The subset threshold auto regressive (SSTAR) model, which is capable of reproducing the limit cycle behavior of nonlinear time series, is introduced. The algorithm for fitting the sampled data with SSTAR model is pr...The subset threshold auto regressive (SSTAR) model, which is capable of reproducing the limit cycle behavior of nonlinear time series, is introduced. The algorithm for fitting the sampled data with SSTAR model is proposed and applied to model and forecast power load. Numerical example verifies that desirable accuracy of short term load forecasting can be achieved by using the SSTAR model.展开更多
BACKGROUND Histological changes after direct-acting antivirals(DAAs)therapy in hepatitis C virus(HCV)patients has not been elucidated.Whether the predominantly progressive,indeterminate and predominately regressive(P-...BACKGROUND Histological changes after direct-acting antivirals(DAAs)therapy in hepatitis C virus(HCV)patients has not been elucidated.Whether the predominantly progressive,indeterminate and predominately regressive(P-I-R)score,evaluating fibrosis activity in hepatitis B virus patients has predictive value in HCV patients has not been investigated.AIM To identify histological changes after DAAs therapy and to evaluate the predictive value of the P-I-R score in HCV patients.METHODS Chronic HCV patients with paired liver biopsy specimens before and after DAAs treatment were included.Sustained virologic response(SVR)was defined as an undetectable serum HCV RNA level at 24 wk after treatment cessation.The Ishak system and P-I-R score were assessed.Inflammation improvement and fibrosis regression were defined as a≥2-points decrease in the histology activity index(HAI)score and a≥1-point decrease in the Ishak fibrosis score,respectively.Fibrosis progression was defined as a≥1-point increase in the Ishak fibrosis score.Histologic improvement was defined as a≥2-points decrease in the HAI score without worsening of the Ishak fibrosis score after DAAs therapy.The P-I-R score was also assessed.“absolutely reversing or advancing”was defined as the same directionality implied by both change in the Ishak score and posttreatment P-I-R score;and“probably reversing or advancing”was defined as only one parameter showing directionality.RESULTS Thirty-eight chronic HCV patients with paired liver biopsy specimens before and after DAAs treatment were included.The mean age of these patients was 40.9±14.6 years and there were 53%(20/38)males.Thirty-four percent(13/38)of patients were cirrhotic.Eighty-two percent(31/38)of patients achieved inflammation improvement.The median HAI score decreased significantly after SVR(pretreatment 7.0 vs posttreatment 2.0,Z=-5.146,P=0.000).Thirty-seven percent(14/38)of patients achieved fibrosis improvement.The median Ishak score decreased significantly after SVR(pretreatment 4.0 vs posttreatment 3.0,Z=-2.354,P=0.019).Eighty-two percent(31/38)of patients showed histological improvement.The P-I-R score was evaluated in 61%(23/38)of patients.The progressive group showed lower platelet(P=0.024)and higher HAI scores(P=0.070)before treatment.In patients with stable Ishak stage after treatment:Progressive injury was seen in 22%(4/18)of patients,33%(6/18)were classified as indeterminate and regressive changes were seen in 44%(8/18)of patients who were judged as probably reversing by the Ishak and P-I-R systems.CONCLUSION Significant improvement of necroinflammation and partial remission of fibrosis in HCV patients occurred shortly after DAAs therapy.The P-I-R score has potential in predicting fibrosis in HCV patients.展开更多
The primary objective of the paper is to forecast the beta values of companies listed on Sensex,Bombay Stock Exchange(BSE).The BSE Sensex constitutes 30 top most companies listed which are popularly known as blue-chip...The primary objective of the paper is to forecast the beta values of companies listed on Sensex,Bombay Stock Exchange(BSE).The BSE Sensex constitutes 30 top most companies listed which are popularly known as blue-chip companies.To reach out the predefined objectives of the research,Auto Regressive Integrated Moving Average method is used to forecast the future risk and returns for 10 years of historical data from April 2007 to March 2017.Validation accomplished by comparison of forecasted and actual beta values for the hold back period of 2 years.Root-Mean-Square-Error and Mean-Absolute-Error both are used for accuracy measurement.The results revealed that out of 30 listed companies in the BSE Sensex,10 companies’exhibits high beta values,12 companies are with moderate and 8 companies are with low beta values.Further,it is to note that Housing Development Finance Corporation(HDFC)exhibits more inconsistency in terms of beta values though the average beta value is lowest among the companies under the study.A mixed trend is found in forecasted beta values of the BSE Sensex.In this analysis,all the p-values are less than the F-stat values except the case of Tata Steel and Wipro.Therefore,the null hypotheses were rejected leaving Tata Steel and Wipro.The values of actual and forecasted values are showing the almost same results with low error percentage.Therefore,it is concluded from the study that the estimation ARIMA could be acceptable,and forecasted beta values are accurate.So far,there are many studies on ARIMA model to forecast the returns of the stocks based on their historical data.But,hardly there are very few studies which attempt to forecast the returns on the basis of their beta values.Certainly,the attempt so made is a novel approach which has linked risk directly with return.On the basis of the present study,authors try to through light on investment decisions by linking it with beta values of respective stocks.Further,the outcomes of the present study undoubtedly useful to academicians,researchers,and policy makers in their respective area of studies.展开更多
The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software w...The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes two major processes namely metric or feature selection and classification. First, the SQADEN uses the nonparametric statistical Torgerson–Gower scaling technique for identifying the relevant software metrics by measuring the similarity using the dice coefficient. The feature selection process is used to minimize the time complexity of software fault prediction. With the selected metrics, software fault perdition with the help of the Quadratic Censored regressive convolution deep neural network-based classification. The deep learning classifier analyzes the training and testing samples using the contingency correlation coefficient. The softstep activation function is used to provide the final fault prediction results. To minimize the error, the Nelder–Mead method is applied to solve non-linear least-squares problems. Finally, accurate classification results with a minimum error are obtained at the output layer. Experimental evaluation is carried out with different quantitative metrics such as accuracy, precision, recall, F-measure, and time complexity. The analyzed results demonstrate the superior performance of our proposed SQADEN technique with maximum accuracy, sensitivity and specificity by 3%, 3%, 2% and 3% and minimum time and space by 13% and 15% when compared with the two state-of-the-art methods.展开更多
Capturing the distributed platform with remotely controlled compromised machines using botnet is extensively analyzed by various researchers.However,certain limitations need to be addressed efficiently.The provisionin...Capturing the distributed platform with remotely controlled compromised machines using botnet is extensively analyzed by various researchers.However,certain limitations need to be addressed efficiently.The provisioning of detection mechanism with learning approaches provides a better solution more broadly by saluting multi-objective constraints.The bots’patterns or features over the network have to be analyzed in both linear and non-linear manner.The linear and non-linear features are composed of high-level and low-level features.The collected features are maintained over the Bag of Features(BoF)where the most influencing features are collected and provided into the classifier model.Here,the linearity and non-linearity of the threat are evaluated with Support Vector Machine(SVM).Next,with the collected BoF,the redundant features are eliminated as it triggers overhead towards the predictor model.Finally,a novel Incoming data Redundancy Elimination-based learning model(RedE-L)is built to classify the network features to provide robustness towards BotNets detection.The simulation is carried out in MATLAB environment,and the evaluation of proposed RedE-L model is performed with various online accessible network traffic dataset(benchmark dataset).The proposed model intends to show better tradeoff compared to the existing approaches like conventional SVM,C4.5,RepTree and so on.Here,various metrics like Accuracy,detection rate,Mathews Correlation Coefficient(MCC),and some other statistical analysis are performed to show the proposed RedE-L model's reliability.The F1-measure is 99.98%,precision is 99.93%,Accuracy is 99.84%,TPR is 99.92%,TNR is 99.94%,FNR is 0.06 and FPR is 0.06 respectively.展开更多
Regression and autoregressive mixed models are classical models used to analyze the relationship between time series response variable and other covariates. The coefficients in traditional regression and autoregressiv...Regression and autoregressive mixed models are classical models used to analyze the relationship between time series response variable and other covariates. The coefficients in traditional regression and autoregressive mixed models are constants. However, for complicated data, the coefficients of covariates may change with time. In this article, we propose a kind of partial time-varying coefficient regression and autoregressive mixed model and obtain the local weighted least-square estimators of coefficient functions by the local polynomial technique. The asymptotic normality properties of estimators are derived under regularity conditions, and simulation studies are conducted to empirically examine the finite-sample performances of the proposed estimators. Finally, we use real data about Lake Shasta inflow to illustrate the application of the proposed model.展开更多
Regression and autoregressive mixed models are classical models used to analyze the relationship between time series response variable and other covariates. The coefficients in traditional regression and autoregressiv...Regression and autoregressive mixed models are classical models used to analyze the relationship between time series response variable and other covariates. The coefficients in traditional regression and autoregressive mixed models are constants. However, for complicated data, the coefficients of covariates may change with time. In this article, we propose a kind of partial time-varying coefficient regression and autoregressive mixed model and obtain the local weighted least-square estimators of coefficient functions by the local polynomial technique. The asymptotic normality properties of estimators are derived under regularity conditions, and simulation studies are conducted to empirically examine the finite-sample performances of the proposed estimators. Finally, we use real data about Lake Shasta inflow to illustrate the application of the proposed model.展开更多
To study the sensitivity of inter-subspecific hybrid rice to climatic conditions, the spikelet fertilized rate (SFR) of four types of rice including indica-japonica hybrid, intermediate hybrid, indica and japonica w...To study the sensitivity of inter-subspecific hybrid rice to climatic conditions, the spikelet fertilized rate (SFR) of four types of rice including indica-japonica hybrid, intermediate hybrid, indica and japonica were analyzed during 2000-2004. The inter-subspecific hybrids showed lower SFR, and much higher fluctuation under various climatic conditions than indica and japonica rice, showing the inter-subspecific hybrids were sensitive to ecological conditions. Among 12 climatic factors, the key factor affecting rice SFR was temperature, with the most significant factor being the average temperature of the seven days around panicle flowering (T7). A regressive equation of SFR-temperature by T7, and a comprehensive synthetic model by four important temperature indices were put forward. The optimum temperature for inter-subspecific hybrids was estimated to be 26.1-26.6℃, and lower limit of safe temperature to be 22.5-23.3℃ for panicle flowering, showing higher by averagely 0.5℃ and 1.7℃, respectively, to be compared with indica and japonica rice. This suggested that inter-subspecific hybrids require proper climatic conditions. During panicle flowering, the suitable daily average temperature was 23.3-29.0℃, with the fittest one at 26.1-26.6℃. For an application example, optimum heading season for inter-subspecific hybrids in key rice growing areas in China was as same as common pure lines, while inferior limit for safe date of heading was about a ten-day period earlier than those of common pure lines.展开更多
The objective of this work is to model statistically the ultraviolet radiation index (UV Index) to make forecast (extrapolate) and analyze trends. The task is relevant, due to increased UV flux and high rate of cases ...The objective of this work is to model statistically the ultraviolet radiation index (UV Index) to make forecast (extrapolate) and analyze trends. The task is relevant, due to increased UV flux and high rate of cases non-melanoma skin cancer in northeast of Brazil. The methodology utilized an Autoregressive Distributed Lag model (ADL) or Dynamic Linear Regression model. The monthly data of UV index were measured in east coast of the Brazilian Northeast (City of Natal-Rio Grande do Norte). The Total Ozone is single explanatory variable to model and was obtained from the TOMS and OMI/AURA instruments. The Predictive Mean Matching (PMM) method was used to complete the missing data of UV Index. The results mean squared error (MSE) between the observed UV index and interpolated data by model was of 0.36 and for extrapolation was of 0.30 with correlations of 0.90 and 0.91 respectively. The forecast/extrapolation performed by model for a climatological period (2012-2042) indicated a trend of increased UV (Seasonal Man-Kendall test scored τ = 0.955 and p-value 0.001) if the Total Ozone remain on this tendency to reduce. In those circumstances, the model indicated an increase of almost one unit of UV index to year 2042.展开更多
To better capture the characteristics of asymmetry and structural fluctuations observed in count time series,this study delves into the application of the quantile regression(QR)method for analyzing and forecasting no...To better capture the characteristics of asymmetry and structural fluctuations observed in count time series,this study delves into the application of the quantile regression(QR)method for analyzing and forecasting nonlinear integer-valued time series exhibiting a piecewise phenomenon.Specifically,we focus on the parameter estimation in the first-order Self-Exciting Threshold Integer-valued Autoregressive(SETINAR(2,1))process with symmetry,asymmetry,and contaminated innovations.We establish the asymptotic properties of the estimator under certain regularity conditions.Monte Carlo simulations demonstrate the superior performance of the QR method compared to the conditional least squares(CLS)approach.Furthermore,we validate the robustness of the proposed method through empirical quantile regression estimation and forecasting for larceny incidents and CAD drug call counts in Pittsburgh,showcasing its effectiveness across diverse levels of data heterogeneity.展开更多
A regressive correction method is presented with the primary goal of improving ENSO simulation in regional coupled GCM. It focuses on the correction of ocean-atmosphere exchanged fluxes. On the basis of numerical expe...A regressive correction method is presented with the primary goal of improving ENSO simulation in regional coupled GCM. It focuses on the correction of ocean-atmosphere exchanged fluxes. On the basis of numerical experiments and analysis, the method can be described as follows: first, driving the ocean model with heat and momentum flux computed from a long-term observation data set; the pro-duced SST is then applied to force the AGCM as its boundary condition; after that the AGCM’s simula-tion and the corresponding observation can be correlated by a linear regressive formula. Thus the re-gressive correction coefficients for the simulation with spatial and temporal variation could be obtained by linear fitting. Finally the coefficients are applied to redressing the variables used for the calculation of the exchanged air-sea flux in the coupled model when it starts integration. This method together with the anomaly coupling method is tested in a regional coupled model, which is composed of a global grid-point atmospheric general circulation model and a high-resolution tropical Pacific Ocean model. The comparison of the results shows that it is superior to the anomaly coupling both in reducing the coupled model ‘climate drift’ and in improving the ENSO simulation in the tropical Pacific Ocean.展开更多
AIM:To evaluate long-term visual field(VF)prediction using K-means clustering in patients with primary open angle glaucoma(POAG).METHODS:Patients who underwent 24-2 VF tests≥10 were included in this study.Using 52 to...AIM:To evaluate long-term visual field(VF)prediction using K-means clustering in patients with primary open angle glaucoma(POAG).METHODS:Patients who underwent 24-2 VF tests≥10 were included in this study.Using 52 total deviation values(TDVs)from the first 10 VF tests of the training dataset,VF points were clustered into several regions using the hierarchical ordered partitioning and collapsing hybrid(HOPACH)and K-means clustering.Based on the clustering results,a linear regression analysis was applied to each clustered region of the testing dataset to predict the TDVs of the 10th VF test.Three to nine VF tests were used to predict the 10th VF test,and the prediction errors(root mean square error,RMSE)of each clustering method and pointwise linear regression(PLR)were compared.RESULTS:The training group consisted of 228 patients(mean age,54.20±14.38y;123 males and 105 females),and the testing group included 81 patients(mean age,54.88±15.22y;43 males and 38 females).All subjects were diagnosed with POAG.Fifty-two VF points were clustered into 11 and nine regions using HOPACH and K-means clustering,respectively.K-means clustering had a lower prediction error than PLR when n=1:3 and 1:4(both P≤0.003).The prediction errors of K-means clustering were lower than those of HOPACH in all sections(n=1:4 to 1:9;all P≤0.011),except for n=1:3(P=0.680).PLR outperformed K-means clustering only when n=1:8 and 1:9(both P≤0.020).CONCLUSION:K-means clustering can predict longterm VF test results more accurately in patients with POAG with limited VF data.展开更多
BACKGROUND Breast cancer is one of the most prevalent malignancies affecting women worldwide,with approximately 2.3 million new cases diagnosed annually.Breast cancer stem cells(BCSCs)play pivotal roles in tumor initi...BACKGROUND Breast cancer is one of the most prevalent malignancies affecting women worldwide,with approximately 2.3 million new cases diagnosed annually.Breast cancer stem cells(BCSCs)play pivotal roles in tumor initiation,progression,metastasis,therapeutic resistance,and disease recurrence.Cancer stem cells possess selfrenewal capacity,multipotent differentiation potential,and enhanced tumorigenic activity,but their molecular characteristics and regulatory mechanisms require further investigation.AIM To comprehensively characterize the molecular features of BCSCs through multiomics approaches,construct a prognostic prediction model based on stem cellrelated genes,reveal cell-cell communication networks within the tumor microenvironment,and provide theoretical foundation for personalized treatment strategies.METHODS Flow cytometry was employed to detect the expression of BCSC surface markers(CD34,CD45,CD29,CD90,CD105).Transcriptomic analysis was performed to identify differentially expressed genes.Least absolute shrinkage and selection operator regression analysis was utilized to screen key prognostic genes and construct a risk scoring model.Single-cell RNA sequencing and spatial transcriptomics were applied to analyze tumor heterogeneity and spatial gene expression patterns.Cell-cell communication network analysis was conducted to reveal interactions between stem cells and the microenvironment.RESULTS Flow cytometric analysis revealed the highest expression of CD105(96.30%),followed by CD90(68.43%)and CD34(62.64%),while CD29 showed lower expression(7.16%)and CD45 exhibited the lowest expression(1.19%).Transcriptomic analysis identified 3837 significantly differentially expressed genes(1478 upregulated and 2359 downregulated).Least absolute shrinkage and selection operator regression analysis selected 10 key prognostic genes,and the constructed risk scoring model effectively distinguished between high-risk and low-risk patient groups(P<0.001).Single-cell analysis revealed tumor cellular heterogeneity,and spatial transcriptomics demonstrated distinct spatial expression gradients of stem cell-related genes.MED18 gene showed significantly higher expression in malignant tissues(P<0.001)and occupied a central position in cell-cell communication networks,exhibiting significant correlations with tumor cells,macrophages,fibroblasts,and endothelial cells.CONCLUSION This study comprehensively characterized the molecular features of BCSCs through multi-omics approaches,identified reliable surface markers and key regulatory genes,and constructed a prognostic prediction model with clinical application value.展开更多
BACKGROUND Paternal perinatal depression(PPD)is closely associated with maternal mental health challenges,marital strain,and adverse child developmental outcomes.Despite its significant impact,PPD remains under-recogn...BACKGROUND Paternal perinatal depression(PPD)is closely associated with maternal mental health challenges,marital strain,and adverse child developmental outcomes.Despite its significant impact,PPD remains under-recognized in family-centered clinical practice.Concurrently,against the backdrop of rising rates of delayed marriage and China’s Maternity Incentive Policy,the proportion of women giving birth at an advanced maternal age is increasing.Nevertheless,research specifically examining PPD among spouses of older mothers remains critically scarce,both in China and globally.AIM To investigate PPD and its influencing factors in Chinese advanced maternal age families.METHODS This cross-sectional study included 358 participants;it was conducted among fathers of pregnant women of advanced maternal age at five hospitals in the Pearl River Delta region of China from September 2023 to June 2024.Data were collected via a general information questionnaire,the Social Support Rating Scale,and the Edinburgh Postnatal Depression Scale.Latent profile analysis and regression mixture models(RMMs)were adopted to analyze the latent PPD types and factors that influenced PPD.RESULTS The incidence of PPD was 16.48%,and three profiles were identified:Low-symptomatic(175 cases,48.89%),monophasic(140 cases,39.10%),and high-symptomatic(43 cases,12.01%).The RMM analysis revealed that first pregnancy,low income(<¥3000/month),part-time work,and a history of abnormal pregnancy were positively associated with the high-symptomatic type(P<0.05).Conversely,high subjective support and support utilization were negatively associated with the high-symptomatic type compared with the low-symptomatic type(P<0.05).Good couple relationships,high objective and subjective support,and high support utilization were negatively associated with monophasic disorder(P<0.05).CONCLUSION PPD incidence is high among Chinese fathers with advanced maternal age partners,and the characteristics of depression are varied.Healthcare practitioners should prioritize individuals with low levels of social support.展开更多
Background:The relationship between the regression and prognosis of melanoma has been debated for years.When competing-risk events are present,using traditional survival analysis methods may induce bias in the identif...Background:The relationship between the regression and prognosis of melanoma has been debated for years.When competing-risk events are present,using traditional survival analysis methods may induce bias in the identified prognostic factors that affect patients with regressive melanoma.Methods:Data on patients diagnosed with regressive melanoma were extracted from the Surveillance,Epidemiology,and End Results(SEER)database during 2000-2019.Cumulative incidence function and Gray's test were used for the univariate analysis,and the Cox proportional-hazards model and the Fine-Gray model were used for the multivariate analysis.Results:A total of 1442 eligible patients were diagnosed with regressive melanoma,including 529 patients who died:109 from regressive melanoma and 420 from other causes.The multivariate analysis using the Fine-Gray model revealed that SEER stage,surgery status,and marital status were important factors that affected the prognosis of regressive melanoma.Due to the existence of competing-risk events,the Cox model may have induced biases in estimating the effect values,and the competing-risks model was more advantageous in the analysis of multipleendpoint clinical survival data.Conclusion:The findings of this study may help clinicians to better understand regressive melanoma and provide reference data for clinical decisions.展开更多
We propose a mixture network regression model which considers both response variables and the node-specific random vector depend on the time.In order to estimate and compare the impacts of various connections on a res...We propose a mixture network regression model which considers both response variables and the node-specific random vector depend on the time.In order to estimate and compare the impacts of various connections on a response variable simultaneously,we extend it into p different types of connections.An ordinary least square estimators of the effects of different types of connections on a response variable is derived with its asymptotic property.Simulation studies demonstrate the effectiveness of our proposed method in the estimation of the mixture autoregressive model.In the end,a real data illustration on the students’GPA is discussed.展开更多
Firstly,based on the data of air quality and the meteorological data in Baoding City from 2017 to 2021,the correlations of meteorological elements and pollutants with O_(3)concentration were explored to determine the ...Firstly,based on the data of air quality and the meteorological data in Baoding City from 2017 to 2021,the correlations of meteorological elements and pollutants with O_(3)concentration were explored to determine the forecast factors of forecast models.Secondly,the O_(3)-8h concentration in Baoding City in 2021 was predicted based on the constructed models of multiple linear regression(MLR),backward propagation neural network(BPNN),and auto regressive integrated moving average(ARIMA),and the predicted values were compared with the observed values to test their prediction effects.The results show that overall,the MLR,BPNN and ARIMA models were able to forecast the changing trend of O_(3)-8h concentration in Baoding in 2021,but the BPNN model gave better forecast results than the ARIMA and MLR models,especially for the prediction of the high values of O_(3)-8h concentration,and the correlation coefficients between the predicted values and the observed values were all higher than 0.9 during June-September.The mean error(ME),mean absolute error(MAE),and root mean square error(RMSE)of the predicted values and the observed values of daily O_(3)-8h concentration based on the BPNN model were 0.45,19.11 and 24.41μg/m 3,respectively,which were significantly better than those of the MLR and ARIMA models.The prediction effects of the MLR,BPNN and ARIMA models were the best at the pollution level,followed by the excellent level,and it was the worst at the good level.In comparison,the prediction effect of BPNN model was better than that of the MLR and ARIMA models as a whole,especially for the pollution and excellent levels.The TS scores of the BPNN model were all above 66%,and the PC values were above 86%.The BPNN model can forecast the changing trend of O_(3)concentration more accurately,and has a good practical application value,but at the same time,the predicted high values of O_(3)concentration should be appropriately increased according to error characteristics of the model.展开更多
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This st...Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.展开更多
文摘The subset threshold auto regressive (SSTAR) model, which is capable of reproducing the limit cycle behavior of nonlinear time series, is introduced. The algorithm for fitting the sampled data with SSTAR model is proposed and applied to model and forecast power load. Numerical example verifies that desirable accuracy of short term load forecasting can be achieved by using the SSTAR model.
基金The National Natural Science Foundation of China,No.81870406the Beijing Natural Science Foundation,No.7182174and the China National Science and Technology Major Project for Infectious Diseases Control during the 13th Five-Year Plan Period,No.2017ZX10202202.
文摘BACKGROUND Histological changes after direct-acting antivirals(DAAs)therapy in hepatitis C virus(HCV)patients has not been elucidated.Whether the predominantly progressive,indeterminate and predominately regressive(P-I-R)score,evaluating fibrosis activity in hepatitis B virus patients has predictive value in HCV patients has not been investigated.AIM To identify histological changes after DAAs therapy and to evaluate the predictive value of the P-I-R score in HCV patients.METHODS Chronic HCV patients with paired liver biopsy specimens before and after DAAs treatment were included.Sustained virologic response(SVR)was defined as an undetectable serum HCV RNA level at 24 wk after treatment cessation.The Ishak system and P-I-R score were assessed.Inflammation improvement and fibrosis regression were defined as a≥2-points decrease in the histology activity index(HAI)score and a≥1-point decrease in the Ishak fibrosis score,respectively.Fibrosis progression was defined as a≥1-point increase in the Ishak fibrosis score.Histologic improvement was defined as a≥2-points decrease in the HAI score without worsening of the Ishak fibrosis score after DAAs therapy.The P-I-R score was also assessed.“absolutely reversing or advancing”was defined as the same directionality implied by both change in the Ishak score and posttreatment P-I-R score;and“probably reversing or advancing”was defined as only one parameter showing directionality.RESULTS Thirty-eight chronic HCV patients with paired liver biopsy specimens before and after DAAs treatment were included.The mean age of these patients was 40.9±14.6 years and there were 53%(20/38)males.Thirty-four percent(13/38)of patients were cirrhotic.Eighty-two percent(31/38)of patients achieved inflammation improvement.The median HAI score decreased significantly after SVR(pretreatment 7.0 vs posttreatment 2.0,Z=-5.146,P=0.000).Thirty-seven percent(14/38)of patients achieved fibrosis improvement.The median Ishak score decreased significantly after SVR(pretreatment 4.0 vs posttreatment 3.0,Z=-2.354,P=0.019).Eighty-two percent(31/38)of patients showed histological improvement.The P-I-R score was evaluated in 61%(23/38)of patients.The progressive group showed lower platelet(P=0.024)and higher HAI scores(P=0.070)before treatment.In patients with stable Ishak stage after treatment:Progressive injury was seen in 22%(4/18)of patients,33%(6/18)were classified as indeterminate and regressive changes were seen in 44%(8/18)of patients who were judged as probably reversing by the Ishak and P-I-R systems.CONCLUSION Significant improvement of necroinflammation and partial remission of fibrosis in HCV patients occurred shortly after DAAs therapy.The P-I-R score has potential in predicting fibrosis in HCV patients.
文摘The primary objective of the paper is to forecast the beta values of companies listed on Sensex,Bombay Stock Exchange(BSE).The BSE Sensex constitutes 30 top most companies listed which are popularly known as blue-chip companies.To reach out the predefined objectives of the research,Auto Regressive Integrated Moving Average method is used to forecast the future risk and returns for 10 years of historical data from April 2007 to March 2017.Validation accomplished by comparison of forecasted and actual beta values for the hold back period of 2 years.Root-Mean-Square-Error and Mean-Absolute-Error both are used for accuracy measurement.The results revealed that out of 30 listed companies in the BSE Sensex,10 companies’exhibits high beta values,12 companies are with moderate and 8 companies are with low beta values.Further,it is to note that Housing Development Finance Corporation(HDFC)exhibits more inconsistency in terms of beta values though the average beta value is lowest among the companies under the study.A mixed trend is found in forecasted beta values of the BSE Sensex.In this analysis,all the p-values are less than the F-stat values except the case of Tata Steel and Wipro.Therefore,the null hypotheses were rejected leaving Tata Steel and Wipro.The values of actual and forecasted values are showing the almost same results with low error percentage.Therefore,it is concluded from the study that the estimation ARIMA could be acceptable,and forecasted beta values are accurate.So far,there are many studies on ARIMA model to forecast the returns of the stocks based on their historical data.But,hardly there are very few studies which attempt to forecast the returns on the basis of their beta values.Certainly,the attempt so made is a novel approach which has linked risk directly with return.On the basis of the present study,authors try to through light on investment decisions by linking it with beta values of respective stocks.Further,the outcomes of the present study undoubtedly useful to academicians,researchers,and policy makers in their respective area of studies.
文摘The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes two major processes namely metric or feature selection and classification. First, the SQADEN uses the nonparametric statistical Torgerson–Gower scaling technique for identifying the relevant software metrics by measuring the similarity using the dice coefficient. The feature selection process is used to minimize the time complexity of software fault prediction. With the selected metrics, software fault perdition with the help of the Quadratic Censored regressive convolution deep neural network-based classification. The deep learning classifier analyzes the training and testing samples using the contingency correlation coefficient. The softstep activation function is used to provide the final fault prediction results. To minimize the error, the Nelder–Mead method is applied to solve non-linear least-squares problems. Finally, accurate classification results with a minimum error are obtained at the output layer. Experimental evaluation is carried out with different quantitative metrics such as accuracy, precision, recall, F-measure, and time complexity. The analyzed results demonstrate the superior performance of our proposed SQADEN technique with maximum accuracy, sensitivity and specificity by 3%, 3%, 2% and 3% and minimum time and space by 13% and 15% when compared with the two state-of-the-art methods.
文摘Capturing the distributed platform with remotely controlled compromised machines using botnet is extensively analyzed by various researchers.However,certain limitations need to be addressed efficiently.The provisioning of detection mechanism with learning approaches provides a better solution more broadly by saluting multi-objective constraints.The bots’patterns or features over the network have to be analyzed in both linear and non-linear manner.The linear and non-linear features are composed of high-level and low-level features.The collected features are maintained over the Bag of Features(BoF)where the most influencing features are collected and provided into the classifier model.Here,the linearity and non-linearity of the threat are evaluated with Support Vector Machine(SVM).Next,with the collected BoF,the redundant features are eliminated as it triggers overhead towards the predictor model.Finally,a novel Incoming data Redundancy Elimination-based learning model(RedE-L)is built to classify the network features to provide robustness towards BotNets detection.The simulation is carried out in MATLAB environment,and the evaluation of proposed RedE-L model is performed with various online accessible network traffic dataset(benchmark dataset).The proposed model intends to show better tradeoff compared to the existing approaches like conventional SVM,C4.5,RepTree and so on.Here,various metrics like Accuracy,detection rate,Mathews Correlation Coefficient(MCC),and some other statistical analysis are performed to show the proposed RedE-L model's reliability.The F1-measure is 99.98%,precision is 99.93%,Accuracy is 99.84%,TPR is 99.92%,TNR is 99.94%,FNR is 0.06 and FPR is 0.06 respectively.
文摘Regression and autoregressive mixed models are classical models used to analyze the relationship between time series response variable and other covariates. The coefficients in traditional regression and autoregressive mixed models are constants. However, for complicated data, the coefficients of covariates may change with time. In this article, we propose a kind of partial time-varying coefficient regression and autoregressive mixed model and obtain the local weighted least-square estimators of coefficient functions by the local polynomial technique. The asymptotic normality properties of estimators are derived under regularity conditions, and simulation studies are conducted to empirically examine the finite-sample performances of the proposed estimators. Finally, we use real data about Lake Shasta inflow to illustrate the application of the proposed model.
文摘Regression and autoregressive mixed models are classical models used to analyze the relationship between time series response variable and other covariates. The coefficients in traditional regression and autoregressive mixed models are constants. However, for complicated data, the coefficients of covariates may change with time. In this article, we propose a kind of partial time-varying coefficient regression and autoregressive mixed model and obtain the local weighted least-square estimators of coefficient functions by the local polynomial technique. The asymptotic normality properties of estimators are derived under regularity conditions, and simulation studies are conducted to empirically examine the finite-sample performances of the proposed estimators. Finally, we use real data about Lake Shasta inflow to illustrate the application of the proposed model.
文摘To study the sensitivity of inter-subspecific hybrid rice to climatic conditions, the spikelet fertilized rate (SFR) of four types of rice including indica-japonica hybrid, intermediate hybrid, indica and japonica were analyzed during 2000-2004. The inter-subspecific hybrids showed lower SFR, and much higher fluctuation under various climatic conditions than indica and japonica rice, showing the inter-subspecific hybrids were sensitive to ecological conditions. Among 12 climatic factors, the key factor affecting rice SFR was temperature, with the most significant factor being the average temperature of the seven days around panicle flowering (T7). A regressive equation of SFR-temperature by T7, and a comprehensive synthetic model by four important temperature indices were put forward. The optimum temperature for inter-subspecific hybrids was estimated to be 26.1-26.6℃, and lower limit of safe temperature to be 22.5-23.3℃ for panicle flowering, showing higher by averagely 0.5℃ and 1.7℃, respectively, to be compared with indica and japonica rice. This suggested that inter-subspecific hybrids require proper climatic conditions. During panicle flowering, the suitable daily average temperature was 23.3-29.0℃, with the fittest one at 26.1-26.6℃. For an application example, optimum heading season for inter-subspecific hybrids in key rice growing areas in China was as same as common pure lines, while inferior limit for safe date of heading was about a ten-day period earlier than those of common pure lines.
文摘The objective of this work is to model statistically the ultraviolet radiation index (UV Index) to make forecast (extrapolate) and analyze trends. The task is relevant, due to increased UV flux and high rate of cases non-melanoma skin cancer in northeast of Brazil. The methodology utilized an Autoregressive Distributed Lag model (ADL) or Dynamic Linear Regression model. The monthly data of UV index were measured in east coast of the Brazilian Northeast (City of Natal-Rio Grande do Norte). The Total Ozone is single explanatory variable to model and was obtained from the TOMS and OMI/AURA instruments. The Predictive Mean Matching (PMM) method was used to complete the missing data of UV Index. The results mean squared error (MSE) between the observed UV index and interpolated data by model was of 0.36 and for extrapolation was of 0.30 with correlations of 0.90 and 0.91 respectively. The forecast/extrapolation performed by model for a climatological period (2012-2042) indicated a trend of increased UV (Seasonal Man-Kendall test scored τ = 0.955 and p-value 0.001) if the Total Ozone remain on this tendency to reduce. In those circumstances, the model indicated an increase of almost one unit of UV index to year 2042.
基金supported by Social Science Planning Foundation of Liaoning Province(Grand No.L22ZD065)National Natural Science Foundation of China(Grand Nos.12271231,1247012719,12001229)。
文摘To better capture the characteristics of asymmetry and structural fluctuations observed in count time series,this study delves into the application of the quantile regression(QR)method for analyzing and forecasting nonlinear integer-valued time series exhibiting a piecewise phenomenon.Specifically,we focus on the parameter estimation in the first-order Self-Exciting Threshold Integer-valued Autoregressive(SETINAR(2,1))process with symmetry,asymmetry,and contaminated innovations.We establish the asymptotic properties of the estimator under certain regularity conditions.Monte Carlo simulations demonstrate the superior performance of the QR method compared to the conditional least squares(CLS)approach.Furthermore,we validate the robustness of the proposed method through empirical quantile regression estimation and forecasting for larceny incidents and CAD drug call counts in Pittsburgh,showcasing its effectiveness across diverse levels of data heterogeneity.
基金the National Natural Science Foundation of China (Grant Nos. 40523001, 40631005, and 40620130113)
文摘A regressive correction method is presented with the primary goal of improving ENSO simulation in regional coupled GCM. It focuses on the correction of ocean-atmosphere exchanged fluxes. On the basis of numerical experiments and analysis, the method can be described as follows: first, driving the ocean model with heat and momentum flux computed from a long-term observation data set; the pro-duced SST is then applied to force the AGCM as its boundary condition; after that the AGCM’s simula-tion and the corresponding observation can be correlated by a linear regressive formula. Thus the re-gressive correction coefficients for the simulation with spatial and temporal variation could be obtained by linear fitting. Finally the coefficients are applied to redressing the variables used for the calculation of the exchanged air-sea flux in the coupled model when it starts integration. This method together with the anomaly coupling method is tested in a regional coupled model, which is composed of a global grid-point atmospheric general circulation model and a high-resolution tropical Pacific Ocean model. The comparison of the results shows that it is superior to the anomaly coupling both in reducing the coupled model ‘climate drift’ and in improving the ENSO simulation in the tropical Pacific Ocean.
基金Supported by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),the Ministry of Health&Welfare,Republic of Korea(No.RS-2020-KH088726)the Patient-Centered Clinical Research Coordinating Center(PACEN),the Ministry of Health and Welfare,Republic of Korea(No.HC19C0276)the National Research Foundation of Korea(NRF),the Korea Government(MSIT)(No.RS-2023-00247504).
文摘AIM:To evaluate long-term visual field(VF)prediction using K-means clustering in patients with primary open angle glaucoma(POAG).METHODS:Patients who underwent 24-2 VF tests≥10 were included in this study.Using 52 total deviation values(TDVs)from the first 10 VF tests of the training dataset,VF points were clustered into several regions using the hierarchical ordered partitioning and collapsing hybrid(HOPACH)and K-means clustering.Based on the clustering results,a linear regression analysis was applied to each clustered region of the testing dataset to predict the TDVs of the 10th VF test.Three to nine VF tests were used to predict the 10th VF test,and the prediction errors(root mean square error,RMSE)of each clustering method and pointwise linear regression(PLR)were compared.RESULTS:The training group consisted of 228 patients(mean age,54.20±14.38y;123 males and 105 females),and the testing group included 81 patients(mean age,54.88±15.22y;43 males and 38 females).All subjects were diagnosed with POAG.Fifty-two VF points were clustered into 11 and nine regions using HOPACH and K-means clustering,respectively.K-means clustering had a lower prediction error than PLR when n=1:3 and 1:4(both P≤0.003).The prediction errors of K-means clustering were lower than those of HOPACH in all sections(n=1:4 to 1:9;all P≤0.011),except for n=1:3(P=0.680).PLR outperformed K-means clustering only when n=1:8 and 1:9(both P≤0.020).CONCLUSION:K-means clustering can predict longterm VF test results more accurately in patients with POAG with limited VF data.
基金the Natural Science Foundation of Yongchuan District,No.2023yc-jckx20021.
文摘BACKGROUND Breast cancer is one of the most prevalent malignancies affecting women worldwide,with approximately 2.3 million new cases diagnosed annually.Breast cancer stem cells(BCSCs)play pivotal roles in tumor initiation,progression,metastasis,therapeutic resistance,and disease recurrence.Cancer stem cells possess selfrenewal capacity,multipotent differentiation potential,and enhanced tumorigenic activity,but their molecular characteristics and regulatory mechanisms require further investigation.AIM To comprehensively characterize the molecular features of BCSCs through multiomics approaches,construct a prognostic prediction model based on stem cellrelated genes,reveal cell-cell communication networks within the tumor microenvironment,and provide theoretical foundation for personalized treatment strategies.METHODS Flow cytometry was employed to detect the expression of BCSC surface markers(CD34,CD45,CD29,CD90,CD105).Transcriptomic analysis was performed to identify differentially expressed genes.Least absolute shrinkage and selection operator regression analysis was utilized to screen key prognostic genes and construct a risk scoring model.Single-cell RNA sequencing and spatial transcriptomics were applied to analyze tumor heterogeneity and spatial gene expression patterns.Cell-cell communication network analysis was conducted to reveal interactions between stem cells and the microenvironment.RESULTS Flow cytometric analysis revealed the highest expression of CD105(96.30%),followed by CD90(68.43%)and CD34(62.64%),while CD29 showed lower expression(7.16%)and CD45 exhibited the lowest expression(1.19%).Transcriptomic analysis identified 3837 significantly differentially expressed genes(1478 upregulated and 2359 downregulated).Least absolute shrinkage and selection operator regression analysis selected 10 key prognostic genes,and the constructed risk scoring model effectively distinguished between high-risk and low-risk patient groups(P<0.001).Single-cell analysis revealed tumor cellular heterogeneity,and spatial transcriptomics demonstrated distinct spatial expression gradients of stem cell-related genes.MED18 gene showed significantly higher expression in malignant tissues(P<0.001)and occupied a central position in cell-cell communication networks,exhibiting significant correlations with tumor cells,macrophages,fibroblasts,and endothelial cells.CONCLUSION This study comprehensively characterized the molecular features of BCSCs through multi-omics approaches,identified reliable surface markers and key regulatory genes,and constructed a prognostic prediction model with clinical application value.
基金Supported by High-level Professional Groups in Gangdong Province,No.GSPZYQ2020101Guangdong Province Educational Research Planning Project,No.2024GXJK742。
文摘BACKGROUND Paternal perinatal depression(PPD)is closely associated with maternal mental health challenges,marital strain,and adverse child developmental outcomes.Despite its significant impact,PPD remains under-recognized in family-centered clinical practice.Concurrently,against the backdrop of rising rates of delayed marriage and China’s Maternity Incentive Policy,the proportion of women giving birth at an advanced maternal age is increasing.Nevertheless,research specifically examining PPD among spouses of older mothers remains critically scarce,both in China and globally.AIM To investigate PPD and its influencing factors in Chinese advanced maternal age families.METHODS This cross-sectional study included 358 participants;it was conducted among fathers of pregnant women of advanced maternal age at five hospitals in the Pearl River Delta region of China from September 2023 to June 2024.Data were collected via a general information questionnaire,the Social Support Rating Scale,and the Edinburgh Postnatal Depression Scale.Latent profile analysis and regression mixture models(RMMs)were adopted to analyze the latent PPD types and factors that influenced PPD.RESULTS The incidence of PPD was 16.48%,and three profiles were identified:Low-symptomatic(175 cases,48.89%),monophasic(140 cases,39.10%),and high-symptomatic(43 cases,12.01%).The RMM analysis revealed that first pregnancy,low income(<¥3000/month),part-time work,and a history of abnormal pregnancy were positively associated with the high-symptomatic type(P<0.05).Conversely,high subjective support and support utilization were negatively associated with the high-symptomatic type compared with the low-symptomatic type(P<0.05).Good couple relationships,high objective and subjective support,and high support utilization were negatively associated with monophasic disorder(P<0.05).CONCLUSION PPD incidence is high among Chinese fathers with advanced maternal age partners,and the characteristics of depression are varied.Healthcare practitioners should prioritize individuals with low levels of social support.
基金Key Scientific Problems and Medical Technical Problems Research Project of China Medical Education Association(2022KTZ009)Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization(2021B1212040007).
文摘Background:The relationship between the regression and prognosis of melanoma has been debated for years.When competing-risk events are present,using traditional survival analysis methods may induce bias in the identified prognostic factors that affect patients with regressive melanoma.Methods:Data on patients diagnosed with regressive melanoma were extracted from the Surveillance,Epidemiology,and End Results(SEER)database during 2000-2019.Cumulative incidence function and Gray's test were used for the univariate analysis,and the Cox proportional-hazards model and the Fine-Gray model were used for the multivariate analysis.Results:A total of 1442 eligible patients were diagnosed with regressive melanoma,including 529 patients who died:109 from regressive melanoma and 420 from other causes.The multivariate analysis using the Fine-Gray model revealed that SEER stage,surgery status,and marital status were important factors that affected the prognosis of regressive melanoma.Due to the existence of competing-risk events,the Cox model may have induced biases in estimating the effect values,and the competing-risks model was more advantageous in the analysis of multipleendpoint clinical survival data.Conclusion:The findings of this study may help clinicians to better understand regressive melanoma and provide reference data for clinical decisions.
文摘We propose a mixture network regression model which considers both response variables and the node-specific random vector depend on the time.In order to estimate and compare the impacts of various connections on a response variable simultaneously,we extend it into p different types of connections.An ordinary least square estimators of the effects of different types of connections on a response variable is derived with its asymptotic property.Simulation studies demonstrate the effectiveness of our proposed method in the estimation of the mixture autoregressive model.In the end,a real data illustration on the students’GPA is discussed.
基金the Project of the Key Open Laboratory of Atmospheric Detection,China Meteorological Administration(2023KLAS02M)the Second Batch of Science and Technology Project of China Meteorological Administration("Jiebangguashuai"):the Research and Development of Short-term and Near-term Warning Products for Severe Convective Weather in Beijing-Tianjin-Hebei Region(CMAJBGS202307).
文摘Firstly,based on the data of air quality and the meteorological data in Baoding City from 2017 to 2021,the correlations of meteorological elements and pollutants with O_(3)concentration were explored to determine the forecast factors of forecast models.Secondly,the O_(3)-8h concentration in Baoding City in 2021 was predicted based on the constructed models of multiple linear regression(MLR),backward propagation neural network(BPNN),and auto regressive integrated moving average(ARIMA),and the predicted values were compared with the observed values to test their prediction effects.The results show that overall,the MLR,BPNN and ARIMA models were able to forecast the changing trend of O_(3)-8h concentration in Baoding in 2021,but the BPNN model gave better forecast results than the ARIMA and MLR models,especially for the prediction of the high values of O_(3)-8h concentration,and the correlation coefficients between the predicted values and the observed values were all higher than 0.9 during June-September.The mean error(ME),mean absolute error(MAE),and root mean square error(RMSE)of the predicted values and the observed values of daily O_(3)-8h concentration based on the BPNN model were 0.45,19.11 and 24.41μg/m 3,respectively,which were significantly better than those of the MLR and ARIMA models.The prediction effects of the MLR,BPNN and ARIMA models were the best at the pollution level,followed by the excellent level,and it was the worst at the good level.In comparison,the prediction effect of BPNN model was better than that of the MLR and ARIMA models as a whole,especially for the pollution and excellent levels.The TS scores of the BPNN model were all above 66%,and the PC values were above 86%.The BPNN model can forecast the changing trend of O_(3)concentration more accurately,and has a good practical application value,but at the same time,the predicted high values of O_(3)concentration should be appropriately increased according to error characteristics of the model.
基金Supported by Sichuan Science and Technology Program(2023YFSY0026,2023YFH0004)Supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korean government(MSIT)(No.RS-2022-00155885,Artificial Intelligence Convergence Innovation Human Resources Development(Hanyang University ERICA)).
文摘Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.