled mathematical model was established using the BMPS-VAR numerical simulation software,incorporating electro-magnetic,thermal,and flow fields.Numerical simulation was performed to analyze the dynamic evolution of varying-mass electrode fragments during the vacuum arc remelting(VAR)of a∅508-mm TC2 titanium alloy in-got.The results indicate that Mn segregation caused by 15-kg electrode fragmentation during the VAR process of a TC2 titanium alloy ingot corresponds to the segregation observed in the TC2 titanium alloy bar.The numerical simulation of the VAR process provides effective result prediction and technical support for solving practical problems in smelting. 展开更多
关键词 TC2 titanium alloy vacuum arc remelting numerical simulation elements distribution
在线阅读 下载PDF
Microstructural evolution and phase transformation during partial remelting of in-situ Mg_2Si_p/AM60B composite 被引量:1
7
作者 张素卿 陈体军 +1 位作者 程发良 李雷亮 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第6期1564-1573,共10页
The microstructural evolution and phase transformations during partial remelting of in-situ Mg2Sip/AM60B composite modified by SiC and Sr were investigated. The results indicate that SiC and Sr are effective for refi... The microstructural evolution and phase transformations during partial remelting of in-situ Mg2Sip/AM60B composite modified by SiC and Sr were investigated. The results indicate that SiC and Sr are effective for refining primary α-Mg grains and Mg2Si particles. After being partially remelted, a semisolid microstructure with small and spheroidal primary α-Mg particles can be obtained. The microstructural evolution during partial remelting can be divided into four stages: the initial rapid coarsening, structural separation, spheroidization and final coarsening, which are essentially caused by the phase transformations of β→α, α+β→L and α→L, α→L, and α→L and L→α, respectively. The Mg2Si particles have not obvious effect on the general microstructural evolution steps, but can slower the evolution progress and change the coarsening mechanism. During partial remelting, Mg2Si particles first become blunt and then become spheroidal because of melting of their edges and corners, and finally are coarsened owing to Ostwald ripening. 展开更多
关键词 magnesium alloy partial remelting THIXOFORMING microstructure evolution phase transformation in-situ composite
在线阅读 下载PDF
Macro-and Microstructure Evolution of 5CrNiMo Steel Ingots during Electroslag Remelting Process 被引量:10
8
作者 Lei RAO Jian-hua ZHAO +2 位作者 Zhan-xi ZHAO Gang DING Mao-peng GENG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2014年第7期644-652,共9页
A comprehensive mathematical model was established and used to simulate the macro and microstructure evolution during the production process of 5CrNiMo steel ingot by electroslag remelting (ESR) method. Along the in... A comprehensive mathematical model was established and used to simulate the macro and microstructure evolution during the production process of 5CrNiMo steel ingot by electroslag remelting (ESR) method. Along the ingot height, the macrostructure distribution characteristics changed from vertical, fine columnar grains to tilted, coarse columnar grains, and this transformation process occurred at the very beginning of ESR. In the cross section of the ingot, there were three grain morphology regions and two grain type transition regions from the outside to the center of the ingot. These regions were the fine columnar grain region, columnar competitive growth transition re gion, coarse columnar grain region, columnar to equiaxed grain transition (CET) region, and coarse equiaxed grain region. The influence of the remelting rate on the macrostructure and mlcrostructure was investigated using a series of experiments and simulations. The results showed that a low remelting rate could produce a small grain growth angle (GGA) ; the average secondary dendrite arm spacing (SDAS) firstly decreased and then increased as the remelting rate increased. An excessively high or low remelting rate can increase the GGA and average SDAS in ingots. Thus, the remelting rate should be controlled within a suitable range to reduce composition microsegregation and microshrinkage in the ingot to produce an ESR ingot with satisfactory hot forging performance. 展开更多
关键词 electroslag remelting MACROSTRUCTURE MICROSTRUCTURE remelting rate secondary dendrite arm spacing
原文传递
Structure modification and constant remelting speed control of a 120-t three-phase electroslag furnace 被引量:3
9
作者 Wang Changzhou Song Jinchun 《China Foundry》 SCIE CAS 2012年第4期370-375,共6页
The traditional large electroslag remelting furnaces have many shortages,such as high short-network impedance and inductance,long maintenance time for electrode replacement,low stiffness of driveline,and low control a... The traditional large electroslag remelting furnaces have many shortages,such as high short-network impedance and inductance,long maintenance time for electrode replacement,low stiffness of driveline,and low control accuracy of remelting speed.The present research was aimed to solve these problems through structure modification and constant remelting speed control for a 120-t electroslag remelting(ESR) furnace.Based on the technique of three-phase double electrodes in series,the short-network system and the structure of the 120-t ESR furnace were improved;and a continuous feeding system for the self-consumption electrode was proposed.A selfdesigned fully hydraulic driveline system with three degrees of freedom was successfully applied to the 120-t ESR furnace.An electrode auto-replacement system and the S-style speed-control curve of electrode-feeding system were designed on the basis of the soft measurement/sensing model on the remaining electrode length so as to obtain a high accuracy control system for constant remelting speed.The experiment products showed good surface quality and cross-sectional results,indicating good system control,and verifying the effectiveness of the structure modification of the furnace. 展开更多
关键词 electroslag remelting furnace structure improvement design constant remelting speed control
在线阅读 下载PDF
Effect of Remelting Current on Molten Pool Profile of Titanium Alloy Ingot During Vacuum Arc Remelting Process 被引量:1
10
作者 杨治军 寇宏超 +4 位作者 赵小花 李金山 胡锐 常辉 周廉 《Journal of Shanghai Jiaotong university(Science)》 EI 2011年第2期133-136,共4页
The performance of vacuum arc remelting (VAR) ingot depends largely on ingot structure and chemical uniformity,which are strongly influenced by molten pool profile that is influenced by VAR process.To better understan... The performance of vacuum arc remelting (VAR) ingot depends largely on ingot structure and chemical uniformity,which are strongly influenced by molten pool profile that is influenced by VAR process.To better understand the effect of remelting current on molten pool profile of titanium alloy ingot during VAR process,a 3D finite element model is developed by the ANSYS software.The results show that there are three remelting stages during VAR process when the remelting current is 2.0 kA.The molten pool depth increases gradually from 30 to 320 s,then the change of molten pool depth is very small during the steady state stage from 320 to 386 s,and lastly the molten pool depth becomes shallow after 386 s.The melting rate and temperature of superheat increase with the remelting current increasing,which leads to the augment of molten pool volume.In the end,the total remelting time and steady state molten pool time decrease with the melting current from 1.6 to 2.8 kA. 展开更多
关键词 vacuum arc remelting (VAR) process TI-6AL-4V remelting current molten pool temperature fields
原文传递
Effect of ball milling on microstructural evolution during partial remelting of6061 aluminum alloy prepared by cold-pressing of alloy powders 被引量:2
11
作者 陈玉狮 陈体军 +1 位作者 张素卿 李普博 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2113-2121,共9页
The effect of ball milling on the microstructural evolution was investigated during partial remelting of 6061 aluminum alloy prepared by cold-pressing of atomized alloy powders.The results indicate that the microstruc... The effect of ball milling on the microstructural evolution was investigated during partial remelting of 6061 aluminum alloy prepared by cold-pressing of atomized alloy powders.The results indicate that the microstructural evolution of 6061 aluminum alloy can be divided into three stages,the dissolution of eutectic phases and the coarsening and growth behavior of the resulting grains,structural separation and spheroidization of primary particles,and the final coarsening behavior of the particles.Compared with the alloy without ball milling,ball milling accelerates the first stage of microstructural evolution due to the energy stored in the powders,but the latter two stages are slowed down because of the formation of large-sized powders.Moreover,the finer the as-cold-pressed microstructure is,the smaller and more spherical the primary particles in the final semisolid microstructure are.Furthermore,properly elevating the heating temperature is beneficial for obtaining small and spheroidal particles. 展开更多
关键词 6061 aluminum alloy ball milling powder thixoforming partial remelting microstructural evolution
在线阅读 下载PDF
Mathematical Model for Electroslag Remelting Process 被引量:26
12
作者 DONG Yan-wu JIANG Zhou-hua LI Zheng-bang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第5期7-12,30,共7页
A mathematical model, including electromagnetic field equation, fluid flow equation, and temperature field equation, was established for the simulation of the electroslag remelting process. The distribution of tempera... A mathematical model, including electromagnetic field equation, fluid flow equation, and temperature field equation, was established for the simulation of the electroslag remelting process. The distribution of temperature field was obtained by solving this model. The relationship between the local solidification time and the interdendritic spacing during the ingot solidification process was established, which has been regarded as a criterion for the evaluation of the quality of crystallization. For a crucible of 950 mm in diameter, the local solidification time is more than 1 h at the center of the ingot with the longest interdendritic spacing, whereas it is the shortest at the edge of the ingot according to the calculated results. The model can be used to understand the ESR process and to predict the ingot quality. 展开更多
关键词 ELECTROSLAG remelting mathematical model interdendritic spacing local solidification time
在线阅读 下载PDF
Characteristics of Al_2O_3, MnS, and TiN inclusions in the remelting process of bearing steel 被引量:9
13
作者 Liang Yang Guo-guang Cheng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第8期869-875,共7页
The Al_2O_3, MnS, and TiN inclusions in bearing steel will deteriorate the steel's mechanical properties. Therefore, elucidating detailed characteristics of these inclusions in consumable electrode during the elec... The Al_2O_3, MnS, and TiN inclusions in bearing steel will deteriorate the steel's mechanical properties. Therefore, elucidating detailed characteristics of these inclusions in consumable electrode during the electroslag remelting process is important for achieving a subsequently clean ingot. In this study, a confocal scanning violet laser microscope was used to simulate the remelting process and observe, in real time, the behaviors of inclusions. The obtained images show that, after the temperature exceeded the steel solidus temperature, MnS and TiN inclusions in the specimen began to dissolve. Higher temperatures led to faster dissolution, and the inclusions disappeared before the steel was fully liquid. In the case of an observed Al_2O_3 inclusion, its shape changed from angular to a smooth ellipsoid in the region where the solid and liquid coexisted and it began to dissolve as the temperature continued to increase. This dissolution was driven by the difference in oxygen potential between the inclusion and the liquid steel. 展开更多
关键词 CHARACTERISTICS INCLUSIONS remelting bearing steel CONFOCAL MICROSCOPE
在线阅读 下载PDF
Review on desulfurization in electroslag remelting 被引量:10
14
作者 Cheng-bin Shi Yi Huang +2 位作者 Jian-xiao Zhang Jing Li Xin Zheng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第1期18-29,共12页
Electroslag remelting(ESR) gives a combination of liquid metal refining and solidification structure control.One of the typical aspects of liquid metal refining during ESR for the advanced steel and alloy production i... Electroslag remelting(ESR) gives a combination of liquid metal refining and solidification structure control.One of the typical aspects of liquid metal refining during ESR for the advanced steel and alloy production is desulfurization.It involves two patterns, i.e., slag–metal reaction and gas–slag reaction(gasifying desulfurization).In this paper, the advances in desulfurization practices of ESR are reviewed.The effects of processing parameters, including the initial sulfur level of consumable electrode, remelting atmosphere, deoxidation schemes of ESR,slag composition, melting rate, and electrical parameters on the desulfurization in ESR are assessed.The interrelation between desulfurization and sulfide inclusion evolution during ESR is discussed, and advancements in the production of sulfur-bearing steel at a high-sulfur level during ESR are described.The remaining challenges for future work are also proposed. 展开更多
关键词 electroslag remelting DESULFURIZATION sulfide inclusions sulfur-bearing steel gasifying desulfurization desulfurization mechanism
在线阅读 下载PDF
Strengthening behavior of AlCoCrFeNi(TiN)_(x) high-entropy alloy coatings fabricated by plasma spraying and laser remelting 被引量:9
15
作者 Bingqian Jin Nannan Zhang Shuo Yin 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第26期163-173,共11页
High-entropy alloy(HEA)coatings are of great importance in the fabrication of wear resistance materials.HEA coatings containing ceramic particles as reinforcement phase usually have better wear performance.In this stu... High-entropy alloy(HEA)coatings are of great importance in the fabrication of wear resistance materials.HEA coatings containing ceramic particles as reinforcement phase usually have better wear performance.In this study,AlCoCrFe Ni(TiN)_(x)(x:molar ratio;x=0,0.2,0.4,0.6,0.8,1.0)HEA coatings were fabricated on Q235 steel by plasma spray first and then subjected to laser remelting.The experimental results confirm that plasma spray together with post laser remelting could result in the in-situ formation of TiN-Al_(2)O_(3) ceramic particles and cuboidal B2 phase in the AlCoCrFeNi(TiN)_(x) HEA coatings.The in-situ TiN-Al_(2)O_(3) and nano-cuboidal B2 precipitation phase strengthened the coatings and improved their wearresistance properties.Due to the dispersion of hard phase and nano-particles resulting from second heating,the microhardness of the Al Co Cr Fe Ni(Ti N)coatings significantly increased from 493 to 851 HV after laser remelting.For the same reasons,the wear-resistance performance was also significantly promoted after laser remelting. 展开更多
关键词 High-entropy alloy COATINGS CERAMICS Laser remelting MICROSTRUCTURE Wear resistance
原文传递
Numerical simulation of temperature distribution and heat transfer during solidification of titanium alloy ingots in vacuum arc remelting process 被引量:12
16
作者 杨治军 赵小花 +3 位作者 寇宏超 李金山 胡锐 周廉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第10期1957-1962,共6页
In order to get a better understanding of the vacuum consumable arc remelting(VAR) processes and thus to optimize them,a 3D finite element model was developed for the temperature fields and heat transfer of titanium a... In order to get a better understanding of the vacuum consumable arc remelting(VAR) processes and thus to optimize them,a 3D finite element model was developed for the temperature fields and heat transfer of titanium alloy ingots during VAR process.The results show that the temperature fields obtained by the simulation are well validated through the experiment results.The temperature distribution is different during the whole VAR process and the steady-state molten pool forms at 329 s for d100 mm × 180 mm ingots.At the initial stage of remelting,the heat dissipation of crucible bottom plays an important role in the whole heat dissipation system.At the middle of remelting,the crucible wall becomes a major heat dissipation way.The effect of cooling velocity on the solidification structure of ingots was investigated based on the temperature fields and the results can well explain the macrostructure of titanium alloy ingots. 展开更多
关键词 vacuum arc remelting(VAR) process titanium alloy ingot MACROSTRUCTURE temperature field heat transfer
在线阅读 下载PDF
Refined microstructure and enhanced mechanical properties of AlCrFe_(2)Ni_(2) medium entropy alloy produced via laser remelting 被引量:10
17
作者 Tianyi Han Yong Liu +4 位作者 Mingqing Liao Danni Yang Nan Qu Zhonghong Lai Jingchuan Zhu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第4期18-27,共10页
A Co-free as-cast AlCrAlCrFe_(2)Ni_(2)medium entropy alloy(MEA)with multi-phases was remelted by fiber laser in this study.The effect of laser remelting on the microstructure,phase distribution and mechanical properti... A Co-free as-cast AlCrAlCrFe_(2)Ni_(2)medium entropy alloy(MEA)with multi-phases was remelted by fiber laser in this study.The effect of laser remelting on the microstructure,phase distribution and mechanical properties was investigated by characterizing the as-cast and the remelted AlCrAlCrFe_(2)Ni_(2)alloy.The laser remelting process resulted in a significant decrease of grain size from about 780μm to 58.89μm(longitudinal section)and 15.87μm(transverse section)and an increase of hardness from 4.72±0.293 GPa to 6.40±0.147 GPa(longitudinal section)and 7.55±0.360 GPa(transverse section).It was also found that the long side plate-like microstructure composed of FCC phase,ordered B2 phase and disordered BCC phase in the as-cast alloy was transformed into nano-size weave-like microstructure consisting of alternating ordered B2 and disordered BCC phases.The mechanical properties were evaluated by the derived stressstrain relationship obtained from nano-indentation tests data.The results showed that the yield stress increased from 661.9 MPa to 1347.6 MPa(longitudinal section)and 1647.2 MPa(transverse section)after remelting.The individual contribution of four potential strengthening mechanisms to the yield strength of the remelted alloy was quantitatively evaluated,including grain boundary strengthening,dislocation strengthening,solid solution strengthening and precipitation strengthening.The calculation results indicated that dislocation and precipitation are dominant strengthening mechanisms in the laser remelted MEA. 展开更多
关键词 Medium entropy alloy Laser remelting MICROSTRUCTURE Nano-indentation Strengthening mechanism
原文传递
Effect of slag on oxide inclusions in carburized bearing steel during industrial electroslag remelting 被引量:7
18
作者 Shi-jian Li Guo-guang Cheng +2 位作者 Zhi-qi Miao Lie Chen Xin-yan Jiang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第3期291-300,共10页
Industrial experiments with three types of slags were performed to investigate the effect of slag on oxide inclusions during electroslag remelting(ESR) process. G20CrNi2Mo bearing steel was used as the consumable elec... Industrial experiments with three types of slags were performed to investigate the effect of slag on oxide inclusions during electroslag remelting(ESR) process. G20CrNi2Mo bearing steel was used as the consumable electrode and remelted using a 2400-kg industrial furnace. The results showed that most inclusions in the electrode were low-melting-point CaO-MgO-Al_2O_3. After ESR, all the inclusions in ingots were located outside the liquid region. When the slag consisted of 65.70 wt% CaF_2, 28.58 wt% Al_2O_3, and 4.42 wt% CaO was used, pure Al_2O_3 were the dominant inclusions in ingot, some of which presented a clear trend of agglomeration. When the ingot was remelted by a multi-component slag with 16.83 wt% CaO, a certain amount of sphere CaAl_4O_7 inclusions larger than 5 μm were generated in ingot. The slag with 8.18 wt% CaO exhibited greater capacity to control the inclusion characteristics. Thermodynamic calculations indicated that the total Ca and Mg in ingots were attributed from the relics in electrode and strongly influenced by the slag composition. The formation of ingot inclusions was calculated by FactSage^(TM) 7.0, and the results were basically in accordance with the observed inclusions, indicating that a quasi-thermodynamic equilibrium could be obtained in the metal pool. 展开更多
关键词 BEARING steel ELECTROSLAG remelting SLAG INCLUSIONS THERMODYNAMICS
在线阅读 下载PDF
Segregation of Niobium During Electroslag Remelting Process 被引量:9
19
作者 DONG Yan-wu JIANG Zhou-hua LI Zheng-bang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2009年第1期7-11,共5页
Experiment was carried out after the process parameters were calculated by the model previously established. The relationship between interdendritic spacing and local solidification time (LST) mainly determined by p... Experiment was carried out after the process parameters were calculated by the model previously established. The relationship between interdendritic spacing and local solidification time (LST) mainly determined by process parameters was exposed. Furthermore, the extent of segregation was studied. The results indicate that LST and interdendritic spacing are the largest and the amount of Laves phase as a result of the niobium segregation is the highest in the center of the ingot, whereas the opposite results are obtained at the edge of ingot. The extent of element segregation and the amount of Laves phase can be reduced when appropriate parameters are used. Therefore, the duration of subsequent homogenization treatments for 718 is shortened and the alloy quality is improved. 展开更多
关键词 electroslag remelting Inconel 718 SEGREGATION local solidification time interdendritic spacing
原文传递
Microstructure evolution of ZA72 magnesium alloy during partial remelting 被引量:11
20
作者 Feng Kai Huang Xiaofeng +2 位作者 Ma Ying Chen Tijun Hao Yuan 《China Foundry》 SCIE CAS 2013年第2期74-80,共7页
The application of some semi-solid forming magnesium alloys is restricted due to their weak mechanical properties. To improve the mechanical properties, it is necessary to research the regularity and theory of semi-so... The application of some semi-solid forming magnesium alloys is restricted due to their weak mechanical properties. To improve the mechanical properties, it is necessary to research the regularity and theory of semi-solid microstructure evolution of the alloy. In this study, microstructure evolution of ZA72 alloy during the partial remelting, and the effect of holding temperature and holding time on the semi-solid microstructure evolution of ZA72 magnesium alloy were investigated by means of OM, SEM and EDS analysis. The results indicate that the microstructure with small and spheroidal semi-solid particles which are available for thixo-forming can be obtained using proper heating parameters. After being isothermally treated at between 580 and 610 ℃ for 30 min, the equivalent size and shape factor of primary solid phase of ZA72 alloy decrease gradually, while the liquid volume fraction increases. When isothermally treated at 600 ℃ and held for different times from 15 to 60 min, with the increase of holding time, the equivalent size of primary particles decreases at first and then increases gradually; while the shape factor decreases gradually. The best heat treatment parameters in this experiment are to hold at 610 ℃for 30 min. Compared with as-cast ZA72 alloy, the sizes of the eutectic phase and second a-Mg phase obtained in semi-solid state are smaller due to the higher solidification rate and the higher under-cooling degree than as-cast state. These decrease the fracture probability during tensile stress and improve the properties of the ZA72 alloy by semi-solid forming. 展开更多
关键词 ZA72 magnesium alloy microstructure evolution partial remelting SEMI-SOLID
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部