The development of guidance technology has made it possible for the earth penetration weapons(EPWs)to impact the target repeatedly at a close range. To investigative the damage of single and sequential strike induced ...The development of guidance technology has made it possible for the earth penetration weapons(EPWs)to impact the target repeatedly at a close range. To investigative the damage of single and sequential strike induced by the EPWs, experimental and numerical investigations are carried out in this paper.Firstly, a series of sequential explosion tests are conducted to provide the basic data of the crater size.Then, a numerical model is established to simulate the damage effects of sequential explosions using the meshfree method of Smoothed particle Galerkin. The effectiveness of numerical model is verified by comparison with the experimental results. Finally, based on dimensional analysis, several empirical formulas for describing the crater size are presented, including the conical crater diameter and the conical crater depth of the single explosion, the conical crater area and the joint depth of the secondary explosion. The formula for the single explosion expresses the relationship between the aspect ratio of the charge ranging from 3 to 7, the dimensionless buried depth ranging from 2 to 14 and the crater size. The formula for the secondary explosion expresses the relationship between the relative position of the two explosions and the crater size. All of data can provide reference for the design of protective structures.展开更多
The high-temperature mechanical behaviors of Multi-Layer Composite Panels(MCP)and Corrugated Sandwich Panels(CSP)of Continuous Glass Fiber-Reinforced Polypropylene(CGFRPP)are critical for their application in aerospac...The high-temperature mechanical behaviors of Multi-Layer Composite Panels(MCP)and Corrugated Sandwich Panels(CSP)of Continuous Glass Fiber-Reinforced Polypropylene(CGFRPP)are critical for their application in aerospace fields,which have been rarely mentioned in previous studies.High-temperature quasi-static tensile and compression tests on CGFRPP MCP are conducted first.The results showed that the tensile and compression strength,stiffness,and tensile modulus of MCP decreased with increasing temperature.The Gibson model was found to be more suitable for predicting the high-temperature mechanical performance of MCP after comparing the calculated results of different theoretical models with experimental data.Secondly,hightemperature planar compression tests were conducted on the CGFRPP CSP,revealing that the main failure modes were corrugated core buckling and delamination between the face panel and core material,with delamination being intensified at higher temperatures.Therefore,we proposed a strength theoretical model that considers structural buckling failure and interface delamination failure,and introduced the influence factor to evaluate the effect of interface delamination on structural strength.展开更多
Embedding optical fiber sensors into composite materials offers the advantage of real-time structural monitoring.However,there is an order-of-magnitude difference in diameter between optical fibers and reinforcing fib...Embedding optical fiber sensors into composite materials offers the advantage of real-time structural monitoring.However,there is an order-of-magnitude difference in diameter between optical fibers and reinforcing fibers,and the detailed mechanism of how embedded optical fibers affect the micromechanical behavior and damage failure processes within composite materials remains unclear.This paper presents a micromechanical simulation analysis of composite materials embedded with optical fibers.By constructing representative volume elements(RVEs)with randomly distributed reinforcing fibers,the optical fiber,the matrix,and the interface phase,the micromechanical behavior and damage evolution under transverse tensile and compressive loads are explored.The study finds that the presence of embedded optical fibers significantly influences the initiation and propagation of microscopic damage within the composites.Under transverse tension,the fiber-matrix interface cracks first,followed by plastic cracking in the matrix surrounding the fibers,forming micro-cracks.Eventually,these cracks connect with the debonded areas at the fiber-matrix interface to form a dominant crack that spans the entire model.Under transverse compression,plastic cracking first occurs in the resin surrounding the optical fibers,connecting with the interface debonding areas between the optical fibers and the matrix to form two parallel shear bands.Additionally,it is observed that the strength of the interface between the optical fiber and the matrix critically affects the simulation results.The simulated damage morphologies align closely with those observed using scanning electron microscopy(SEM).These findings offer theoretical insights that can inform the design and fabrication of smart composite materials with embedded optical fiber sensors for advanced structural health monitoring.展开更多
Squat reinforced concrete(RC)shear walls are essential structural elements in low-rise buildings,valued for their high strength and stiffness.However,research on their seismic behavior remains limited,as most studies ...Squat reinforced concrete(RC)shear walls are essential structural elements in low-rise buildings,valued for their high strength and stiffness.However,research on their seismic behavior remains limited,as most studies focus on tall,slender walls,which exhibit distinct failure mechanisms and deformation characteristics.This study addresses this gap by conducting an extensive review of existing research on the seismic performance of squat RC shear walls.Experimental studies,analytical models,and numerical simulations are examined to provide insights into key factors affecting wall behavior during seismic events,including material properties,wall geometry,reinforcement detailing,and loading conditions.The review aims to support safer design practices by identifying current knowledge gaps and offering guidance on areas needing further investigation.The findings are expected to aid researchers and practitioners in refining seismic design codes,ultimately contributing to the development of more resilient squat RC shear walls for earthquake-prone regions.This research underscores the importance of improving structural resilience to enhance the safety and durability of buildings.展开更多
To mitigate the challenges in managing the damage level of reinforced concrete(RC)pier columns subjected to cyclic reverse loading,this study conducted a series of cyclic reverse tests on RC pier columns.By analyzing ...To mitigate the challenges in managing the damage level of reinforced concrete(RC)pier columns subjected to cyclic reverse loading,this study conducted a series of cyclic reverse tests on RC pier columns.By analyzing the outcomes of destructive testing on various specimens and fine-tuning the results with the aid of the IMK(Ibarra Medina Krawinkler)recovery model,the energy dissipation capacity coefficient of the pier columns were able to be determined.Furthermore,utilizing the calibrated damage model parameters,the damage index for each specimen were calculated.Based on the obtained damage levels,three distinct pre-damage conditions were designed for the pier columns:minor damage,moderate damage,and severe damage.The study then predicted the variations in hysteresis curves and damage indices under cyclic loading conditions.The experimental findings reveal that the displacement at the top of the pier columns can serve as a reliable indicator for controlling the damage level of pier columns post-loading.Moreover,the calibrated damage index model exhibits proficiency in accurately predicting the damage level of RC pier columns under cyclic loading.展开更多
The acuurate prediction of the time-dependent mechanical behavior and deformation mechanisms of second-phase reinforced alloys under size effects is critical for the development of high-strength ductile metals and all...The acuurate prediction of the time-dependent mechanical behavior and deformation mechanisms of second-phase reinforced alloys under size effects is critical for the development of high-strength ductile metals and alloys for dynamic applications.However,solving their responses using high-fidelity numerical methods is computationally expensive and,in many cases,impractical.To address this issue,a dual-scale incremental variational formulation is proposed that incorporates the influence of plastic gradients on plastic evolution characteristics,integrating a strain-rate-dependent strain gradient plasticity model and including plastic gradients in the inelastic dissipation potential.Subsequently,two minimization problems based on the energy dissipation mechanisms of strain gradient plasticity,corresponding to the macroscopic and microscopic structures,are solved,leading to the development of a homogenization-based dual-scale solution algorithm.Finally,the effectiveness of the variational model and tangent algorithm is validated through a series of numerical simulations.The contributions of this work are as follows:first,it advances the theory of self-consistent computational homogenization modeling based on the energy dissipation mechanisms of plastic strain rates and their gradients,along with the development of a rigorous multi-level finite element method(FE2)solution procedure;second,the proposed algorithm provides an efficient and accurate method for evaluating the time-dependent mechanical behavior of second-phase reinforced alloys under strain gradient effects,exploring how these effects vary with the strain rate,and investigating their potential interactions.展开更多
This research addresses the growing demand for high-performance protective materials against high-velocity projectile impacts.The performance of multi-layered steel fiber-reinforced mortar(SFRM)panels with varying thi...This research addresses the growing demand for high-performance protective materials against high-velocity projectile impacts.The performance of multi-layered steel fiber-reinforced mortar(SFRM)panels with varying thicknesses and air gaps,was experimentally investigated under single and repeated impacts of 7.62×51 mm bullets fired from a distance of 50 m.The impact events were recorded using a high-speed camera at 40000 fps.Panel performance was assessed in terms of failure modes,kinetic energy absorption,spalling diameter,and percentage of back-face damage area,and weight loss.Results showed that panel configuration significantly influenced performance.Panel P10,with 70 mm SFRM thickness and 20 mm air gaps,provided the highest resistance,dissipating 5223 J of kinetic energy and preventing back-face damage.In contrast,P7,which absorbed 4476 J,presented a back damage area percentage of 8.93%after three impacts.Weight loss analysis further confirmed durability improvements,with P10 showing only 1.53%cumulative loss compared to 3.26%in P7.The inclusion of wider air gaps enhanced energy dissipation and reduced damage.Comparison between single and repeated impacts demonstrated the sustained resistance of high-performance panels,with P10 maintaining minimal degradation across three consecutive impacts.These findings highlight the potential of multi-layer SFRM panels to enhance ballistic resistance,making them suitable for military,security,and civilian protective applications requiring long-term durability.展开更多
With the development of modern society,people put forward higher requirements for building safety,which makes the construction project face new challenges.Reinforced concrete frame structure as a common engineering ty...With the development of modern society,people put forward higher requirements for building safety,which makes the construction project face new challenges.Reinforced concrete frame structure as a common engineering type,although the construction technology has been relatively mature,but its earthquake collapse ability still needs to be strengthened.This paper analyzes the specific factors that affect the seismic collapse ability of reinforced concrete frame structure,summarizes the previous research results,and puts forward innovative application of fiber-reinforced polymer(FRP)composite materials,play the role of smart materials,improve the isolation and energy dissipation devices,etc.,to promote the continuous optimization of reinforced concrete frame structure design,and show better seismic performance.展开更多
With the change of the main influencing factors such as structural configuration and impact conditions,reinforced concrete slabs exhibit different mechanical behaviors with different failure patterns,and the failure m...With the change of the main influencing factors such as structural configuration and impact conditions,reinforced concrete slabs exhibit different mechanical behaviors with different failure patterns,and the failure modes are transformed.In order to reveal the failure mode and transformation rule of reinforced concrete slabs under impact loads,a dynamic impact response test was carried out using a drop hammer test device.The dynamic data pertaining to the impact force,support reaction force,structural displacement,and reinforcement strain were obtained through the use of digital image correlation technology(DIC),impact force measurement,and strain measurement.The analysis of the ultimate damage state of the reinforced concrete slab identified four distinct types of impact failure modes:local failure by stamping,overall failure by stamping,local-overall coupling failure,and local failure by punching.Additionally,the influence laws of hammerhead shape,hammer height,and reinforcement ratio on the dynamic response and failure mode transformation of the slab were revealed.The results indicate that:(1)The local damage to the slab by the plane hammer is readily apparent,while the overall damage by the spherical hammer is more pronounced.(2)In comparison to the high reinforcement ratio slabs,the overall bending resistance of the low reinforcement ratio slabs is significantly inferior,and the slab back exhibits further cracks.(3)As the hammer height increases,the slab failure mode undergoes a transformation,shifting from local failure by stamping and overall failure by stamping to local-overall coupling failure and local failure by punching.(4)Three failure mode thresholds have been established,and by comparing the peak impact force with the failure thresholds,the failure mode of the slab can be effectively determined.展开更多
Polyether ether ketone(PEEK)-based continuous glass fiber reinforced thermoplastic composite offers advantages such as high strength,electrical insulation,and heat insulation.Parts manufactured using this composite an...Polyether ether ketone(PEEK)-based continuous glass fiber reinforced thermoplastic composite offers advantages such as high strength,electrical insulation,and heat insulation.Parts manufactured using this composite and 3D printing have promising applications in aerospace,automobile,rail transit,etc.In this paper,a high-temperature melt impregnation method was used to successfully prepare the 3D printing prepreg filaments of the aforementioned composite.In the FDM 3D printing equipment,a nozzle of high thermal conductivity and wear-resistant copper alloy and a PEEK-based carbon fiber thermoplastic composite build plate with uniform temperature control were innovatively introduced to effectively improve the quality of 3D printing.The porosity of the 3D printed samples produced from the composite prepreg filament was analyzed under different printing parameters,and the mechanical properties and fracture mechanism of the printed parts were studied.The results show that the printing layer thickness,printing speed,printing temperature and build plate temperature have varying effects on the porosity of printed parts,which in turn affects tensile strength and the interlaminar shear strength(ILSS).When the printing layer thickness is 0.4 mm,printing speed is 2 mm/s,nozzle temperature is 430℃ and build plate temperature is 150℃,the tensile strength and ILSS of the composite printed parts reach their maximum values of 463.76 and 24.95 MPa,respectively.Microscopic analysis of the fracture morphology of the tensile specimens reveals that the 3D printed CGF/PEEK composite sample has three types of fracture mode,which are single filament bundle fracture,fracture mode of delamination,and fracture failure of the sample at the cross-section.The essence of the above three kinds of fracture mode is the difference of the interface bonding force of 3D printed CGF/PEEK composites.The fracture failure at the cross-section is that the continuous glass fibers in the composite are pulled out until they break,which is the main form of the failure of the composite under tensile load.The interfacial region of the composite is prone to microscopic defects such as voids and delamination during 3D printing,which become the most vulnerable link of the composite.Understanding the relationship between voids and fracture behavior lays a foundation for defect suppression and performance improvement of subsequent printed parts.展开更多
Long-term cyclic train loading can cause settlement and deformation of the roadbed,affecting the normal operation of trains.In order to investigate the strain pattern of reinforced sandy soil under train loading,a ser...Long-term cyclic train loading can cause settlement and deformation of the roadbed,affecting the normal operation of trains.In order to investigate the strain pattern of reinforced sandy soil under train loading,a series of dynamic triaxial tests were carried out using multi-stage loading,focusing on the effects of the number of reinforcement layers,the confining pressure,and the mesh size of the geogrid on the accumulated plastic strain of reinforced sandy soil.Moreover,prediction models were proposed.The test results show that:1)The cumulative plastic strain versus vibration times of the specimens under different reinforcement layers exhibited three stages,namely,the rapid development stage,the rate transformation stage and the stability stage;2)The cumulative plastic strain decreases with increasing the number of reinforcement layers,but the magnitude of the effect of reinforcement on the cumulative plastic strain decreases with increasing the number of reinforcement layers,increasing the perimeter pressure and decreasing the mesh size of the geogrid have similar effects on the cumulative plastic strain pattern as increasing the number of reinforcement layers;3)Combined with the cumulative plastic strain law,a comprehensive model is proposed and the coefficient of determination is greater than 0.99.Furthermore,The cumulative plastic strain evolution law can be effectively predicted.The significance of parameters A,B and C is analyzed in detail.This study can provide theoretical references for further understanding of the deformation characteristics and settlement prediction of railway subgrades.展开更多
Carbon fiber reinforced polymer(CFRP)is an advanced material widely used in bridge structures,demonstrating a promising application prospect.CFRP possesses excellent mechanical properties,construction advantages,and d...Carbon fiber reinforced polymer(CFRP)is an advanced material widely used in bridge structures,demonstrating a promising application prospect.CFRP possesses excellent mechanical properties,construction advantages,and durability benefits.Its application in bridge reinforcement can significantly enhance the overall performance of the reinforced bridge,thereby improving the durability and extending the service life of the bridge.Therefore,it is necessary to further explore how CFRP can be effectively applied in bridge reinforcement projects to improve the quality of such projects and ensure the safety of bridges during operation.展开更多
To improve the wettability of hypereutectic Al−60Si alloy and enhance the mechanical properties of the joints,Al−60Si alloy was joined by ultrasonic soldering with Sn-9Zn solder,and a sound joint with in-situ Si parti...To improve the wettability of hypereutectic Al−60Si alloy and enhance the mechanical properties of the joints,Al−60Si alloy was joined by ultrasonic soldering with Sn-9Zn solder,and a sound joint with in-situ Si particle reinforcement was obtained.The oxide film of Al−60Si alloy at the interface was identified by transmission electron microscopy(TEM)analysis as amorphous Al_(2)O_(3).The oxide of Si particles in the base metal was also alumina.The oxide film of Al−60Si alloy was observed to be removed by ultrasonic vibration instead of holding treatment.Si particle-reinforced joints(35.7 vol.%)were obtained by increasing the ultrasonication time.The maximum shear strength peaked at 99.5 MPa for soldering at 330℃with an ultrasonic vibration time of 50 s.A model of forming of Si particles reinforced joint under the ultrasound was proposed,and ultrasonic vibration was considered to promote the dissolution of Al and migration of Si particles.展开更多
This study investigates the flexural performance of ultra-high performance concrete(UHPC)in reinforced concrete T-beams,focusing on the effects of interfacial treatments.Three concrete T-beam specimens were fabricated...This study investigates the flexural performance of ultra-high performance concrete(UHPC)in reinforced concrete T-beams,focusing on the effects of interfacial treatments.Three concrete T-beam specimens were fabricated and tested:a control beam(RC-T),a UHPC-reinforced beam with a chiseled interface(UN-C-50F),and a UHPC-reinforced beam featuring both a chiseled interface and anchored steel rebars(UN-CS-50F).The test results indicated that both chiseling and the incorporation of anchored rebars effectively created a synergistic combination between the concrete T-beam and the UHPC reinforcement layer,with the UN-CS-50F exhibiting the highest flexural resistance.The cracking load and ultimate load of UN-CS-50F were 221.5%and 40.8%,respectively,higher than those of the RC-T.Finite element(FE)models were developed to provide further insights into the behavior of the UHPCreinforced T-beams,showing a maximumdeviation of just 8%when validated against experimental data.A parametric analysis varied the height,thickness,andmaterial strength of the UHPC reinforcement layer based on the validated FE model,revealing that increasing the UHPC layer thickness from 30 to 50 mm improved the ultimate resistance by 20%while reducing the UHPC reinforcement height from 440 to 300 mm led to a 10%decrease in bending resistance.The interfacial anchoring rebars significantly reduced crack propagation and enhanced stress redistribution,highlighting the importance of strengthening interfacial bonds and optimizing geometric parameters ofUHPCfor improved T-beam performance.These findings offer valuable insights for the design and retrofitting of UHPC-reinforced bridge girders.展开更多
Dopamine polymerization reaction and hydrothermal method were used to prepare nickel coated Al_(2)O_(3)reinforcement phase(Ni/Al_(2)O_(3)).Ni/Al_(2)O_(3)reinforced Sn_(1.0)Ag_(0.5)Cu(SAC105)composite solder was prepar...Dopamine polymerization reaction and hydrothermal method were used to prepare nickel coated Al_(2)O_(3)reinforcement phase(Ni/Al_(2)O_(3)).Ni/Al_(2)O_(3)reinforced Sn_(1.0)Ag_(0.5)Cu(SAC105)composite solder was prepared using traditional casting method.The result shows that the nickel coating layer is continuous with uneven thickness.The interface between nickel and aluminum oxide exhibits a metallurgical bonding with coherent interface relationship.The strength,toughness and wettability of the SAC105 solder on the substrate are improved,while the conductivity is not decreased significantly.The fracture mode of composites transitions from a mixed toughness-brittleness mode to a purely toughness-dominated mode,characterized by many dimples.The prepared composite brazing material was made into solder paste for copper plate lap joint experiments.The maximum shear strength is achieved when the doping amount was 0.3wt%.The growth index of intermetallic compound at the brazing interface of Ni/Al_(2)O_(3)reinforced SAC105 composite solder is linearly fitted to n=0.39,demonstrating that the growth of intermetallic compound at the interface is a combined effect of grain boundary diffusion and bulk diffusion.展开更多
Understanding the reinforcement effect of the newly developed prestressed reinforcement components(PRCs)(a system composed of prestressed steel bars(PSBs),protective sleeves,lateral pressure plates(LPPs),and anchoring...Understanding the reinforcement effect of the newly developed prestressed reinforcement components(PRCs)(a system composed of prestressed steel bars(PSBs),protective sleeves,lateral pressure plates(LPPs),and anchoring elements)is technically significant for the rational design of prestressed subgrade.A three-dimensional finite element model was established and verified based on a novel static model test and utilized to systematically analyze the influence of prestress levels and reinforcement modes on the reinforcement effect of the subgrade.The results show that the PRCs provide additional confining pressure to the subgrade through the diffusion effect of the prestress,which can therefore effectively improve the service performance of the subgrade.Compared to the unreinforced conventional subgrades,the settlements of prestressreinforced subgrades are reduced.The settlement attenuation rate(Rs)near the LPPs is larger than that at the subgrade center,and increasing the prestress positively contributes to the stability of the subgrade structure.In the multi-row reinforcement mode,the reinforcement effect of PRCs can extend from the reinforced area to the unreinforced area.In addition,as the horizontal distance from the LPPs increases,the additional confining pressure converted by the PSBs and LPPs gradually diminishes when spreading to the core load bearing area of the subgrade,resulting in a decrease in the Rs.Under the singlerow reinforcement mode,PRCs can be strategically arranged according to the local areas where subgrade defects readily occurred or observed,to obtain the desired reinforcement effect.Moreover,excessive prestress should not be applied near the subgrade shoulder line to avoid the shear failure of the subgrade shoulder.PRCs can be flexibly used for preventing and treating various subgrade defects of newly constructed or existing railway lines,achieving targeted and classified prevention,and effectively improving the bearing performance and deformation resistance of the subgrade.The research results are instructive for further elucidating the prestress reinforcement effect of PRCs on railway subgrades.展开更多
In this paper,a type of reinforcing structure for composite shell with single and through hole is presented.The experimental tests for the composite shells without hole,with single hole and reinforced structure,with t...In this paper,a type of reinforcing structure for composite shell with single and through hole is presented.The experimental tests for the composite shells without hole,with single hole and reinforced structure,with through hole and reinforced structure subjected to hydrostatic pressure were carried out by the designed experimental test system.The mechanical responses of the composite shells under hydrostatic pressure are obtained by the high-speed camera and strain measurement.The results show that the entire deformation process of the shell can be divided into three:uniform compression,"buckling mode formation"and buckling.The"buckling mode formation"process is captured and reported for the first time.For the composite shell with single hole,the proposed reinforcing structure has a significant reinforcement effect on the shell and the buckling capacity of the shell is not weaker than the complete composite shell.For the composite shell with through hole,sealing effect can be achieved by the proposed reinforcing structure,but the buckling capacity of the shell after reinforcement can only reach 77%of the original buckling capacity.展开更多
With the major developments that occurred during the past 40 years in the geotechnical engineering field,the usage of reinforcements in soils has been very common to improve the ultimate bearing capacity and reduce th...With the major developments that occurred during the past 40 years in the geotechnical engineering field,the usage of reinforcements in soils has been very common to improve the ultimate bearing capacity and reduce the footing settlements.These reinforcements consist of geogrids,geotextiles,geocells,etc.,all of which are in the geosynthetic family.Among these geosynthetic families,geocell performs better in soil-reinforced beds.In this study,we proposed the nine types of bioinspired geocells to improve the soil beds.For this purpose,a total of twenty numerical models were calculated via FLAC3D after validating the la-boratory model tests in the literature.The numerical results demonstrated that,except for the circular type,the performance of other geocell forms regarding increased bearing capacity was nearly identical.Regarding diffusion angles,only the circular and honeycomb geocells exhibited larger diffusion angles.The opening pocket diameter more significantly influenced the stress and strain of geocells.Geocells with nearly circular shapes,such as circular,honeycomb,hexagonal,and square,typically demonstrated higher confining stresses within the geocell walls.Conversely,for shapes that deviate from the circular form,such as dia-mond,re-entrant,and double V-shaped designs,the irregularity of the pocket shape could cause an uneven distribution of confining stresses,potentially leading to higher normal deformations at some specific areas and stress concentration at the wall joints.展开更多
Grouting injection is a vital technique for addressing the challenges of high stress and significant deformation in the surrounding rock during deep mining operations,playing a crucial role in promoting green and low-...Grouting injection is a vital technique for addressing the challenges of high stress and significant deformation in the surrounding rock during deep mining operations,playing a crucial role in promoting green and low-carbon extraction methodologies.In this study,grouting reinforcement processes were examined by conducting grouting experiments on a fractured rock with varying negative pressures(0-100 kPa),followed by uniaxial compression testing of the grout-reinforced bodies.This investigation explored the diffusion patterns of grout under negative pressure and established a constitutive model of damage-bearing capacity for bodies reinforced by negative pressure grouting.It further studied the enhancement effect of negative pressure on the load-bearing capacity of the reinforced bodies and analyzed the instability mechanism of damage and failure in these bodies.The results indicated that the diffusion of grout under negative pressure is influenced by four types of forces,which alter the extent of grout diffusion within the fractured rock mass.Introducing a damage constitutive model that serially connects pore and framework elements characterizes the damage and failure behavior of groutreinforced bodies under different negative pressures.As the negative pressure increases,changes in porosity,water-to-cement ratio,and admixture quantity occur in the grout-reinforced specimens,with the strength mean curve showing a trend of first increasing and then decreasing,reaching a threshold at a negative pressure of 60 kPa.With increasing negative pressure,the negative pressure damage variable decreases and then increases,and the stronger the interfacial microelement connections caused by the negative pressure,the greater the bearing capacity,ultimately manifesting in different failure modes.展开更多
Magnesium matrix composites(MMCs)combine exceptional low density,high specific strength,and stiffness,positioning them as critical materials for aerospace,automotive,and electronics industries.This review highlights r...Magnesium matrix composites(MMCs)combine exceptional low density,high specific strength,and stiffness,positioning them as critical materials for aerospace,automotive,and electronics industries.This review highlights recent progress in the fabrication of Ti-Mg composites and analyzes the mechanisms behind their enhanced mechanical properties.A key focus is the interfacial deformation incompatibility between Ti and Mg phases,which generates strain gradients and promotes the accumulation of geometrically necessary dislocations(GNDs)at the interface.This process not only improves strain hardening and ductility but also reveals the need for advanced micromechanical models to capture the plastic behavior of both phases.The review critically examines the impact of different Mg matrix types(AZ,AM,VW series)and the role of interfacial product morphology and size on bonding and overall performance.Furthermore,Ti reinforcement endows the composites with superior wear resistance and thermal conductivity,indicating broad application potential.展开更多
文摘The development of guidance technology has made it possible for the earth penetration weapons(EPWs)to impact the target repeatedly at a close range. To investigative the damage of single and sequential strike induced by the EPWs, experimental and numerical investigations are carried out in this paper.Firstly, a series of sequential explosion tests are conducted to provide the basic data of the crater size.Then, a numerical model is established to simulate the damage effects of sequential explosions using the meshfree method of Smoothed particle Galerkin. The effectiveness of numerical model is verified by comparison with the experimental results. Finally, based on dimensional analysis, several empirical formulas for describing the crater size are presented, including the conical crater diameter and the conical crater depth of the single explosion, the conical crater area and the joint depth of the secondary explosion. The formula for the single explosion expresses the relationship between the aspect ratio of the charge ranging from 3 to 7, the dimensionless buried depth ranging from 2 to 14 and the crater size. The formula for the secondary explosion expresses the relationship between the relative position of the two explosions and the crater size. All of data can provide reference for the design of protective structures.
基金co-supported by the National Natural Science Foundation of China(Nos.12372127,12202085,12302464)the Fundamental Research Funds for the Central Universities,China(No.2024CDJXY009)+1 种基金the Chongqing Outstanding Youth Fund,China(No.CSTB2024NSCQ-JQX0028)the Chongqing Natural Science Foundation,China(Nos.cstc2021ycjh-bgzxm0117,CSTB2022NSCQ-MSX0608)。
文摘The high-temperature mechanical behaviors of Multi-Layer Composite Panels(MCP)and Corrugated Sandwich Panels(CSP)of Continuous Glass Fiber-Reinforced Polypropylene(CGFRPP)are critical for their application in aerospace fields,which have been rarely mentioned in previous studies.High-temperature quasi-static tensile and compression tests on CGFRPP MCP are conducted first.The results showed that the tensile and compression strength,stiffness,and tensile modulus of MCP decreased with increasing temperature.The Gibson model was found to be more suitable for predicting the high-temperature mechanical performance of MCP after comparing the calculated results of different theoretical models with experimental data.Secondly,hightemperature planar compression tests were conducted on the CGFRPP CSP,revealing that the main failure modes were corrugated core buckling and delamination between the face panel and core material,with delamination being intensified at higher temperatures.Therefore,we proposed a strength theoretical model that considers structural buckling failure and interface delamination failure,and introduced the influence factor to evaluate the effect of interface delamination on structural strength.
基金funded by the National Key Research and Development Program of China(Grant No.2022YFB3402500)the National Natural Science Foundation of China(Grant No.12372129).
文摘Embedding optical fiber sensors into composite materials offers the advantage of real-time structural monitoring.However,there is an order-of-magnitude difference in diameter between optical fibers and reinforcing fibers,and the detailed mechanism of how embedded optical fibers affect the micromechanical behavior and damage failure processes within composite materials remains unclear.This paper presents a micromechanical simulation analysis of composite materials embedded with optical fibers.By constructing representative volume elements(RVEs)with randomly distributed reinforcing fibers,the optical fiber,the matrix,and the interface phase,the micromechanical behavior and damage evolution under transverse tensile and compressive loads are explored.The study finds that the presence of embedded optical fibers significantly influences the initiation and propagation of microscopic damage within the composites.Under transverse tension,the fiber-matrix interface cracks first,followed by plastic cracking in the matrix surrounding the fibers,forming micro-cracks.Eventually,these cracks connect with the debonded areas at the fiber-matrix interface to form a dominant crack that spans the entire model.Under transverse compression,plastic cracking first occurs in the resin surrounding the optical fibers,connecting with the interface debonding areas between the optical fibers and the matrix to form two parallel shear bands.Additionally,it is observed that the strength of the interface between the optical fiber and the matrix critically affects the simulation results.The simulated damage morphologies align closely with those observed using scanning electron microscopy(SEM).These findings offer theoretical insights that can inform the design and fabrication of smart composite materials with embedded optical fiber sensors for advanced structural health monitoring.
文摘Squat reinforced concrete(RC)shear walls are essential structural elements in low-rise buildings,valued for their high strength and stiffness.However,research on their seismic behavior remains limited,as most studies focus on tall,slender walls,which exhibit distinct failure mechanisms and deformation characteristics.This study addresses this gap by conducting an extensive review of existing research on the seismic performance of squat RC shear walls.Experimental studies,analytical models,and numerical simulations are examined to provide insights into key factors affecting wall behavior during seismic events,including material properties,wall geometry,reinforcement detailing,and loading conditions.The review aims to support safer design practices by identifying current knowledge gaps and offering guidance on areas needing further investigation.The findings are expected to aid researchers and practitioners in refining seismic design codes,ultimately contributing to the development of more resilient squat RC shear walls for earthquake-prone regions.This research underscores the importance of improving structural resilience to enhance the safety and durability of buildings.
基金supported by National Natural Science Foundation of China(Project No.51878156)EPC Innovation Consulting Project for Longkou Nanshan LNG Phase I Receiving Terminal(Z2000LGENT0399).
文摘To mitigate the challenges in managing the damage level of reinforced concrete(RC)pier columns subjected to cyclic reverse loading,this study conducted a series of cyclic reverse tests on RC pier columns.By analyzing the outcomes of destructive testing on various specimens and fine-tuning the results with the aid of the IMK(Ibarra Medina Krawinkler)recovery model,the energy dissipation capacity coefficient of the pier columns were able to be determined.Furthermore,utilizing the calibrated damage model parameters,the damage index for each specimen were calculated.Based on the obtained damage levels,three distinct pre-damage conditions were designed for the pier columns:minor damage,moderate damage,and severe damage.The study then predicted the variations in hysteresis curves and damage indices under cyclic loading conditions.The experimental findings reveal that the displacement at the top of the pier columns can serve as a reliable indicator for controlling the damage level of pier columns post-loading.Moreover,the calibrated damage index model exhibits proficiency in accurately predicting the damage level of RC pier columns under cyclic loading.
基金Project supported by the National Natural Science Foundation of China(Nos.11922206,11702089,12272132)the Postgraduate Scientific Research Innovation Project of Hunan Province(No.CX20240388)。
文摘The acuurate prediction of the time-dependent mechanical behavior and deformation mechanisms of second-phase reinforced alloys under size effects is critical for the development of high-strength ductile metals and alloys for dynamic applications.However,solving their responses using high-fidelity numerical methods is computationally expensive and,in many cases,impractical.To address this issue,a dual-scale incremental variational formulation is proposed that incorporates the influence of plastic gradients on plastic evolution characteristics,integrating a strain-rate-dependent strain gradient plasticity model and including plastic gradients in the inelastic dissipation potential.Subsequently,two minimization problems based on the energy dissipation mechanisms of strain gradient plasticity,corresponding to the macroscopic and microscopic structures,are solved,leading to the development of a homogenization-based dual-scale solution algorithm.Finally,the effectiveness of the variational model and tangent algorithm is validated through a series of numerical simulations.The contributions of this work are as follows:first,it advances the theory of self-consistent computational homogenization modeling based on the energy dissipation mechanisms of plastic strain rates and their gradients,along with the development of a rigorous multi-level finite element method(FE2)solution procedure;second,the proposed algorithm provides an efficient and accurate method for evaluating the time-dependent mechanical behavior of second-phase reinforced alloys under strain gradient effects,exploring how these effects vary with the strain rate,and investigating their potential interactions.
基金funded by Thailand Research Fund under Research and Researchers for Industries (contract no. MSD62I0063)
文摘This research addresses the growing demand for high-performance protective materials against high-velocity projectile impacts.The performance of multi-layered steel fiber-reinforced mortar(SFRM)panels with varying thicknesses and air gaps,was experimentally investigated under single and repeated impacts of 7.62×51 mm bullets fired from a distance of 50 m.The impact events were recorded using a high-speed camera at 40000 fps.Panel performance was assessed in terms of failure modes,kinetic energy absorption,spalling diameter,and percentage of back-face damage area,and weight loss.Results showed that panel configuration significantly influenced performance.Panel P10,with 70 mm SFRM thickness and 20 mm air gaps,provided the highest resistance,dissipating 5223 J of kinetic energy and preventing back-face damage.In contrast,P7,which absorbed 4476 J,presented a back damage area percentage of 8.93%after three impacts.Weight loss analysis further confirmed durability improvements,with P10 showing only 1.53%cumulative loss compared to 3.26%in P7.The inclusion of wider air gaps enhanced energy dissipation and reduced damage.Comparison between single and repeated impacts demonstrated the sustained resistance of high-performance panels,with P10 maintaining minimal degradation across three consecutive impacts.These findings highlight the potential of multi-layer SFRM panels to enhance ballistic resistance,making them suitable for military,security,and civilian protective applications requiring long-term durability.
文摘With the development of modern society,people put forward higher requirements for building safety,which makes the construction project face new challenges.Reinforced concrete frame structure as a common engineering type,although the construction technology has been relatively mature,but its earthquake collapse ability still needs to be strengthened.This paper analyzes the specific factors that affect the seismic collapse ability of reinforced concrete frame structure,summarizes the previous research results,and puts forward innovative application of fiber-reinforced polymer(FRP)composite materials,play the role of smart materials,improve the isolation and energy dissipation devices,etc.,to promote the continuous optimization of reinforced concrete frame structure design,and show better seismic performance.
基金Supported by the National Natural Science Foundation of China(Grant No.52078283)Shandong Provincial Natural Science Foundation(Project No.ZR2024MA094)。
文摘With the change of the main influencing factors such as structural configuration and impact conditions,reinforced concrete slabs exhibit different mechanical behaviors with different failure patterns,and the failure modes are transformed.In order to reveal the failure mode and transformation rule of reinforced concrete slabs under impact loads,a dynamic impact response test was carried out using a drop hammer test device.The dynamic data pertaining to the impact force,support reaction force,structural displacement,and reinforcement strain were obtained through the use of digital image correlation technology(DIC),impact force measurement,and strain measurement.The analysis of the ultimate damage state of the reinforced concrete slab identified four distinct types of impact failure modes:local failure by stamping,overall failure by stamping,local-overall coupling failure,and local failure by punching.Additionally,the influence laws of hammerhead shape,hammer height,and reinforcement ratio on the dynamic response and failure mode transformation of the slab were revealed.The results indicate that:(1)The local damage to the slab by the plane hammer is readily apparent,while the overall damage by the spherical hammer is more pronounced.(2)In comparison to the high reinforcement ratio slabs,the overall bending resistance of the low reinforcement ratio slabs is significantly inferior,and the slab back exhibits further cracks.(3)As the hammer height increases,the slab failure mode undergoes a transformation,shifting from local failure by stamping and overall failure by stamping to local-overall coupling failure and local failure by punching.(4)Three failure mode thresholds have been established,and by comparing the peak impact force with the failure thresholds,the failure mode of the slab can be effectively determined.
基金supported by the National Key Research and Development Program Project of China(Grant No.2018YFB1106700).
文摘Polyether ether ketone(PEEK)-based continuous glass fiber reinforced thermoplastic composite offers advantages such as high strength,electrical insulation,and heat insulation.Parts manufactured using this composite and 3D printing have promising applications in aerospace,automobile,rail transit,etc.In this paper,a high-temperature melt impregnation method was used to successfully prepare the 3D printing prepreg filaments of the aforementioned composite.In the FDM 3D printing equipment,a nozzle of high thermal conductivity and wear-resistant copper alloy and a PEEK-based carbon fiber thermoplastic composite build plate with uniform temperature control were innovatively introduced to effectively improve the quality of 3D printing.The porosity of the 3D printed samples produced from the composite prepreg filament was analyzed under different printing parameters,and the mechanical properties and fracture mechanism of the printed parts were studied.The results show that the printing layer thickness,printing speed,printing temperature and build plate temperature have varying effects on the porosity of printed parts,which in turn affects tensile strength and the interlaminar shear strength(ILSS).When the printing layer thickness is 0.4 mm,printing speed is 2 mm/s,nozzle temperature is 430℃ and build plate temperature is 150℃,the tensile strength and ILSS of the composite printed parts reach their maximum values of 463.76 and 24.95 MPa,respectively.Microscopic analysis of the fracture morphology of the tensile specimens reveals that the 3D printed CGF/PEEK composite sample has three types of fracture mode,which are single filament bundle fracture,fracture mode of delamination,and fracture failure of the sample at the cross-section.The essence of the above three kinds of fracture mode is the difference of the interface bonding force of 3D printed CGF/PEEK composites.The fracture failure at the cross-section is that the continuous glass fibers in the composite are pulled out until they break,which is the main form of the failure of the composite under tensile load.The interfacial region of the composite is prone to microscopic defects such as voids and delamination during 3D printing,which become the most vulnerable link of the composite.Understanding the relationship between voids and fracture behavior lays a foundation for defect suppression and performance improvement of subsequent printed parts.
基金Sponsored by National Natural Science Foundation of China(Grant No.42077249)Innovation an Entrepreneurship Training Program for College Students of Hefei University of Technology(Grant Nos.S202410359131 and X202410359244).
文摘Long-term cyclic train loading can cause settlement and deformation of the roadbed,affecting the normal operation of trains.In order to investigate the strain pattern of reinforced sandy soil under train loading,a series of dynamic triaxial tests were carried out using multi-stage loading,focusing on the effects of the number of reinforcement layers,the confining pressure,and the mesh size of the geogrid on the accumulated plastic strain of reinforced sandy soil.Moreover,prediction models were proposed.The test results show that:1)The cumulative plastic strain versus vibration times of the specimens under different reinforcement layers exhibited three stages,namely,the rapid development stage,the rate transformation stage and the stability stage;2)The cumulative plastic strain decreases with increasing the number of reinforcement layers,but the magnitude of the effect of reinforcement on the cumulative plastic strain decreases with increasing the number of reinforcement layers,increasing the perimeter pressure and decreasing the mesh size of the geogrid have similar effects on the cumulative plastic strain pattern as increasing the number of reinforcement layers;3)Combined with the cumulative plastic strain law,a comprehensive model is proposed and the coefficient of determination is greater than 0.99.Furthermore,The cumulative plastic strain evolution law can be effectively predicted.The significance of parameters A,B and C is analyzed in detail.This study can provide theoretical references for further understanding of the deformation characteristics and settlement prediction of railway subgrades.
文摘Carbon fiber reinforced polymer(CFRP)is an advanced material widely used in bridge structures,demonstrating a promising application prospect.CFRP possesses excellent mechanical properties,construction advantages,and durability benefits.Its application in bridge reinforcement can significantly enhance the overall performance of the reinforced bridge,thereby improving the durability and extending the service life of the bridge.Therefore,it is necessary to further explore how CFRP can be effectively applied in bridge reinforcement projects to improve the quality of such projects and ensure the safety of bridges during operation.
基金financial support from the National Natural Science Foundation of China(Nos.52275385,U2167216)Sichuan Province Science and Technology Support Program,China(No.2022YFG0086).
文摘To improve the wettability of hypereutectic Al−60Si alloy and enhance the mechanical properties of the joints,Al−60Si alloy was joined by ultrasonic soldering with Sn-9Zn solder,and a sound joint with in-situ Si particle reinforcement was obtained.The oxide film of Al−60Si alloy at the interface was identified by transmission electron microscopy(TEM)analysis as amorphous Al_(2)O_(3).The oxide of Si particles in the base metal was also alumina.The oxide film of Al−60Si alloy was observed to be removed by ultrasonic vibration instead of holding treatment.Si particle-reinforced joints(35.7 vol.%)were obtained by increasing the ultrasonication time.The maximum shear strength peaked at 99.5 MPa for soldering at 330℃with an ultrasonic vibration time of 50 s.A model of forming of Si particles reinforced joint under the ultrasound was proposed,and ultrasonic vibration was considered to promote the dissolution of Al and migration of Si particles.
基金The National Natural Science Foundation of China(Grant#52278161)the Science and Technology Project of Guangzhou(Grant#2024A04J9888)the Guangdong Basic and Applied Basic Research Foundation(Grant#2023A1515010535).
文摘This study investigates the flexural performance of ultra-high performance concrete(UHPC)in reinforced concrete T-beams,focusing on the effects of interfacial treatments.Three concrete T-beam specimens were fabricated and tested:a control beam(RC-T),a UHPC-reinforced beam with a chiseled interface(UN-C-50F),and a UHPC-reinforced beam featuring both a chiseled interface and anchored steel rebars(UN-CS-50F).The test results indicated that both chiseling and the incorporation of anchored rebars effectively created a synergistic combination between the concrete T-beam and the UHPC reinforcement layer,with the UN-CS-50F exhibiting the highest flexural resistance.The cracking load and ultimate load of UN-CS-50F were 221.5%and 40.8%,respectively,higher than those of the RC-T.Finite element(FE)models were developed to provide further insights into the behavior of the UHPCreinforced T-beams,showing a maximumdeviation of just 8%when validated against experimental data.A parametric analysis varied the height,thickness,andmaterial strength of the UHPC reinforcement layer based on the validated FE model,revealing that increasing the UHPC layer thickness from 30 to 50 mm improved the ultimate resistance by 20%while reducing the UHPC reinforcement height from 440 to 300 mm led to a 10%decrease in bending resistance.The interfacial anchoring rebars significantly reduced crack propagation and enhanced stress redistribution,highlighting the importance of strengthening interfacial bonds and optimizing geometric parameters ofUHPCfor improved T-beam performance.These findings offer valuable insights for the design and retrofitting of UHPC-reinforced bridge girders.
基金ational Natural Science Foundation of China(U1604132)Central Plains Talents Program-Fund of Central Plains Leading Talents(ZYYCYU002130)+1 种基金Key Technology Research and Development Program of Henan Province(222102230114)Major Scientific Research Foundation of Higher Education of Henan Province(23B430003)。
文摘Dopamine polymerization reaction and hydrothermal method were used to prepare nickel coated Al_(2)O_(3)reinforcement phase(Ni/Al_(2)O_(3)).Ni/Al_(2)O_(3)reinforced Sn_(1.0)Ag_(0.5)Cu(SAC105)composite solder was prepared using traditional casting method.The result shows that the nickel coating layer is continuous with uneven thickness.The interface between nickel and aluminum oxide exhibits a metallurgical bonding with coherent interface relationship.The strength,toughness and wettability of the SAC105 solder on the substrate are improved,while the conductivity is not decreased significantly.The fracture mode of composites transitions from a mixed toughness-brittleness mode to a purely toughness-dominated mode,characterized by many dimples.The prepared composite brazing material was made into solder paste for copper plate lap joint experiments.The maximum shear strength is achieved when the doping amount was 0.3wt%.The growth index of intermetallic compound at the brazing interface of Ni/Al_(2)O_(3)reinforced SAC105 composite solder is linearly fitted to n=0.39,demonstrating that the growth of intermetallic compound at the interface is a combined effect of grain boundary diffusion and bulk diffusion.
基金supported by the National Natural Science Foundation of China(Grant Nos.51978672 and 52308335)the Natural Science Funding of Hunan Province(Grant No.2023JJ41054)the Natural Science Research Project of Anhui Educational Committee(Grant No.2023AH051170)。
文摘Understanding the reinforcement effect of the newly developed prestressed reinforcement components(PRCs)(a system composed of prestressed steel bars(PSBs),protective sleeves,lateral pressure plates(LPPs),and anchoring elements)is technically significant for the rational design of prestressed subgrade.A three-dimensional finite element model was established and verified based on a novel static model test and utilized to systematically analyze the influence of prestress levels and reinforcement modes on the reinforcement effect of the subgrade.The results show that the PRCs provide additional confining pressure to the subgrade through the diffusion effect of the prestress,which can therefore effectively improve the service performance of the subgrade.Compared to the unreinforced conventional subgrades,the settlements of prestressreinforced subgrades are reduced.The settlement attenuation rate(Rs)near the LPPs is larger than that at the subgrade center,and increasing the prestress positively contributes to the stability of the subgrade structure.In the multi-row reinforcement mode,the reinforcement effect of PRCs can extend from the reinforced area to the unreinforced area.In addition,as the horizontal distance from the LPPs increases,the additional confining pressure converted by the PSBs and LPPs gradually diminishes when spreading to the core load bearing area of the subgrade,resulting in a decrease in the Rs.Under the singlerow reinforcement mode,PRCs can be strategically arranged according to the local areas where subgrade defects readily occurred or observed,to obtain the desired reinforcement effect.Moreover,excessive prestress should not be applied near the subgrade shoulder line to avoid the shear failure of the subgrade shoulder.PRCs can be flexibly used for preventing and treating various subgrade defects of newly constructed or existing railway lines,achieving targeted and classified prevention,and effectively improving the bearing performance and deformation resistance of the subgrade.The research results are instructive for further elucidating the prestress reinforcement effect of PRCs on railway subgrades.
基金supported by the Ningbo Major Research and Development Plan Project(Grant No.2024Z135)the Natural Science Basic Research Program of Shaanxi Province(Grant No.2024JC-YBMS-322)+1 种基金China Postdoctoral Science Foundation(Grant No.2020M673492)National Natural Science Foundation of China(Grant No.51909219)。
文摘In this paper,a type of reinforcing structure for composite shell with single and through hole is presented.The experimental tests for the composite shells without hole,with single hole and reinforced structure,with through hole and reinforced structure subjected to hydrostatic pressure were carried out by the designed experimental test system.The mechanical responses of the composite shells under hydrostatic pressure are obtained by the high-speed camera and strain measurement.The results show that the entire deformation process of the shell can be divided into three:uniform compression,"buckling mode formation"and buckling.The"buckling mode formation"process is captured and reported for the first time.For the composite shell with single hole,the proposed reinforcing structure has a significant reinforcement effect on the shell and the buckling capacity of the shell is not weaker than the complete composite shell.For the composite shell with through hole,sealing effect can be achieved by the proposed reinforcing structure,but the buckling capacity of the shell after reinforcement can only reach 77%of the original buckling capacity.
基金financially supported by the Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(No.SKLGME-JBGS2403)the National Natural Science Foundation of China(No.42477205)the Hubei Provincial Innovation Group Project(No.2023AFA019).
文摘With the major developments that occurred during the past 40 years in the geotechnical engineering field,the usage of reinforcements in soils has been very common to improve the ultimate bearing capacity and reduce the footing settlements.These reinforcements consist of geogrids,geotextiles,geocells,etc.,all of which are in the geosynthetic family.Among these geosynthetic families,geocell performs better in soil-reinforced beds.In this study,we proposed the nine types of bioinspired geocells to improve the soil beds.For this purpose,a total of twenty numerical models were calculated via FLAC3D after validating the la-boratory model tests in the literature.The numerical results demonstrated that,except for the circular type,the performance of other geocell forms regarding increased bearing capacity was nearly identical.Regarding diffusion angles,only the circular and honeycomb geocells exhibited larger diffusion angles.The opening pocket diameter more significantly influenced the stress and strain of geocells.Geocells with nearly circular shapes,such as circular,honeycomb,hexagonal,and square,typically demonstrated higher confining stresses within the geocell walls.Conversely,for shapes that deviate from the circular form,such as dia-mond,re-entrant,and double V-shaped designs,the irregularity of the pocket shape could cause an uneven distribution of confining stresses,potentially leading to higher normal deformations at some specific areas and stress concentration at the wall joints.
基金the funding support from the Natural Science Foundation of China(Grant No.52130402)the Anhui Province Graduate Education Quality Engineering Project(Grant No.2023cxcysj088)the China Scholarship Council Grants Program(Grant No.202308340082).
文摘Grouting injection is a vital technique for addressing the challenges of high stress and significant deformation in the surrounding rock during deep mining operations,playing a crucial role in promoting green and low-carbon extraction methodologies.In this study,grouting reinforcement processes were examined by conducting grouting experiments on a fractured rock with varying negative pressures(0-100 kPa),followed by uniaxial compression testing of the grout-reinforced bodies.This investigation explored the diffusion patterns of grout under negative pressure and established a constitutive model of damage-bearing capacity for bodies reinforced by negative pressure grouting.It further studied the enhancement effect of negative pressure on the load-bearing capacity of the reinforced bodies and analyzed the instability mechanism of damage and failure in these bodies.The results indicated that the diffusion of grout under negative pressure is influenced by four types of forces,which alter the extent of grout diffusion within the fractured rock mass.Introducing a damage constitutive model that serially connects pore and framework elements characterizes the damage and failure behavior of groutreinforced bodies under different negative pressures.As the negative pressure increases,changes in porosity,water-to-cement ratio,and admixture quantity occur in the grout-reinforced specimens,with the strength mean curve showing a trend of first increasing and then decreasing,reaching a threshold at a negative pressure of 60 kPa.With increasing negative pressure,the negative pressure damage variable decreases and then increases,and the stronger the interfacial microelement connections caused by the negative pressure,the greater the bearing capacity,ultimately manifesting in different failure modes.
基金the financial support from the National Key R&D Program of China(No.2022YFB3708400)National Natural Science Foundation of China(No.52171133,52225101)Basic and Applied Basic Research Foundation of Guangdong(No.2020B0301030006)。
文摘Magnesium matrix composites(MMCs)combine exceptional low density,high specific strength,and stiffness,positioning them as critical materials for aerospace,automotive,and electronics industries.This review highlights recent progress in the fabrication of Ti-Mg composites and analyzes the mechanisms behind their enhanced mechanical properties.A key focus is the interfacial deformation incompatibility between Ti and Mg phases,which generates strain gradients and promotes the accumulation of geometrically necessary dislocations(GNDs)at the interface.This process not only improves strain hardening and ductility but also reveals the need for advanced micromechanical models to capture the plastic behavior of both phases.The review critically examines the impact of different Mg matrix types(AZ,AM,VW series)and the role of interfacial product morphology and size on bonding and overall performance.Furthermore,Ti reinforcement endows the composites with superior wear resistance and thermal conductivity,indicating broad application potential.