The objective of this paper is to comprehensively review the research progress of bio-oil properties and hot rejuvenation behavior and mechanism to aged asphalt.The preparation process,composition characteristics of b...The objective of this paper is to comprehensively review the research progress of bio-oil properties and hot rejuvenation behavior and mechanism to aged asphalt.The preparation process,composition characteristics of bio-oils and their component correspondence with petroleum asphalt were compared.The diffusion and fusion effects of various bio-oils in aged asphalt were introduced.Bio-oil cannot be used as a direct alternative of petroleum asphalt,but it has the potential to effectively rejuvenate aged asphalt binders due to the component similarity with petroleum asphalt and good diffusion properties.For the asphalt rejuvenation,the functionalization treatment methods of bio-oil were discussed such as purification,composition modification and component conversion.The active groups and derivatives in bio-oil can be converted into the missing components of the aged binder through phenolate,grafting,polycondensation,resinifying,but the conversion process and mechanism are still unclear.From the perspectives of diffusion behavior,components regulation,dissolving asphaltene and micro-rejuvenation effect,the rejuvenation behavior and mechanism of bio-oil on aged asphalt were elaborated,and the effects of various types of bio-oil and aged asphalt on rejuvenation behavior were analyzed.The preparation process and dosage of bio-rejuvenator were summarized.The rejuvenation effects of bio-oil on aged asphalt were comprehensively investigated from the aspects of high and low temperature performances,rheological properties,microstructure and chemical composition of bio-rejuvenated asphalt binders.Finally,the limitations of bio-oil used as asphalt rejuvenators were discussed,and future research directions were prospected,which can provide reference and theoretical basis for the development of high-performance bio-oil rejuvenating agents and the engineering application of bio-oil to improve the properties of aged asphalt materials.展开更多
“Transformation is not simply about shutting down;it is more about eliminating outdated production capacity while nurturing new driving forces,”according to Wan Qian,a member of the Standing Committee of the Xiangxi...“Transformation is not simply about shutting down;it is more about eliminating outdated production capacity while nurturing new driving forces,”according to Wan Qian,a member of the Standing Committee of the Xiangxiang Municipal Party Committee,referring to an eco-friendly chemical industrial park in Xiangxiang City,central China’s Hunan Province.展开更多
Creep is one of the most typical failure modes for the turbine blades of an aero-engine.The microstructure of the turbine blades after long-term service can be adjusted by rejuvenation heat treatment(RHT)to restore it...Creep is one of the most typical failure modes for the turbine blades of an aero-engine.The microstructure of the turbine blades after long-term service can be adjusted by rejuvenation heat treatment(RHT)to restore its creep properties.In this work,a series of RHT experiments were carried out on a directionally solidified(DS)nickel-based superalloy under different solution temperatures and primary aging temperatures based on the standard heat treatment(SHT)process parameters to investigate the mechanism of temperature influence on DS's microstructure after RHT.It is indicated that a more uniform microstructure can be obtained under higher solution temperatures and lower primary aging temperatures compared to the SHT process.Furthermore,by employing the image processing methods to quantify microstructural parameters,a comprehensive indicator parameter for the RHT effect(marked as Prej)was proposed to characterize the effects of RHT on DS superalloy's microstructure and creep property combined with the entropy weight method.Based on this,a regression model to describe the relationship between RHT process parameters and Prej was constructed by using the response surface methodology(RSM).It is revealed that the optimal solution temperature and primary aging temperature for this DS superalloy are 1283°C and 1095°C,respectively.Then the conclusion was validated through complete creep experiments on the DS superalloy,which showed the creep life after RHT reaches 95.5%of the SHT specimen,and the total life has increased by 20.6%.展开更多
The effects of rejuvenation heat treatment(RHT)on the serrated flow behavior and fracture mode of nickel-based superalloys(R26)were investigated by tensile tests and microstructural characterization.The serrated flow ...The effects of rejuvenation heat treatment(RHT)on the serrated flow behavior and fracture mode of nickel-based superalloys(R26)were investigated by tensile tests and microstructural characterization.The serrated flow activation energies were determined to be 41−72 and 64−81 kJ/mol before and after RHT,respectively.Dynamic strain aging in the alloy is caused by the diffusion of carbon atoms into dislocation channels in the nickel matrix.Before RHT,carbides are concentrated at the grain boundaries.Cracks initiate from these carbides and propagate along the grain boundaries.RHT dissolves carbides at grain boundaries,transferring crack initiation to the precipitated phase group in the grains.RHT increases carbon atom concentration in the nickel matrix,enhancing dynamic strain aging and serrated flow behavior.展开更多
Metallic glasses(MGs)possess exceptional properties,but their properties consistently deteriorate over time,thereby resulting in increased complexity in processing.It thus poses a formidable challenge to the forming o...Metallic glasses(MGs)possess exceptional properties,but their properties consistently deteriorate over time,thereby resulting in increased complexity in processing.It thus poses a formidable challenge to the forming of long-term aged MGs.Here,we report ultrasonic vibration(UV)loading can lead to large plas-ticity and strong rejuvenation in significantly aged MGs within 1 s.A large UV-induced plasticity(UVIP)of 80%height reduction can be achieved in LaNiAl MG samples aged at 85%of its glass transition tem-perature(0.85 T_(g))for a duration of up to 1 month.The energy threshold required for UVIP monotonously increases with aging time.After the UV loading process,the aged samples show strong rejuvenation,with the relaxation enthalpy even surpassing that of as-cast samples.These findings suggest that UV loading is an effective technique for forming and rejuvenating aged MGs simultaneously,providing an alterna-tive avenue to explore the interplay between the property and microstructures as well as expanding the application prospects of MGs.展开更多
Purpose: Telomere length (TL) is an indicator of age;however, hormonal influences complicate individual aging. It remains unclear whether TL shortening is a direct factor in both individual and cellular aging. Therefo...Purpose: Telomere length (TL) is an indicator of age;however, hormonal influences complicate individual aging. It remains unclear whether TL shortening is a direct factor in both individual and cellular aging. Therefore, we examined the direct relationship between TL and cellular senescence at the cellular level. Methods: Telomerase activity, TL, and gene expression were measured in cultured human lung-, fetal-, and skin-derived fibroblasts, human skin keratinocytes, and telomerase reverse transcriptase (TERT) gene-immortalized cells using detection kits, Cawthon’s method, and reverse transcription-quantitative polymerase chain reaction, respectively. Novel substances that elongate telomeres were screened to confirm cell rejuvenation effects. Results: Long-term cell culture of TIG-1-20 normal human fibroblasts resulted in TL shortening, decreased division rate, and senescence progression, whereas in OUMS-36T-2 cells, TL elongation via TERT gene transfer increased the division rate, reduced endoplasmic reticulum stress, and upregulated genes associated with young individuals, indicating that cellular rejuvenation occurs via TL elongation. In addition, a honey child powder (HCP) extract was found through screening, and the HCP extract strongly suppressed the menin gene, resulting in increased telomerase activity and extended cell lifespan. Upon addition of the HCP extract to skin fibroblasts, gene expression of moisturizing components, including collagen, hyaluronic acid, and elastin, increased, and exhibited a rejuvenating effect with an increase in elastin amount. Conclusions: TL elongation or shortening is involved in cell proliferation rate and cellular aging, and TL elongation rejuvenates cells. In addition, HCP extract has a rejuvenating effect on cells and is expected to be a rejuvenating compound.展开更多
Yunjing 29 bred by Institute of Food Crops of Yunnan Academy of Agricultural Sciences is a new conventional japonica rice variety with fragrant and sof rice, it was examined and approved by Yunnan Provincial Variety E...Yunjing 29 bred by Institute of Food Crops of Yunnan Academy of Agricultural Sciences is a new conventional japonica rice variety with fragrant and sof rice, it was examined and approved by Yunnan Provincial Variety Examination and Approval Committee in March of 2011. The variety is early-maturing, high-yield and good-quality, and has resistances to lodging, blast and bacterial leaf blight, its rice is sweet soft, goluptious and lucidus as well as not coarse when it is cold, so it is a good commodity. To further promote the popularization and cultivation of the variety, maintain its characteristics of high quality and high yield, and prevent commingling and degeneration, the purification and rejuvenation as well as breeding technology of high-quality seeds were proposed after continuous exploration and study.展开更多
Background: The unaesthetic appearance of the female intimate area (vulva, “mound of venus” and perianal region) is a triggering factor of negative psychological responses, embarrassment, anxiety and insecurity in m...Background: The unaesthetic appearance of the female intimate area (vulva, “mound of venus” and perianal region) is a triggering factor of negative psychological responses, embarrassment, anxiety and insecurity in many women. Using rejuvenating equipment for vaginal structure or for the intimate area as a whole is already widespread in the literature, and High-Intensity Focused Ultrasound (HIFU) has proven to be very effective in the clinical practice of many professionals. This study, therefore, aims to describe the fundamentals and applicability that guide the use of HIFU in vulvar rejuvenation. Materials and Methods: Exploratory research was carried out, presented in a narrative review, to highlight the action of HIFU in female intimate rejuvenation. The review explored scientific articles published and available in the following databases: MEDLINE (Medical Literature Analysis and Retrieval System Online), PubMed (National Library of Medicine), SCIELO (Scientific Electronic Library Online), and LILACS (Latin Literature American and the Caribbean in Health Sciences). In addition, some clinical findings obtained through a retrospective analysis of medical records were added to describe the authors’ clinical experience in the use of Focused Ultrasound (HIFU) for vulvar rejuvenation. Results: We verified that the tissues of female external genitalia respond very well to the stimuli of the focused sound waves of the HIFU, being able to produce immediate and lasting results through isolated applications or in association with intradermotherapy or other therapeutic resources. Conclusion: We conclude that using High Intensity Focused Ultrasound aimed at vulvar rejuvenation is safely indicated and assures excellent aesthetic results at the end of the treatment because similarly to other treatment techniques, the thermal stimuli of HIFU are also able to produce an excellent therapeutic response in the dermal tissue of the female intimate area, promoting intense neocollagenesis and generating great aesthetic improvement.展开更多
This paper addresses the issue of software rejuvenation modeling.Rejuvenation strategies with sequential inspection periods and state multi-control limits are proposed here because the inspection-based approach involv...This paper addresses the issue of software rejuvenation modeling.Rejuvenation strategies with sequential inspection periods and state multi-control limits are proposed here because the inspection-based approach involves the sampling of longer fixed periods of the state of system, which increases the probability of soft failure. The degradation process of the software system interferes with inspection and rejuvenation is modeled as a Markov chain. The steady-state probability density function of the system is thus derived, and a numerical solution of the function is provided. Expressions for mean unavailability time are derived during the inspection period when soft failure occurs. Finally, the steady-state availability of the system is modeled, and the solution to it is obtained using a genetic algorithm. The effectiveness of the model was verified by numerical experiments. Compared with rejuvenation strategies with fixed inspection periods, those with sequential inspection periods yielded greater steady-state availability of the software system.展开更多
The Huanan (South China) subcontinent was created by amalgamation of the Yangtze, Xianggan, Cathaysia and Zhemin microcontinents by the Guangxi orogeny in the Early Palaeozoic. The closure of the Tethyan Ocean and sub...The Huanan (South China) subcontinent was created by amalgamation of the Yangtze, Xianggan, Cathaysia and Zhemin microcontinents by the Guangxi orogeny in the Early Palaeozoic. The closure of the Tethyan Ocean and subsequent collision event outside the amalgamated continent reactivated fossil sutures and resulted in intracontinental (ensialic) orogenies in the Mesozoic. Based on evidence from deformation, molasse and granitoids, the Sichuan-Guizhou-Hunan—southern Hubei and Hunan-Jiangxi-Fujian Yanshanian fold-thrust systems and the Lower Yangtze-northwestern Fujian Indosinian fold-thrust system are thought to be intracontinental orogens. Their main features are as follows: intracontinental orogenies occurred areally, thrusting propagated towards the interior of the continental, they extend parallelly to the strikes of the fossil sutures, and the details of the temporal-spatial evolution of the orogens depend on subduction-collision events.展开更多
Both surface and internal microstructures of a second-generation Ni-based single crystal(SX) superalloy were studied after creep and rejuvenation heat treatment(RHT).It is indicated that the microstructures,such as th...Both surface and internal microstructures of a second-generation Ni-based single crystal(SX) superalloy were studied after creep and rejuvenation heat treatment(RHT).It is indicated that the microstructures,such as the dislocation network,the γ phase and the γ' phase,can be recovered to those after the standard heat treatment(SHT).It is found that RHT affected zone(RAZ) formed at the surface is composed of theγ'-free layer,the transition layer and the recrystallization(RX),which are less than 20 μm in depth totally.Such depth of the RAZ doesn't affect the properties of the superalloy.The morphology of γ' phase at the RAZ is related to the composition of the elements.The average creep life after RHT is close to the average life after SHT.It is concluded that RHT could effectively repair SX parts and increase the total life of the sample after a damage by creep.展开更多
The morphological evolution ofγ’precipitates for a damaged nickel-based superalloy GTD-111 under different rejuvenation heat treatments(RHTs)was investigated.The degeneratedγ’precipitates can be completely dissolv...The morphological evolution ofγ’precipitates for a damaged nickel-based superalloy GTD-111 under different rejuvenation heat treatments(RHTs)was investigated.The degeneratedγ’precipitates can be completely dissolved into the y matrix under the full solution condition of 1200℃/2 h,and only fineγ’precipitates re-precipitated during the cooling stage of the full solution can be observed,but these fineγ’precipitates cannot grow continuously to be similar as those in virgin alloy during the subsequent long-term aging.It is found that the newly developed RHT schedule,including the full solution,the partial solution,and the aging treatments,can effectively recover the degeneratedγ’precipitates in the GTD-111superalloy to their original state.Moreover,the effects of different RHT cycles on theγ’evolution were investigated.The experimental results show that the degeneratedγ’precipitates can be restored to be analogous with those in virgin alloy by slow cooling after the full solution and an appropriate partial solution followed by the long-term aging.Compared with the different microhardness under various RHT schedules,the microhardness after full solution and partial solution followed by aging is more close to that of the initial alloy.展开更多
The objective of this research was to show a way to conduct rejuvenation of aged polymer modified asphalt binder(PMB) successfully.To fully evaluate and understand the rejuvenation of aged PMB,the Penetration grade ...The objective of this research was to show a way to conduct rejuvenation of aged polymer modified asphalt binder(PMB) successfully.To fully evaluate and understand the rejuvenation of aged PMB,the Penetration grade tests including penetration,soften point,ductility and elastic recovery and SuperpaveTM PG grade tests including DSR,BBR and DDT were conducted.The rejuvenation effect of aged PMB by utilizing a fluid recycling agent in common use for binder rejuvenation was evaluated.And then the compound rejuvenation effect of aged PMB by utilizing the recycling agent with a new modifying additive for binder modification was evaluated.The experimental results indicated that the recycling agent in common use currently does not apply to polymer modified asphalt binder rejuvenation.But the recycling agent together with the modifying additive can restore the characteristics of aged polymer modified binder very well.Therefore,compound rejuvenation of polymer modified asphalt binder is recommended.展开更多
Glasses with rejuvenated structures usually exhibit improved room-temperature plasticity,which facilitates their applications.However,glass rejuvenation requires external energy injection to“shake up”the frozen-in d...Glasses with rejuvenated structures usually exhibit improved room-temperature plasticity,which facilitates their applications.However,glass rejuvenation requires external energy injection to“shake up”the frozen-in disordered structure.In this work,we give the answer to how much the required energy is.According to the constitutive model of amorphous plasticity,we find that the applied stress higher than the steady-state flow value can effectively induce the structural disordering in terms of the generation of free volume.Therefore,the effective energy density(EED)of structural rejuvenation is defined as the integral of this effective stress on the corresponding strain.By tailoring the applied strain,strain rate,temperature and initial free volume,different degrees of structural rejuvenation are achieved,which show a generally linear correlation with the defined EED.This work deepens the understanding of glass rejuvenation from an energy perspective.展开更多
The effects of cryogenic thermal cycling on deformation behaviour and structural variation of{[(Fe_(0.5)Co_(0.5))_(0.75)B_(0.2)Si_(0.05)]_(96)Nb_(4)}_(99.9)Cu_(0.1) bulk metallic glass(BMG)were studied and compared wi...The effects of cryogenic thermal cycling on deformation behaviour and structural variation of{[(Fe_(0.5)Co_(0.5))_(0.75)B_(0.2)Si_(0.05)]_(96)Nb_(4)}_(99.9)Cu_(0.1) bulk metallic glass(BMG)were studied and compared with Cufree[(Fe_(0.5)Co_(0.5))_(0.75)B_(0.2)Si_(0.05)]_(96)Nb_(4) BMG.After thermal-cycled treatment between 393 K and cryogenic temperature,the{[(Fe_(0.5)Co_(0.5))_(0.75)B_(0.2)Si_(0.05)]_(96)Nb_(4)}_(99.9)Cu_(0.1)BMG obtained a plastic strain of 7.4%combined with a high yield strength of 4350 MPa.The excellent soft magnetic properties were maintained after CTC treatment.The minor addition of Cu element results in an initial nano-sized heterogeneity in the matrix,which facilitates the rejuvenation process during thermal cycling,and brings to a low optimal thermal temperature of 393 K,making the{[(Fe_(0.5)Co_(0.5))_(0.75)B_(0.2)Si_(0.05)]_(96)Nb_(4)}_(99.9)Cu_(0.1) BMG more attractive in industrial application.During thermal cycling,the formation of more soft regions leads to the increase of structural heterogeneities,which is beneficial to the initiation of shear transition zones and the formation of multiple shear bands,and thus results in the enhancement of plasticity.This study links the subtle variation of specific structure with macroscopic mechanical properties,and provides a new insight of composition selection for cryogenic thermal cycling treatment.展开更多
The second-generation single-crystal superalloy DD6 with [001] orientation was prepared by screw selecting method in the directionally solidified furnace. The long-term aging of the alloy after full heat treatment was...The second-generation single-crystal superalloy DD6 with [001] orientation was prepared by screw selecting method in the directionally solidified furnace. The long-term aging of the alloy after full heat treatment was performed at1100 °C for 400 h. Then the rejuvenation heat treatment 1300 °C/4 h/AC ? 1120 °C/4 h/AC ? 870 °C/24 h/AC was carried out. The stress rupture properties were investigated at 760 °C/800 MPa, 850 °C/550 MPa, 980 °C/250 MPa and1100 °C/140 MPa after different heat treatments. The microstructures of the alloy at different conditions were studied by SEM. The results show that c0 phase of the alloy became very irregular and larger after long-term aging at 1100 °C for 400 h. A very small amount of needle-shaped TCP phase precipitated in the dendrite core. The coarsened c0 phase and TCP phase dissolved entirely after rejuvenation heat treatment. The microstructure was restored and almost same with the original microstructure. The stress rupture life of the alloy decreased in different degrees at various test conditions after long-term aging. The stress rupture life of the alloy after rejuvenation heat treatment all restores to the original specimen more than 80%at different conditions. The microstructure degradation of the alloy during long-term aging includes coarsening of the c0 phase,P-type raft and precipitation of TCP phase, which results in the degeneration of stress rupture property. The rejuvenation heat treatment succeeds in restoring the original microstructure and stress rupture properties of the alloy.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52378432 and 52278426)the Key Research and Development Program of Shaanxi Province(Grant No.2022SF-169).
文摘The objective of this paper is to comprehensively review the research progress of bio-oil properties and hot rejuvenation behavior and mechanism to aged asphalt.The preparation process,composition characteristics of bio-oils and their component correspondence with petroleum asphalt were compared.The diffusion and fusion effects of various bio-oils in aged asphalt were introduced.Bio-oil cannot be used as a direct alternative of petroleum asphalt,but it has the potential to effectively rejuvenate aged asphalt binders due to the component similarity with petroleum asphalt and good diffusion properties.For the asphalt rejuvenation,the functionalization treatment methods of bio-oil were discussed such as purification,composition modification and component conversion.The active groups and derivatives in bio-oil can be converted into the missing components of the aged binder through phenolate,grafting,polycondensation,resinifying,but the conversion process and mechanism are still unclear.From the perspectives of diffusion behavior,components regulation,dissolving asphaltene and micro-rejuvenation effect,the rejuvenation behavior and mechanism of bio-oil on aged asphalt were elaborated,and the effects of various types of bio-oil and aged asphalt on rejuvenation behavior were analyzed.The preparation process and dosage of bio-rejuvenator were summarized.The rejuvenation effects of bio-oil on aged asphalt were comprehensively investigated from the aspects of high and low temperature performances,rheological properties,microstructure and chemical composition of bio-rejuvenated asphalt binders.Finally,the limitations of bio-oil used as asphalt rejuvenators were discussed,and future research directions were prospected,which can provide reference and theoretical basis for the development of high-performance bio-oil rejuvenating agents and the engineering application of bio-oil to improve the properties of aged asphalt materials.
文摘“Transformation is not simply about shutting down;it is more about eliminating outdated production capacity while nurturing new driving forces,”according to Wan Qian,a member of the Standing Committee of the Xiangxiang Municipal Party Committee,referring to an eco-friendly chemical industrial park in Xiangxiang City,central China’s Hunan Province.
基金Supported by National Natural Science Foundation of China(Grant No.52275142)Science Center for Gas Turbine Project(Grant Nos.P2022-AIII-003-001,P2022-B-III-005-001)+1 种基金National Science and Technology Major Project(Grant Nos.J2019-IV-0009-0077,Y2022-IV-0002-0019,J2019-IV-0008-0076)National Basic Scientific Research Project(Grant No.JCKY2021601B204)。
文摘Creep is one of the most typical failure modes for the turbine blades of an aero-engine.The microstructure of the turbine blades after long-term service can be adjusted by rejuvenation heat treatment(RHT)to restore its creep properties.In this work,a series of RHT experiments were carried out on a directionally solidified(DS)nickel-based superalloy under different solution temperatures and primary aging temperatures based on the standard heat treatment(SHT)process parameters to investigate the mechanism of temperature influence on DS's microstructure after RHT.It is indicated that a more uniform microstructure can be obtained under higher solution temperatures and lower primary aging temperatures compared to the SHT process.Furthermore,by employing the image processing methods to quantify microstructural parameters,a comprehensive indicator parameter for the RHT effect(marked as Prej)was proposed to characterize the effects of RHT on DS superalloy's microstructure and creep property combined with the entropy weight method.Based on this,a regression model to describe the relationship between RHT process parameters and Prej was constructed by using the response surface methodology(RSM).It is revealed that the optimal solution temperature and primary aging temperature for this DS superalloy are 1283°C and 1095°C,respectively.Then the conclusion was validated through complete creep experiments on the DS superalloy,which showed the creep life after RHT reaches 95.5%of the SHT specimen,and the total life has increased by 20.6%.
基金supported by the National Natural Science Foundation of China(No.52175286)the Tribology Science Fund of State Key Laboratory of Tribology in Advanced Equipment,Tsinghua University,China(No.SKLTKF20B16).
文摘The effects of rejuvenation heat treatment(RHT)on the serrated flow behavior and fracture mode of nickel-based superalloys(R26)were investigated by tensile tests and microstructural characterization.The serrated flow activation energies were determined to be 41−72 and 64−81 kJ/mol before and after RHT,respectively.Dynamic strain aging in the alloy is caused by the diffusion of carbon atoms into dislocation channels in the nickel matrix.Before RHT,carbides are concentrated at the grain boundaries.Cracks initiate from these carbides and propagate along the grain boundaries.RHT dissolves carbides at grain boundaries,transferring crack initiation to the precipitated phase group in the grains.RHT increases carbon atom concentration in the nickel matrix,enhancing dynamic strain aging and serrated flow behavior.
基金supported by the Key Basic and Applied Research Program of Guangdong Province,China(Grant No.2019B030302010)the NSF of China(Grant Nos.52122105,51971150,51901243)+1 种基金the Science and Technology Innovation Commission Shenzhen(Grants No.RCJC20221008092730037 and 20220804091920001)the National Key Research and Development Program of China(Grant No.2018YFA0703605).
文摘Metallic glasses(MGs)possess exceptional properties,but their properties consistently deteriorate over time,thereby resulting in increased complexity in processing.It thus poses a formidable challenge to the forming of long-term aged MGs.Here,we report ultrasonic vibration(UV)loading can lead to large plas-ticity and strong rejuvenation in significantly aged MGs within 1 s.A large UV-induced plasticity(UVIP)of 80%height reduction can be achieved in LaNiAl MG samples aged at 85%of its glass transition tem-perature(0.85 T_(g))for a duration of up to 1 month.The energy threshold required for UVIP monotonously increases with aging time.After the UV loading process,the aged samples show strong rejuvenation,with the relaxation enthalpy even surpassing that of as-cast samples.These findings suggest that UV loading is an effective technique for forming and rejuvenating aged MGs simultaneously,providing an alterna-tive avenue to explore the interplay between the property and microstructures as well as expanding the application prospects of MGs.
文摘Purpose: Telomere length (TL) is an indicator of age;however, hormonal influences complicate individual aging. It remains unclear whether TL shortening is a direct factor in both individual and cellular aging. Therefore, we examined the direct relationship between TL and cellular senescence at the cellular level. Methods: Telomerase activity, TL, and gene expression were measured in cultured human lung-, fetal-, and skin-derived fibroblasts, human skin keratinocytes, and telomerase reverse transcriptase (TERT) gene-immortalized cells using detection kits, Cawthon’s method, and reverse transcription-quantitative polymerase chain reaction, respectively. Novel substances that elongate telomeres were screened to confirm cell rejuvenation effects. Results: Long-term cell culture of TIG-1-20 normal human fibroblasts resulted in TL shortening, decreased division rate, and senescence progression, whereas in OUMS-36T-2 cells, TL elongation via TERT gene transfer increased the division rate, reduced endoplasmic reticulum stress, and upregulated genes associated with young individuals, indicating that cellular rejuvenation occurs via TL elongation. In addition, a honey child powder (HCP) extract was found through screening, and the HCP extract strongly suppressed the menin gene, resulting in increased telomerase activity and extended cell lifespan. Upon addition of the HCP extract to skin fibroblasts, gene expression of moisturizing components, including collagen, hyaluronic acid, and elastin, increased, and exhibited a rejuvenating effect with an increase in elastin amount. Conclusions: TL elongation or shortening is involved in cell proliferation rate and cellular aging, and TL elongation rejuvenates cells. In addition, HCP extract has a rejuvenating effect on cells and is expected to be a rejuvenating compound.
基金Supported by the Project of Technology Innovation and Talent Cultivation in Yunnan Province(2015HB107)the Project of New Product Development of Yunnan Province"The Breeding of New Conventional Rice Variety and Its Industrialization Development"(2012BB013)+3 种基金the Major Special Project of Biological Seed Industry in Yunnan Province"The ResearchApplication of the Key Technology of the Industrialization of Plateau Japonica Rice Seed Industry"(2015ZA003)the Project of"Leading Talents Training of Yunling Industrial Technology"in Yunnan Provincethe Project of Rice Industrial Technology System of Modern Agriculture in Yunnan Province~~
文摘Yunjing 29 bred by Institute of Food Crops of Yunnan Academy of Agricultural Sciences is a new conventional japonica rice variety with fragrant and sof rice, it was examined and approved by Yunnan Provincial Variety Examination and Approval Committee in March of 2011. The variety is early-maturing, high-yield and good-quality, and has resistances to lodging, blast and bacterial leaf blight, its rice is sweet soft, goluptious and lucidus as well as not coarse when it is cold, so it is a good commodity. To further promote the popularization and cultivation of the variety, maintain its characteristics of high quality and high yield, and prevent commingling and degeneration, the purification and rejuvenation as well as breeding technology of high-quality seeds were proposed after continuous exploration and study.
文摘Background: The unaesthetic appearance of the female intimate area (vulva, “mound of venus” and perianal region) is a triggering factor of negative psychological responses, embarrassment, anxiety and insecurity in many women. Using rejuvenating equipment for vaginal structure or for the intimate area as a whole is already widespread in the literature, and High-Intensity Focused Ultrasound (HIFU) has proven to be very effective in the clinical practice of many professionals. This study, therefore, aims to describe the fundamentals and applicability that guide the use of HIFU in vulvar rejuvenation. Materials and Methods: Exploratory research was carried out, presented in a narrative review, to highlight the action of HIFU in female intimate rejuvenation. The review explored scientific articles published and available in the following databases: MEDLINE (Medical Literature Analysis and Retrieval System Online), PubMed (National Library of Medicine), SCIELO (Scientific Electronic Library Online), and LILACS (Latin Literature American and the Caribbean in Health Sciences). In addition, some clinical findings obtained through a retrospective analysis of medical records were added to describe the authors’ clinical experience in the use of Focused Ultrasound (HIFU) for vulvar rejuvenation. Results: We verified that the tissues of female external genitalia respond very well to the stimuli of the focused sound waves of the HIFU, being able to produce immediate and lasting results through isolated applications or in association with intradermotherapy or other therapeutic resources. Conclusion: We conclude that using High Intensity Focused Ultrasound aimed at vulvar rejuvenation is safely indicated and assures excellent aesthetic results at the end of the treatment because similarly to other treatment techniques, the thermal stimuli of HIFU are also able to produce an excellent therapeutic response in the dermal tissue of the female intimate area, promoting intense neocollagenesis and generating great aesthetic improvement.
文摘This paper addresses the issue of software rejuvenation modeling.Rejuvenation strategies with sequential inspection periods and state multi-control limits are proposed here because the inspection-based approach involves the sampling of longer fixed periods of the state of system, which increases the probability of soft failure. The degradation process of the software system interferes with inspection and rejuvenation is modeled as a Markov chain. The steady-state probability density function of the system is thus derived, and a numerical solution of the function is provided. Expressions for mean unavailability time are derived during the inspection period when soft failure occurs. Finally, the steady-state availability of the system is modeled, and the solution to it is obtained using a genetic algorithm. The effectiveness of the model was verified by numerical experiments. Compared with rejuvenation strategies with fixed inspection periods, those with sequential inspection periods yielded greater steady-state availability of the software system.
文摘The Huanan (South China) subcontinent was created by amalgamation of the Yangtze, Xianggan, Cathaysia and Zhemin microcontinents by the Guangxi orogeny in the Early Palaeozoic. The closure of the Tethyan Ocean and subsequent collision event outside the amalgamated continent reactivated fossil sutures and resulted in intracontinental (ensialic) orogenies in the Mesozoic. Based on evidence from deformation, molasse and granitoids, the Sichuan-Guizhou-Hunan—southern Hubei and Hunan-Jiangxi-Fujian Yanshanian fold-thrust systems and the Lower Yangtze-northwestern Fujian Indosinian fold-thrust system are thought to be intracontinental orogens. Their main features are as follows: intracontinental orogenies occurred areally, thrusting propagated towards the interior of the continental, they extend parallelly to the strikes of the fossil sutures, and the details of the temporal-spatial evolution of the orogens depend on subduction-collision events.
基金financially supported by the National Science and Technology Major Project(No.2017-VI-0002-0072)the National Key R&D Program of China(Nos.2017YFA0700704,2018YFB110660 and 2017YFB1103800)+2 种基金the National Natural Science Foundation of China(Nos.51601192,51671188,51701210 and 51771190)the Youth Innovation Promotion Association,the Chinese Academy of SciencesState Key Lab of Advanced Metals and Materials Open Fund(No.2018-Z07)。
文摘Both surface and internal microstructures of a second-generation Ni-based single crystal(SX) superalloy were studied after creep and rejuvenation heat treatment(RHT).It is indicated that the microstructures,such as the dislocation network,the γ phase and the γ' phase,can be recovered to those after the standard heat treatment(SHT).It is found that RHT affected zone(RAZ) formed at the surface is composed of theγ'-free layer,the transition layer and the recrystallization(RX),which are less than 20 μm in depth totally.Such depth of the RAZ doesn't affect the properties of the superalloy.The morphology of γ' phase at the RAZ is related to the composition of the elements.The average creep life after RHT is close to the average life after SHT.It is concluded that RHT could effectively repair SX parts and increase the total life of the sample after a damage by creep.
基金financially supported by the University-Industry Cooperation Project from Aviation Industry Corporation of China(No.cxy2010BH06)。
文摘The morphological evolution ofγ’precipitates for a damaged nickel-based superalloy GTD-111 under different rejuvenation heat treatments(RHTs)was investigated.The degeneratedγ’precipitates can be completely dissolved into the y matrix under the full solution condition of 1200℃/2 h,and only fineγ’precipitates re-precipitated during the cooling stage of the full solution can be observed,but these fineγ’precipitates cannot grow continuously to be similar as those in virgin alloy during the subsequent long-term aging.It is found that the newly developed RHT schedule,including the full solution,the partial solution,and the aging treatments,can effectively recover the degeneratedγ’precipitates in the GTD-111superalloy to their original state.Moreover,the effects of different RHT cycles on theγ’evolution were investigated.The experimental results show that the degeneratedγ’precipitates can be restored to be analogous with those in virgin alloy by slow cooling after the full solution and an appropriate partial solution followed by the long-term aging.Compared with the different microhardness under various RHT schedules,the microhardness after full solution and partial solution followed by aging is more close to that of the initial alloy.
基金Funded in Part by the National Natural Science Foundation of China (No. 50878054)
文摘The objective of this research was to show a way to conduct rejuvenation of aged polymer modified asphalt binder(PMB) successfully.To fully evaluate and understand the rejuvenation of aged PMB,the Penetration grade tests including penetration,soften point,ductility and elastic recovery and SuperpaveTM PG grade tests including DSR,BBR and DDT were conducted.The rejuvenation effect of aged PMB by utilizing a fluid recycling agent in common use for binder rejuvenation was evaluated.And then the compound rejuvenation effect of aged PMB by utilizing the recycling agent with a new modifying additive for binder modification was evaluated.The experimental results indicated that the recycling agent in common use currently does not apply to polymer modified asphalt binder rejuvenation.But the recycling agent together with the modifying additive can restore the characteristics of aged polymer modified binder very well.Therefore,compound rejuvenation of polymer modified asphalt binder is recommended.
基金supported by the General Project(No.11972345)the National Outstanding Youth Science Fund Project(No.12125206)+1 种基金the Major Project(No.11790292)of National Natural Science Foundation of China(NSFC)the NSFC Basic Science Center for“Multiscale Problems in Nonlinear Mechanics”(No.11988102).
文摘Glasses with rejuvenated structures usually exhibit improved room-temperature plasticity,which facilitates their applications.However,glass rejuvenation requires external energy injection to“shake up”the frozen-in disordered structure.In this work,we give the answer to how much the required energy is.According to the constitutive model of amorphous plasticity,we find that the applied stress higher than the steady-state flow value can effectively induce the structural disordering in terms of the generation of free volume.Therefore,the effective energy density(EED)of structural rejuvenation is defined as the integral of this effective stress on the corresponding strain.By tailoring the applied strain,strain rate,temperature and initial free volume,different degrees of structural rejuvenation are achieved,which show a generally linear correlation with the defined EED.This work deepens the understanding of glass rejuvenation from an energy perspective.
基金supported by the National Natural Science Foundation of China(Grant Nos.51631003 and 51871054)the Fundamental Research Funds for the Central Universities(Grant Nos.2242019k1G005 and 2242019K40183)。
文摘The effects of cryogenic thermal cycling on deformation behaviour and structural variation of{[(Fe_(0.5)Co_(0.5))_(0.75)B_(0.2)Si_(0.05)]_(96)Nb_(4)}_(99.9)Cu_(0.1) bulk metallic glass(BMG)were studied and compared with Cufree[(Fe_(0.5)Co_(0.5))_(0.75)B_(0.2)Si_(0.05)]_(96)Nb_(4) BMG.After thermal-cycled treatment between 393 K and cryogenic temperature,the{[(Fe_(0.5)Co_(0.5))_(0.75)B_(0.2)Si_(0.05)]_(96)Nb_(4)}_(99.9)Cu_(0.1)BMG obtained a plastic strain of 7.4%combined with a high yield strength of 4350 MPa.The excellent soft magnetic properties were maintained after CTC treatment.The minor addition of Cu element results in an initial nano-sized heterogeneity in the matrix,which facilitates the rejuvenation process during thermal cycling,and brings to a low optimal thermal temperature of 393 K,making the{[(Fe_(0.5)Co_(0.5))_(0.75)B_(0.2)Si_(0.05)]_(96)Nb_(4)}_(99.9)Cu_(0.1) BMG more attractive in industrial application.During thermal cycling,the formation of more soft regions leads to the increase of structural heterogeneities,which is beneficial to the initiation of shear transition zones and the formation of multiple shear bands,and thus results in the enhancement of plasticity.This study links the subtle variation of specific structure with macroscopic mechanical properties,and provides a new insight of composition selection for cryogenic thermal cycling treatment.
文摘The second-generation single-crystal superalloy DD6 with [001] orientation was prepared by screw selecting method in the directionally solidified furnace. The long-term aging of the alloy after full heat treatment was performed at1100 °C for 400 h. Then the rejuvenation heat treatment 1300 °C/4 h/AC ? 1120 °C/4 h/AC ? 870 °C/24 h/AC was carried out. The stress rupture properties were investigated at 760 °C/800 MPa, 850 °C/550 MPa, 980 °C/250 MPa and1100 °C/140 MPa after different heat treatments. The microstructures of the alloy at different conditions were studied by SEM. The results show that c0 phase of the alloy became very irregular and larger after long-term aging at 1100 °C for 400 h. A very small amount of needle-shaped TCP phase precipitated in the dendrite core. The coarsened c0 phase and TCP phase dissolved entirely after rejuvenation heat treatment. The microstructure was restored and almost same with the original microstructure. The stress rupture life of the alloy decreased in different degrees at various test conditions after long-term aging. The stress rupture life of the alloy after rejuvenation heat treatment all restores to the original specimen more than 80%at different conditions. The microstructure degradation of the alloy during long-term aging includes coarsening of the c0 phase,P-type raft and precipitation of TCP phase, which results in the degeneration of stress rupture property. The rejuvenation heat treatment succeeds in restoring the original microstructure and stress rupture properties of the alloy.