The published article titled“Procaine inhibits the proliferation and migration of colon cancer cells through inactivation of the ERK/MAPK/FAK pathways by regulation of RhoA”has been retracted from Oncology Research,...The published article titled“Procaine inhibits the proliferation and migration of colon cancer cells through inactivation of the ERK/MAPK/FAK pathways by regulation of RhoA”has been retracted from Oncology Research,Vol.26,No.2,2018,pp.209–217.展开更多
Uzbekistan Institute of Standards(UIS),founded in 1969,is the national standardization body of Uzbekistan.There are over 32,000 national standards in Uzbekistan.Last year,UIS revised the working regulations of all tec...Uzbekistan Institute of Standards(UIS),founded in 1969,is the national standardization body of Uzbekistan.There are over 32,000 national standards in Uzbekistan.Last year,UIS revised the working regulations of all technical committees,which were established in accordance with the organizational structure of ISO.At present,UIS has standardization training courses covering 54 directions,and more than 1,700 experts have received relevant training.UIS ranks the 95th in terms of the Quality Infrastructure for Sustainable Development(QI4SD)and 80th in terms of the Global Quality Infrastructure Index(GQII).It is a member of ISO and an associate member of IEC.In the UIS,40 experts have participated in the activities of various ISO technical committees,and 251 experts have participated in the discussion of IEC projects as observer members.展开更多
Driven by the dual forces of China’s financial powerhouse strategy and advancements in artificial intelligence,digital finance has experienced rapid growth,rendering traditional financial legal regulations inadequate...Driven by the dual forces of China’s financial powerhouse strategy and advancements in artificial intelligence,digital finance has experienced rapid growth,rendering traditional financial legal regulations inadequate to meet its regulatory demands.Key challenges include lagging legislative regulation,limited applicability of the standard regulations,and diminished effectiveness of the supervisory regulations.These challenges stem from the“single-entity”regulatory approach which is inadequate to meet its regulatory needs of mixed operations of digital finance,the misalignment between“static”administrative regulations and the dynamic evolution of financial technology(fintech),and the uneven allocation of regulatory resources,which constrain regulatory precision.To achieve a dynamic balance between the development of digital finance and its regulation,the adoption of inclusive legal regulation is imperative.The technological empowerment theory integrates the principles of finance with the“people-centered”concept and the social good,which thereby safeguards the rights and interests of digital finance consumers.As a pivotal standard for shaping inclusive legal regulation,digital justice should not only uphold fairness in the regulation of processes but also advance the organic integration of scenario-based justice and the principles of Law 3.0.In the future,China should foster multi-stakeholder collaborative governance to ensure the orderly allocation of the regulators’power.This effort should be supported by a comprehensive toolkit of technological regulations,which can dynamically balance incentive regulation with binding regulation while simultaneously enabling the efficient flow of regulatory resources within specific application scenarios.Such strategies would provide a viable pathway toward the goal of achieving inclusive legal regulation in digital finance.展开更多
Dear Editor,This letter focuses on the distributed cooperative regulation problem for a class of networked re-entrant manufacturing systems(RMSs).The networked system is structured with a three-tier architecture:the p...Dear Editor,This letter focuses on the distributed cooperative regulation problem for a class of networked re-entrant manufacturing systems(RMSs).The networked system is structured with a three-tier architecture:the production line,the manufacturing layer and the workshop layer.The dynamics of re-entrant production lines are governed by hyperbolic partial differential equations(PDEs)based on the law of mass conservation.展开更多
Background:The Canadian 24-h movement guidelines(24-HMG)emphasize the holistic consideration of physical activity(PA),sedentary behavior,and sleep in shaping health outcomes.This study aimed to examine the association...Background:The Canadian 24-h movement guidelines(24-HMG)emphasize the holistic consideration of physical activity(PA),sedentary behavior,and sleep in shaping health outcomes.This study aimed to examine the associations between meeting 24-HMG and emotion regulation-related indicators among children and adolescents.Methods:A total of 534 Chinese children and adolescents aged 12.94±1.10 years(49.81%males)participated in this study and completed self-report measures assessing 24-h movement behaviors,emotion regulation strategies,emotion regulation flexibility,and regulatory emotional self-efficacy.Results:Only 7.12% of theparticipants adhered to two or all three guidelines.The number of guidelines met was positively associated with the use of emotion regulation strategies,emotion regulation flexibility,and regulatory emotional self-efficacy.Compared with meeting none of the guidelines,participants whomet one ormore guidelines reported significantly better performance in these outcomes.Conclusion:Meeting 24-HMG was associated with superior emotion regulation in children and adolescents.The importance of engaging in regular PA,limiting recreational screen time,and getting enough sleep should be highlighted for fostering emotion regulation in this demographic.展开更多
With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electro...With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well.展开更多
Chlorophyll degradation and carotenoid accumulation are essential processes of fruit maturation in many horticultural plants,and play a crucial role in fruit color and quality.The pathways of chlorophyll and carotenoi...Chlorophyll degradation and carotenoid accumulation are essential processes of fruit maturation in many horticultural plants,and play a crucial role in fruit color and quality.The pathways of chlorophyll and carotenoid biosynthesis and degradation are well understood,and key regulatory genes controlling these pathways have been identified in citrus.This article reviewed the recent research on chlorophyll and carotenoid metabolism in citrus fruits,encompassing the metabolic pathways,transcriptional regulation,influencing factors,and the interplay between chlorophyll and carotenoid metabolism,aiming to provide insights into the molecular regulatory mechanisms governing the coloration of citrus fruits.展开更多
Alzheimer's disease,a progressively degenerative neurological disorder,is the most common cause of dementia in the elderly.While its precise etiology remains unclear,researchers have identified diverse pathologica...Alzheimer's disease,a progressively degenerative neurological disorder,is the most common cause of dementia in the elderly.While its precise etiology remains unclear,researchers have identified diverse pathological characteristics and molecular pathways associated with its progression.Advances in scientific research have increasingly highlighted the crucial role of non-coding RNAs in the progression of Alzheimer's disease.These non-coding RNAs regulate several biological processes critical to the advancement of the disease,offering promising potential as therapeutic targets and diagnostic biomarkers.Therefore,this review aims to investigate the underlying mechanisms of Alzheimer's disease onset,with a particular focus on microRNAs,long non-coding RNAs,and circular RNAs associated with the disease.The review elucidates the potential pathogenic processes of Alzheimer's disease and provides a detailed description of the synthesis mechanisms of the three aforementioned non-coding RNAs.It comprehensively summarizes the various non-coding RNAs that have been identified to play key regulatory roles in Alzheimer's disease,as well as how these noncoding RNAs influence the disease's progression by regulating gene expression and protein functions.For example,miR-9 targets the UBE4B gene,promoting autophagy-mediated degradation of Tau protein,thereby reducing Tau accumulation and delaying Alzheimer's disease progression.Conversely,the long non-coding RNA BACE1-AS stabilizes BACE1 mRNA,promoting the generation of amyloid-βand accelerating Alzheimer's disease development.Additionally,circular RNAs play significant roles in regulating neuroinflammatory responses.By integrating insights from these regulatory mechanisms,there is potential to discover new therapeutic targets and potential biomarkers for early detection and management of Alzheimer's disease.This review aims to enhance the understanding of the relationship between Alzheimer's disease and non-coding RNAs,potentially paving the way for early detection and novel treatment strategies.展开更多
The poor reversibility and stability of Zn anodes greatly restrict the practical application of aqueous Zn-ion batteries(AZIBs),resulting from the uncontrollable dendrite growth and H_(2)O-induced side reactions durin...The poor reversibility and stability of Zn anodes greatly restrict the practical application of aqueous Zn-ion batteries(AZIBs),resulting from the uncontrollable dendrite growth and H_(2)O-induced side reactions during cycling.Electrolyte additive modification is considered one of the most effective and simplest methods for solving the aforementioned problems.Herein,the pyridine derivatives(PD)including 2,4-dihydroxypyridine(2,4-DHP),2,3-dihydroxypyridine(2,3-DHP),and 2-hydroxypyrdine(2-DHP),were em-ployed as novel electrolyte additives in ZnSO_(4)electrolyte.Both density functional theory calculation and experimental findings demonstrated that the incorporation of PD additives into the electrolyte effectively modulates the solvation structure of hydrated Zn ions,thereby suppressing side reactions in AZIBs.Ad-ditionally,the adsorption of PD molecules on the zinc anode surface contributed to uniform Zn deposi-tion and dendrite growth inhibition.Consequently,a 2,4-DHP-modified Zn/Zn symmetrical cell achieved an extremely long cyclic stability up to 5650 h at 1 mA cm^(-2).Furthermore,the Zn/NH_(4)V_(4)O_(10)full cell with 2,4-DHP-containing electrolyte exhibited an outstanding initial capacity of 204 mAh g^(-1),with a no-table capacity retention of 79%after 1000 cycles at 5 A g^(-1).Hence,this study expands the selection of electrolyte additives for AZIBs,and the working mechanism of PD additives provides new insights for electrolyte modification enabling highly reversible zinc anode.展开更多
Fluctuating voltage levels in power grids necessitate automatic voltage regulators(AVRs)to ensure stability.This study examined the modeling and control of AVR in hydroelectric power plants using model predictive cont...Fluctuating voltage levels in power grids necessitate automatic voltage regulators(AVRs)to ensure stability.This study examined the modeling and control of AVR in hydroelectric power plants using model predictive control(MPC),which utilizes an extensive mathe-matical model of the voltage regulation system to optimize the control actions over a defined prediction horizon.This predictive feature enables MPC to minimize voltage deviations while accounting for operational constraints,thereby improving stability and performance under dynamic conditions.Thefindings were compared with those derived from an optimal proportional integral derivative(PID)con-troller designed using the artificial bee colony(ABC)algorithm.Although the ABC-PID method adjusts the PID parameters based on historical data,it may be difficult to adapt to real-time changes in system dynamics under constraints.Comprehensive simulations assessed both frameworks,emphasizing performance metrics such as disturbance rejection,response to load changes,and resilience to uncertainties.The results show that both MPC and ABC-PID methods effectively achieved accurate voltage regulation;however,MPC excelled in controlling overshoot and settling time—recording 0.0%and 0.25 s,respectively.This demonstrates greater robustness compared to conventional control methods that optimize PID parameters based on performance criteria derived from actual system behavior,which exhibited settling times and overshoots exceeding 0.41 s and 5.0%,respectively.The controllers were implemented using MATLAB/Simulink software,indicating a significant advancement for power plant engineers pursuing state-of-the-art automatic voltage regulations.展开更多
The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the exis...The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network.展开更多
Dual-ion batteries(DIBs)usually use carbon-based materials as electrodes,showing advantages in high operating volt-age,potential low cost,and environmental friendliness.Different from conventional“rocking chair”type...Dual-ion batteries(DIBs)usually use carbon-based materials as electrodes,showing advantages in high operating volt-age,potential low cost,and environmental friendliness.Different from conventional“rocking chair”type secondary batter-ies,DIBs perform a unique working mechanism,which employ both cation and anion taking part in capacity contribution at an anode and a cathode,respectively,during electrochemical reactions.Graphite has been identified as a suitable cathode material for anion intercalation at high voltages(>4.8 V)with fast reaction kinetics.However,the development of DIBs is being hindered by dynamic mismatch between a cathode and an anode due to sluggish Li+diffusion at a high rate.Herein,we prepared phyllostachys edulis derived carbon(PEC)through microstructure regulation strategy and investigated the carbonized temperature effect,which effectively tailored the rich short-range ordered graphite microdomains and disor-dered amorphous regions,as well as a unique nano-pore hierarchical structure.The pore size distribution of nano-pores was concentrated in 0.5-5 nm,providing suitable channels for rapid Li+transportation.It was found that PEC-500(carbon-ized at 500℃)achieved a high capacity of 436 mAh·g^(-1)at 300 mA·g^(-1)and excellent rate performance(maintaining a high capacity of 231 mAh·g^(-1)at 3 A·g^(-1)).The assembled dual-carbon PEC-500||graphite full battery delivered 114 mAh·g^(-1)at 10 C with 96%capacity retention after 3000 cycles and outstanding rate capability,providing 74 mAh·g^(-1)at 50 C.展开更多
Cells are exposed to various mechanical forces,including extracellular and intracellular forces such as stiffness,tension,compression,viscosity,and shear stress,which regulate cell biology.The process of transducing m...Cells are exposed to various mechanical forces,including extracellular and intracellular forces such as stiffness,tension,compression,viscosity,and shear stress,which regulate cell biology.The process of transducing mechanical stimuli into biochemical signals is termed mechanotransduction.These mechanical forces can regulate protein and gene expression,thereby impacting cell morphology,adhesion,proliferation,apoptosis,and migration.During cancer development,significant changes in extracellular and intracellular mechanical properties occur,resulting in altered mechanical inputs to which cells are exposed.MicroRNAs(miRNAs),key post-transcriptional regulators of gene and protein expression,are increasingly recognized as mechanosensitive molecules involved in cancer development.In this review,we summarize the primary cellular pathways involved in force sensing and mechanotransduction,emphasizing the role of forces in miRNA biogenesis and expression,as well as their influence on the regulation of key mechanotransducers.Furthermore,we focus on recent evidence regarding the induction or repression of miRNAs involved in cancer development by mechanical forces and their impact on the regulation of proteins that contribute to cancer progression.展开更多
Amid ongoing global environmental change and the critical pursuit of sustainable development,human-environment systems are exhibiting increasingly complex dynamic evolutions and spatial relationships,underscoring an u...Amid ongoing global environmental change and the critical pursuit of sustainable development,human-environment systems are exhibiting increasingly complex dynamic evolutions and spatial relationships,underscoring an urgent need for innovative research frameworks.Integrated geography synthesizes physical geography,human geography,and geographic information science,providing key frameworks for understanding complex human-environment systems.This editorial proposes an emerging research framework for integrated geography—“Composite driving-System evolution-Coupling mechanism-Synergistic regulation(CSCS)”—based on key issues such as climate change,biodiversity loss,resource scarcity,and social-ecological interactions,which have been highlighted in both recent critical literature on human-environment systems and UN assessment reports.The framework starts with diverse composite driving forces,extends to the evolution of human-environment system structures,processes,and functions that these drivers induce,explores couplings within human-environment systems,and calls for regulation aimed at sustainable development in synergies.Major research frontiers include understanding the cascading“evolution-coupling”effects of shocks;measuring system resilience,thresholds,and safe and just operating space boundaries;clarifying linkage mechanisms across scales;and achieving synergistic outcomes for multi-objective sustainability.This framework will help promote the interdisciplinary integration and development of integrated geography,and provide geographical solutions for the global sustainable development agenda.展开更多
Terpenoids are vital secondary metabolites in plants that function as agents for defense and stress resistance.These genes not only play crucial roles in plant growth and development but also function in diverse biolo...Terpenoids are vital secondary metabolites in plants that function as agents for defense and stress resistance.These genes not only play crucial roles in plant growth and development but also function in diverse biological group interactions.Terpenoids released by fruit trees possess defensive properties and constitute a class of aromatic compounds.For some fruits,terpenoids are indispensable indicators for evaluating fruit quality and the economic value.Significant research progress has been made in terpenoids biosynthesis and regulation.In this review,we introduce the main terpenoids of fruit trees,emphasize synthetic enzymes and regulatory factors involved in the mevalonate pathway and the methylerythritol pathway,and analyze TPS gene family identification and diversity in several fruit tree species.Moreover,the regulation of terpenes biosynthesis,including the molecular interaction mechanisms of environmental factors and hormone signaling pathways,are comprehensively described.Our objective is to summarize the molecular regulatory network and research foundation of terpenoids biosynthesis,providing a reference for investigations of metabolic pathways and promoting the development of techniques for the regulation and breeding of terpenoids in fruit trees.展开更多
Fruit ripening,which is modulated by the up-and downregulation of numerous genes,is a sophisticated physiological event determining consumer acceptability.While many positive regulators have been known to regulate fru...Fruit ripening,which is modulated by the up-and downregulation of numerous genes,is a sophisticated physiological event determining consumer acceptability.While many positive regulators have been known to regulate fruit ripening,relatively less information is associated with the negative regulators in the process.Here,a negative regulator,MaMADS31,was characterized according to the banana fruit ripening transcriptome,which displayed nuclear localization and inhibitory transactivation activity.MaMADS31 suppresses the transcription of the cell wall modification gene MaPL15 and the ethylene biosynthesis-related gene MaACO13 by directly recognizing the CArG-box element in their promoters.Transient expression of MaMADS31 in banana fruit brought about downregulation of MaPL15 and MaACO13,thereby delaying fruit ripening.Importantly,MaMADS31 interacts with MaBZR2 to synergistically strengthen the transcriptional inhibition of MaPL15 and MaACO13.Overall,MaMADS31-MaBZR2 plays a negative role in fruit ripening by downregulating the MaPL15 and MaACO13 transcription,which provides new insights for innovating approaches for prolonging the postharvest life of horticultural plants.展开更多
Facial expression datasets commonly exhibit imbalances between various categories or between difficult and simple samples.This imbalance introduces bias into feature extraction within facial expression recognition(FER...Facial expression datasets commonly exhibit imbalances between various categories or between difficult and simple samples.This imbalance introduces bias into feature extraction within facial expression recognition(FER)models,which hinders the algorithm’s comprehension of emotional states and reduces the overall recognition accuracy.A novel FER model is introduced to address these issues.It integrates rebalancing mechanisms to regulate attention consistency and focus,offering enhanced efficacy.Our approach proposes the following improvements:(i)rebalancing weights are used to enhance the consistency between the heatmaps of an original face sample and its horizontally flipped counterpart;(ii)coefficient factors are incorporated into the standard cross entropy loss function,and rebalancing weights are incorporated to fine-tune the loss adjustment.Experimental results indicate that the FER model outperforms the current leading algorithm,MEK,achieving 0.69%and 2.01%increases in overall and average recognition accuracies,respectively,on the RAF-DB dataset.The model exhibits accuracy improvements of 0.49%and 1.01%in the AffectNet dataset and 0.83%and 1.23%in the FERPlus dataset,respectively.These outcomes validate the superiority and stability of the proposed FER model.展开更多
Employing multiple metals for synergistic electronic structure regulation emerges as a promising approach to develop highly efficient and robust electrocatalysts for hydrogen evolution at ampere levels.In this study,a...Employing multiple metals for synergistic electronic structure regulation emerges as a promising approach to develop highly efficient and robust electrocatalysts for hydrogen evolution at ampere levels.In this study,a series of Schreibersite-type intermetallic compounds,particularly Mo_(2)Fe_(0.8)Ru_(0.2)P,are synthesized through high-temperature solid-phase synthesis.Experimental results demonstrate that the integration of Ru significantly improves the kinetics of proton adsorption and desorption during the hydrogen evolution reaction(HER).Additionally,density functional theory(DFT)calculations and X-ray absorption near edge structure(XANES)analyses effectively corroborate the pronounced d-orbital hybridization of Fe within the structure,which facilitates the transfer of hydroxide ions and the maintenance of material durability during alkaline HER processes.Remarkably,Mo_(2)Fe_(0.8)Ru_(0.2)P exhibits superior alkaline HER activity,characterized by an overpotential of merely 48 mV at a current density of 10 mA cm^(-2).After prolonged operation of 1000 h at high current densities(1.1 A cm^(-2)),the activity decline remains minimal,under 4%(with overpotential increasing from 258 mV to 268 mV).These results demonstrate the potential of strategically combining metallic elements to design high-performance industrial-grade electrocatalysts.展开更多
α-phase formamidinium lead triiodide(FAPbI_(3))has demonstrated extraordinary properties for near-infrared perovskite lightemitting diodes(NIR-PeLEDs).The vacuum processing technique has recently received increasing ...α-phase formamidinium lead triiodide(FAPbI_(3))has demonstrated extraordinary properties for near-infrared perovskite lightemitting diodes(NIR-PeLEDs).The vacuum processing technique has recently received increasing attention from industry and academia due to its solvent-free feature and compatibility with large-scale production.Nevertheless,vacuum-deposited NIR-PeLEDs have been less studied,and their efficiencies lag far behind those of solution-based PeLEDs as it is still challenging to prepare pureα-FAPbI_(3)by the thermal evaporation.Herein,we report a Cs-containing triple-source co-evaporation approach to develop the perovskite films.The addition of thermally stable Cs cation fills in the perovskite crystal lattice and eliminates the formation of metallic Pb caused by the degradation of FA cation during the evaporation process.The tri-source co-evaporation strategy significantly promotes the phase transition from yellowδ-phase FAPbI_(3)to blackα-phase FACsPbI_(3),fostering smooth,uniform,and pinhole-free perovskite films with higher crystallinity and fewer defects.On this basis,the resulting NIR-PeLED based on FACsPbI_(3)yields a maximum EQE of 10.25%,which is around sixfold higher than that of FAPbI_(3)-based PeLEDs.Our work demonstrates a reliable and effective strategy to achieveα-FAPbI_(3)via thermal evaporation and paves the pathway toward highly efficient perovskite optoelectronic devices for future commercialization.展开更多
Background:Understanding the factors that influence adolescent psychological resilience is critical for promoting mental health.This study explores the impact and mechanism of labor values on adolescent psychological ...Background:Understanding the factors that influence adolescent psychological resilience is critical for promoting mental health.This study explores the impact and mechanism of labor values on adolescent psychological resilience from the perspective of emotion regulation theory.Methods:This study conducted an in-depth analysis using the Labor Value Scale on 2691 elementary school upper-grade students,middle school students,and high school students.Results:The results show that:(1)labor values can positively predict adolescents’mental resilience;(2)cognitive reappraisal and expression inhibition play a partial mediating role in the relationship between labor values and adolescents’psychological resilience.Among them,labor values can positively predict adolescents’mental resilience through positive cognitive reappraisal,and labor values can also predict adolescents’mental resilience through expression inhibition.Conclusion:Based on the theory of emotion regulation,this study explores the direct effect of labor values on mental resilience and the mediating effect of different strategies of emotion regulation.The results of this study provide a theoretical basis for improving the mental resilience of adolescents.展开更多
文摘The published article titled“Procaine inhibits the proliferation and migration of colon cancer cells through inactivation of the ERK/MAPK/FAK pathways by regulation of RhoA”has been retracted from Oncology Research,Vol.26,No.2,2018,pp.209–217.
文摘Uzbekistan Institute of Standards(UIS),founded in 1969,is the national standardization body of Uzbekistan.There are over 32,000 national standards in Uzbekistan.Last year,UIS revised the working regulations of all technical committees,which were established in accordance with the organizational structure of ISO.At present,UIS has standardization training courses covering 54 directions,and more than 1,700 experts have received relevant training.UIS ranks the 95th in terms of the Quality Infrastructure for Sustainable Development(QI4SD)and 80th in terms of the Global Quality Infrastructure Index(GQII).It is a member of ISO and an associate member of IEC.In the UIS,40 experts have participated in the activities of various ISO technical committees,and 251 experts have participated in the discussion of IEC projects as observer members.
基金funded by a general project of the National Social Science Fund of China“Research on the Construction of the Implementation Mechanism of the Paris Agreement under the Concept of a Community with a Shared Future for Mankind(Project No.:20BFX210)”a Humanities and Social Sciences Special Project of the Fundamental Research Funds for the Central Universities“Research on Legal Issues and Countermeasures for Promoting High-Quality Green Development in the Belt and Road Region”(Project No.:2022CD-JSKPY28).
文摘Driven by the dual forces of China’s financial powerhouse strategy and advancements in artificial intelligence,digital finance has experienced rapid growth,rendering traditional financial legal regulations inadequate to meet its regulatory demands.Key challenges include lagging legislative regulation,limited applicability of the standard regulations,and diminished effectiveness of the supervisory regulations.These challenges stem from the“single-entity”regulatory approach which is inadequate to meet its regulatory needs of mixed operations of digital finance,the misalignment between“static”administrative regulations and the dynamic evolution of financial technology(fintech),and the uneven allocation of regulatory resources,which constrain regulatory precision.To achieve a dynamic balance between the development of digital finance and its regulation,the adoption of inclusive legal regulation is imperative.The technological empowerment theory integrates the principles of finance with the“people-centered”concept and the social good,which thereby safeguards the rights and interests of digital finance consumers.As a pivotal standard for shaping inclusive legal regulation,digital justice should not only uphold fairness in the regulation of processes but also advance the organic integration of scenario-based justice and the principles of Law 3.0.In the future,China should foster multi-stakeholder collaborative governance to ensure the orderly allocation of the regulators’power.This effort should be supported by a comprehensive toolkit of technological regulations,which can dynamically balance incentive regulation with binding regulation while simultaneously enabling the efficient flow of regulatory resources within specific application scenarios.Such strategies would provide a viable pathway toward the goal of achieving inclusive legal regulation in digital finance.
文摘Dear Editor,This letter focuses on the distributed cooperative regulation problem for a class of networked re-entrant manufacturing systems(RMSs).The networked system is structured with a three-tier architecture:the production line,the manufacturing layer and the workshop layer.The dynamics of re-entrant production lines are governed by hyperbolic partial differential equations(PDEs)based on the law of mass conservation.
基金supported by Zhejiang Provincial Social Science Funding(22NDJC050YB).
文摘Background:The Canadian 24-h movement guidelines(24-HMG)emphasize the holistic consideration of physical activity(PA),sedentary behavior,and sleep in shaping health outcomes.This study aimed to examine the associations between meeting 24-HMG and emotion regulation-related indicators among children and adolescents.Methods:A total of 534 Chinese children and adolescents aged 12.94±1.10 years(49.81%males)participated in this study and completed self-report measures assessing 24-h movement behaviors,emotion regulation strategies,emotion regulation flexibility,and regulatory emotional self-efficacy.Results:Only 7.12% of theparticipants adhered to two or all three guidelines.The number of guidelines met was positively associated with the use of emotion regulation strategies,emotion regulation flexibility,and regulatory emotional self-efficacy.Compared with meeting none of the guidelines,participants whomet one ormore guidelines reported significantly better performance in these outcomes.Conclusion:Meeting 24-HMG was associated with superior emotion regulation in children and adolescents.The importance of engaging in regular PA,limiting recreational screen time,and getting enough sleep should be highlighted for fostering emotion regulation in this demographic.
基金supported by the Surface Project of Local De-velopment in Science and Technology Guided by Central Govern-ment(No.2021ZYD0041)the National Natural Science Founda-tion of China(Nos.52377026 and 52301192)+3 种基金the Natural Science Foundation of Shandong Province(No.ZR2019YQ24)the Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)the Special Financial of Shandong Province(Struc-tural Design of High-efficiency Electromagnetic Wave-absorbing Composite Materials and Construction of Shandong Provincial Tal-ent Teams)the“Sanqin Scholars”Innovation Teams Project of Shaanxi Province(Clean Energy Materials and High-Performance Devices Innovation Team of Shaanxi Dongling Smelting Co.,Ltd.).
文摘With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(Grant Nos.LQ23C150004 and LR23C150001)National Natural Science Foundation of China(NSFC+1 种基金Grant No.32102318)NSFC Excellent Young Scientists Fund,and the Key Project for New Agricultural Cultivar Breeding in Zhejiang Province,China(Grant No.2021C02066-1).
文摘Chlorophyll degradation and carotenoid accumulation are essential processes of fruit maturation in many horticultural plants,and play a crucial role in fruit color and quality.The pathways of chlorophyll and carotenoid biosynthesis and degradation are well understood,and key regulatory genes controlling these pathways have been identified in citrus.This article reviewed the recent research on chlorophyll and carotenoid metabolism in citrus fruits,encompassing the metabolic pathways,transcriptional regulation,influencing factors,and the interplay between chlorophyll and carotenoid metabolism,aiming to provide insights into the molecular regulatory mechanisms governing the coloration of citrus fruits.
文摘Alzheimer's disease,a progressively degenerative neurological disorder,is the most common cause of dementia in the elderly.While its precise etiology remains unclear,researchers have identified diverse pathological characteristics and molecular pathways associated with its progression.Advances in scientific research have increasingly highlighted the crucial role of non-coding RNAs in the progression of Alzheimer's disease.These non-coding RNAs regulate several biological processes critical to the advancement of the disease,offering promising potential as therapeutic targets and diagnostic biomarkers.Therefore,this review aims to investigate the underlying mechanisms of Alzheimer's disease onset,with a particular focus on microRNAs,long non-coding RNAs,and circular RNAs associated with the disease.The review elucidates the potential pathogenic processes of Alzheimer's disease and provides a detailed description of the synthesis mechanisms of the three aforementioned non-coding RNAs.It comprehensively summarizes the various non-coding RNAs that have been identified to play key regulatory roles in Alzheimer's disease,as well as how these noncoding RNAs influence the disease's progression by regulating gene expression and protein functions.For example,miR-9 targets the UBE4B gene,promoting autophagy-mediated degradation of Tau protein,thereby reducing Tau accumulation and delaying Alzheimer's disease progression.Conversely,the long non-coding RNA BACE1-AS stabilizes BACE1 mRNA,promoting the generation of amyloid-βand accelerating Alzheimer's disease development.Additionally,circular RNAs play significant roles in regulating neuroinflammatory responses.By integrating insights from these regulatory mechanisms,there is potential to discover new therapeutic targets and potential biomarkers for early detection and management of Alzheimer's disease.This review aims to enhance the understanding of the relationship between Alzheimer's disease and non-coding RNAs,potentially paving the way for early detection and novel treatment strategies.
基金supported by the Key Science and Technol-ogy Program of Henan Province(No.232102241020)the Ph.D.Research Startup Foundation of Henan University of Science and Technology(No.400613480015)+1 种基金the Postdoctoral Research Startup Foundation of Henan University of Science and Technology(No.400613554001)the Natural Science Foundation of Henan Province(242300420021).
文摘The poor reversibility and stability of Zn anodes greatly restrict the practical application of aqueous Zn-ion batteries(AZIBs),resulting from the uncontrollable dendrite growth and H_(2)O-induced side reactions during cycling.Electrolyte additive modification is considered one of the most effective and simplest methods for solving the aforementioned problems.Herein,the pyridine derivatives(PD)including 2,4-dihydroxypyridine(2,4-DHP),2,3-dihydroxypyridine(2,3-DHP),and 2-hydroxypyrdine(2-DHP),were em-ployed as novel electrolyte additives in ZnSO_(4)electrolyte.Both density functional theory calculation and experimental findings demonstrated that the incorporation of PD additives into the electrolyte effectively modulates the solvation structure of hydrated Zn ions,thereby suppressing side reactions in AZIBs.Ad-ditionally,the adsorption of PD molecules on the zinc anode surface contributed to uniform Zn deposi-tion and dendrite growth inhibition.Consequently,a 2,4-DHP-modified Zn/Zn symmetrical cell achieved an extremely long cyclic stability up to 5650 h at 1 mA cm^(-2).Furthermore,the Zn/NH_(4)V_(4)O_(10)full cell with 2,4-DHP-containing electrolyte exhibited an outstanding initial capacity of 204 mAh g^(-1),with a no-table capacity retention of 79%after 1000 cycles at 5 A g^(-1).Hence,this study expands the selection of electrolyte additives for AZIBs,and the working mechanism of PD additives provides new insights for electrolyte modification enabling highly reversible zinc anode.
文摘Fluctuating voltage levels in power grids necessitate automatic voltage regulators(AVRs)to ensure stability.This study examined the modeling and control of AVR in hydroelectric power plants using model predictive control(MPC),which utilizes an extensive mathe-matical model of the voltage regulation system to optimize the control actions over a defined prediction horizon.This predictive feature enables MPC to minimize voltage deviations while accounting for operational constraints,thereby improving stability and performance under dynamic conditions.Thefindings were compared with those derived from an optimal proportional integral derivative(PID)con-troller designed using the artificial bee colony(ABC)algorithm.Although the ABC-PID method adjusts the PID parameters based on historical data,it may be difficult to adapt to real-time changes in system dynamics under constraints.Comprehensive simulations assessed both frameworks,emphasizing performance metrics such as disturbance rejection,response to load changes,and resilience to uncertainties.The results show that both MPC and ABC-PID methods effectively achieved accurate voltage regulation;however,MPC excelled in controlling overshoot and settling time—recording 0.0%and 0.25 s,respectively.This demonstrates greater robustness compared to conventional control methods that optimize PID parameters based on performance criteria derived from actual system behavior,which exhibited settling times and overshoots exceeding 0.41 s and 5.0%,respectively.The controllers were implemented using MATLAB/Simulink software,indicating a significant advancement for power plant engineers pursuing state-of-the-art automatic voltage regulations.
基金funded by the State Grid Corporation Science and Technology Project(5108-202218280A-2-391-XG).
文摘The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network.
基金supported by the National Natural Science Foundation of China(Grant Nos.52272208,22309057)the Natural Science Foundation of Hubei Province(Grant No.2023AFB355)the Fundamental Research Funds for the Central Universities of China(Grant No.2662022LXQD001).
文摘Dual-ion batteries(DIBs)usually use carbon-based materials as electrodes,showing advantages in high operating volt-age,potential low cost,and environmental friendliness.Different from conventional“rocking chair”type secondary batter-ies,DIBs perform a unique working mechanism,which employ both cation and anion taking part in capacity contribution at an anode and a cathode,respectively,during electrochemical reactions.Graphite has been identified as a suitable cathode material for anion intercalation at high voltages(>4.8 V)with fast reaction kinetics.However,the development of DIBs is being hindered by dynamic mismatch between a cathode and an anode due to sluggish Li+diffusion at a high rate.Herein,we prepared phyllostachys edulis derived carbon(PEC)through microstructure regulation strategy and investigated the carbonized temperature effect,which effectively tailored the rich short-range ordered graphite microdomains and disor-dered amorphous regions,as well as a unique nano-pore hierarchical structure.The pore size distribution of nano-pores was concentrated in 0.5-5 nm,providing suitable channels for rapid Li+transportation.It was found that PEC-500(carbon-ized at 500℃)achieved a high capacity of 436 mAh·g^(-1)at 300 mA·g^(-1)and excellent rate performance(maintaining a high capacity of 231 mAh·g^(-1)at 3 A·g^(-1)).The assembled dual-carbon PEC-500||graphite full battery delivered 114 mAh·g^(-1)at 10 C with 96%capacity retention after 3000 cycles and outstanding rate capability,providing 74 mAh·g^(-1)at 50 C.
文摘Cells are exposed to various mechanical forces,including extracellular and intracellular forces such as stiffness,tension,compression,viscosity,and shear stress,which regulate cell biology.The process of transducing mechanical stimuli into biochemical signals is termed mechanotransduction.These mechanical forces can regulate protein and gene expression,thereby impacting cell morphology,adhesion,proliferation,apoptosis,and migration.During cancer development,significant changes in extracellular and intracellular mechanical properties occur,resulting in altered mechanical inputs to which cells are exposed.MicroRNAs(miRNAs),key post-transcriptional regulators of gene and protein expression,are increasingly recognized as mechanosensitive molecules involved in cancer development.In this review,we summarize the primary cellular pathways involved in force sensing and mechanotransduction,emphasizing the role of forces in miRNA biogenesis and expression,as well as their influence on the regulation of key mechanotransducers.Furthermore,we focus on recent evidence regarding the induction or repression of miRNAs involved in cancer development by mechanical forces and their impact on the regulation of proteins that contribute to cancer progression.
基金supported by the National Natural Science Foundation of China(Grants No.W2412144,42271292)the 111 project,and the Fundamental Research Funds for the Central Universities of China.
文摘Amid ongoing global environmental change and the critical pursuit of sustainable development,human-environment systems are exhibiting increasingly complex dynamic evolutions and spatial relationships,underscoring an urgent need for innovative research frameworks.Integrated geography synthesizes physical geography,human geography,and geographic information science,providing key frameworks for understanding complex human-environment systems.This editorial proposes an emerging research framework for integrated geography—“Composite driving-System evolution-Coupling mechanism-Synergistic regulation(CSCS)”—based on key issues such as climate change,biodiversity loss,resource scarcity,and social-ecological interactions,which have been highlighted in both recent critical literature on human-environment systems and UN assessment reports.The framework starts with diverse composite driving forces,extends to the evolution of human-environment system structures,processes,and functions that these drivers induce,explores couplings within human-environment systems,and calls for regulation aimed at sustainable development in synergies.Major research frontiers include understanding the cascading“evolution-coupling”effects of shocks;measuring system resilience,thresholds,and safe and just operating space boundaries;clarifying linkage mechanisms across scales;and achieving synergistic outcomes for multi-objective sustainability.This framework will help promote the interdisciplinary integration and development of integrated geography,and provide geographical solutions for the global sustainable development agenda.
基金supported by the Major Innovation Project of Shandong Province(Grant No.2022CXGC010605)the National Natural Science Foundation of China(Grant No.32001990)the Key R&D Projects in Ningxia Autonomous Region(Grant No.2022BBF02014).
文摘Terpenoids are vital secondary metabolites in plants that function as agents for defense and stress resistance.These genes not only play crucial roles in plant growth and development but also function in diverse biological group interactions.Terpenoids released by fruit trees possess defensive properties and constitute a class of aromatic compounds.For some fruits,terpenoids are indispensable indicators for evaluating fruit quality and the economic value.Significant research progress has been made in terpenoids biosynthesis and regulation.In this review,we introduce the main terpenoids of fruit trees,emphasize synthetic enzymes and regulatory factors involved in the mevalonate pathway and the methylerythritol pathway,and analyze TPS gene family identification and diversity in several fruit tree species.Moreover,the regulation of terpenes biosynthesis,including the molecular interaction mechanisms of environmental factors and hormone signaling pathways,are comprehensively described.Our objective is to summarize the molecular regulatory network and research foundation of terpenoids biosynthesis,providing a reference for investigations of metabolic pathways and promoting the development of techniques for the regulation and breeding of terpenoids in fruit trees.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFD2100102)China Agriculture Research System of Ministry of Finance(MOF)and Ministry of Agriculture and Rural Affairs(MARA)(Grant No.CARS-31)。
文摘Fruit ripening,which is modulated by the up-and downregulation of numerous genes,is a sophisticated physiological event determining consumer acceptability.While many positive regulators have been known to regulate fruit ripening,relatively less information is associated with the negative regulators in the process.Here,a negative regulator,MaMADS31,was characterized according to the banana fruit ripening transcriptome,which displayed nuclear localization and inhibitory transactivation activity.MaMADS31 suppresses the transcription of the cell wall modification gene MaPL15 and the ethylene biosynthesis-related gene MaACO13 by directly recognizing the CArG-box element in their promoters.Transient expression of MaMADS31 in banana fruit brought about downregulation of MaPL15 and MaACO13,thereby delaying fruit ripening.Importantly,MaMADS31 interacts with MaBZR2 to synergistically strengthen the transcriptional inhibition of MaPL15 and MaACO13.Overall,MaMADS31-MaBZR2 plays a negative role in fruit ripening by downregulating the MaPL15 and MaACO13 transcription,which provides new insights for innovating approaches for prolonging the postharvest life of horticultural plants.
基金support from the National Natural Science Foundation of China(Grant Number 62477023).
文摘Facial expression datasets commonly exhibit imbalances between various categories or between difficult and simple samples.This imbalance introduces bias into feature extraction within facial expression recognition(FER)models,which hinders the algorithm’s comprehension of emotional states and reduces the overall recognition accuracy.A novel FER model is introduced to address these issues.It integrates rebalancing mechanisms to regulate attention consistency and focus,offering enhanced efficacy.Our approach proposes the following improvements:(i)rebalancing weights are used to enhance the consistency between the heatmaps of an original face sample and its horizontally flipped counterpart;(ii)coefficient factors are incorporated into the standard cross entropy loss function,and rebalancing weights are incorporated to fine-tune the loss adjustment.Experimental results indicate that the FER model outperforms the current leading algorithm,MEK,achieving 0.69%and 2.01%increases in overall and average recognition accuracies,respectively,on the RAF-DB dataset.The model exhibits accuracy improvements of 0.49%and 1.01%in the AffectNet dataset and 0.83%and 1.23%in the FERPlus dataset,respectively.These outcomes validate the superiority and stability of the proposed FER model.
基金supported by Research Grants of the NRF(2023R1A2C2003823,RS-2024-00405818)funded by the National Research Foundation under the Ministry of Science,ICT&Future,Korea。
文摘Employing multiple metals for synergistic electronic structure regulation emerges as a promising approach to develop highly efficient and robust electrocatalysts for hydrogen evolution at ampere levels.In this study,a series of Schreibersite-type intermetallic compounds,particularly Mo_(2)Fe_(0.8)Ru_(0.2)P,are synthesized through high-temperature solid-phase synthesis.Experimental results demonstrate that the integration of Ru significantly improves the kinetics of proton adsorption and desorption during the hydrogen evolution reaction(HER).Additionally,density functional theory(DFT)calculations and X-ray absorption near edge structure(XANES)analyses effectively corroborate the pronounced d-orbital hybridization of Fe within the structure,which facilitates the transfer of hydroxide ions and the maintenance of material durability during alkaline HER processes.Remarkably,Mo_(2)Fe_(0.8)Ru_(0.2)P exhibits superior alkaline HER activity,characterized by an overpotential of merely 48 mV at a current density of 10 mA cm^(-2).After prolonged operation of 1000 h at high current densities(1.1 A cm^(-2)),the activity decline remains minimal,under 4%(with overpotential increasing from 258 mV to 268 mV).These results demonstrate the potential of strategically combining metallic elements to design high-performance industrial-grade electrocatalysts.
基金supported by the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(2024C01192)National Natural Science Foundation of China(62322505,62425502,62375276,62375060,U23A6002,62050039,62004075,and 62374069)+1 种基金Shanghai Pilot Program for Basic Research(22JC1403200)the Natural Science Foundation of Hubei Province(2024AFB423).
文摘α-phase formamidinium lead triiodide(FAPbI_(3))has demonstrated extraordinary properties for near-infrared perovskite lightemitting diodes(NIR-PeLEDs).The vacuum processing technique has recently received increasing attention from industry and academia due to its solvent-free feature and compatibility with large-scale production.Nevertheless,vacuum-deposited NIR-PeLEDs have been less studied,and their efficiencies lag far behind those of solution-based PeLEDs as it is still challenging to prepare pureα-FAPbI_(3)by the thermal evaporation.Herein,we report a Cs-containing triple-source co-evaporation approach to develop the perovskite films.The addition of thermally stable Cs cation fills in the perovskite crystal lattice and eliminates the formation of metallic Pb caused by the degradation of FA cation during the evaporation process.The tri-source co-evaporation strategy significantly promotes the phase transition from yellowδ-phase FAPbI_(3)to blackα-phase FACsPbI_(3),fostering smooth,uniform,and pinhole-free perovskite films with higher crystallinity and fewer defects.On this basis,the resulting NIR-PeLED based on FACsPbI_(3)yields a maximum EQE of 10.25%,which is around sixfold higher than that of FAPbI_(3)-based PeLEDs.Our work demonstrates a reliable and effective strategy to achieveα-FAPbI_(3)via thermal evaporation and paves the pathway toward highly efficient perovskite optoelectronic devices for future commercialization.
基金supported by Scientific Research Fund of Hunan Provincial EducationDepartment(23B1133):How Labor Affects Moral Development:Based on the perspective of mixed research methods.
文摘Background:Understanding the factors that influence adolescent psychological resilience is critical for promoting mental health.This study explores the impact and mechanism of labor values on adolescent psychological resilience from the perspective of emotion regulation theory.Methods:This study conducted an in-depth analysis using the Labor Value Scale on 2691 elementary school upper-grade students,middle school students,and high school students.Results:The results show that:(1)labor values can positively predict adolescents’mental resilience;(2)cognitive reappraisal and expression inhibition play a partial mediating role in the relationship between labor values and adolescents’psychological resilience.Among them,labor values can positively predict adolescents’mental resilience through positive cognitive reappraisal,and labor values can also predict adolescents’mental resilience through expression inhibition.Conclusion:Based on the theory of emotion regulation,this study explores the direct effect of labor values on mental resilience and the mediating effect of different strategies of emotion regulation.The results of this study provide a theoretical basis for improving the mental resilience of adolescents.