Developing a cost-effective and environmentally friendly process for the production of valuable chemicals from abundant herbal biomass receives great attentions in recent years.Herein,taking advantage of the“lignin f...Developing a cost-effective and environmentally friendly process for the production of valuable chemicals from abundant herbal biomass receives great attentions in recent years.Herein,taking advantage of the“lignin first”strategy,corn straw is converted to valuable chemicals including lignin monomers,furfural and 5-methoxymethylfurfural via a two steps process.The key of this research lies in the development of a green and low-cost catalytic process utilizing magnetic Raney Ni catalyst and high boiling point ethylene glycol.The utilization of neat ethylene glycol as the sole slovent under atmospheric conditions obviates the need for additional additives,thereby facilitating the entire process to be conducted in glass flasks and rendering it highly convenient for scaling up.In the initial step,depolymerization of corn straw lignin resulted in a monomer yield of 18.1 wt%.Subsequently,in a dimethyl carbonate system,the carbohydrate component underwent complete conversion in a one-pot process,yielding furfural and 5-methoxymethylfurfural as the primary products with an impressive yield of 47.7%.展开更多
Reductive soil disinfestation(RSD)is commonly employed for soil remediation in greenhouse cultivation.However,its influence on antibiotic resistance genes(ARGs)in soil remains uncertain.This study investigated the dyn...Reductive soil disinfestation(RSD)is commonly employed for soil remediation in greenhouse cultivation.However,its influence on antibiotic resistance genes(ARGs)in soil remains uncertain.This study investigated the dynamic changes in soil communities,potential bacterial pathogens,and ARG profiles under various organicmaterial treatments during RSD,including distillers’grains,potato peel,peanut vine,and peanut vine combined with charcoal.Results revealed that applying diverse organic materials in RSD significantly altered bacterial community composition and diminished the relative abundance of potential bacterial pathogens(P<0.05).The relative abundance of high-risk ARGs decreased by 10.7%-30.6%after RSD treatments,the main decreased ARG subtypeswere AAC(3)_Via,dfrA1,ErmB,lnuB,aadA.Actinobacteria was the primary host of ARGs and was suppressed by RSD.Soil physicochemical properties,such as total nitrogen,soil pH,total carbon,were crucial factors affecting ARG profiles.Our findings demonstrated that RSD treatment inhibited pathogenic bacteria and could be an option for reducing high-risk ARG proliferation in soil.展开更多
An efficient visible-light induced nickel-catalyzed reductive Heck reaction of alkenes by using mild organic reductant Hantzsch ester(HEH)instead of traditional metal reductants or hydride reagents was developed.The r...An efficient visible-light induced nickel-catalyzed reductive Heck reaction of alkenes by using mild organic reductant Hantzsch ester(HEH)instead of traditional metal reductants or hydride reagents was developed.The reductive hydroarylation of acrylates with aryl halides was successfully achieved without requiring exogenous photoredox catalysts.This reaction is highlighted by the simple and mild conditions,good functional group tolerance,thus providing a complementary approach for alkenes reductive Heck reaction.展开更多
Polyfluoroarenes represent an essential group of compounds in the fields of medical and material chemistry.It is still a challenge to synthesize alkylated polyfluoroarenes.Herein,a Ni-catalyzed reductive alkylation of...Polyfluoroarenes represent an essential group of compounds in the fields of medical and material chemistry.It is still a challenge to synthesize alkylated polyfluoroarenes.Herein,a Ni-catalyzed reductive alkylation of polyfluoroarenes with alkyl halides under mild conditions is reported.Polyfluoroarenes(3~6 F)can reacted smoothly with a diverse range of alkyl halides,such as primary,secondary,and tertiary alkyl iodides.The efficient formation of C(sp2)—C(sp3)can be achieved through the combination of Ni catalysis and(Bpin)2/K2CO3 as terminal reductant.展开更多
A chromium(II)-catalyzed reduction cross coupling reaction was reported.This reaction utilizes inexpensive and readily available chromium dichloride as a catalyst and 4,4'-di-tert-butyl-bipyridine as a ligand to a...A chromium(II)-catalyzed reduction cross coupling reaction was reported.This reaction utilizes inexpensive and readily available chromium dichloride as a catalyst and 4,4'-di-tert-butyl-bipyridine as a ligand to achieve reduction cross coupling between trifluoromethyl olefins and alkyl bromides under mild conditions,effectively synthesizing difluoroalkene derivatives.This reaction exhibits good substrate universality and is compatible with multiple important functional groups,providing a concise synthetic pathway for constructing conjugated difluoroalkenes containing allyl difluoromethylene structural units.Preliminary mechanistic experiments indicate that alkyl bromides first undergo a reduction process to generate corresponding alkyl radicals,followed by addition to trifluoromethyl olefins.After binding with Cr(II),they undergo aβ-fluorine elimination process to generate difluoroalkenes.展开更多
The persistence of chlorinated alkanes in aquatic environments poses significant health risks due to its biotoxicity and high volatility,which contributes to both water and air pollution.This study investigates the ef...The persistence of chlorinated alkanes in aquatic environments poses significant health risks due to its biotoxicity and high volatility,which contributes to both water and air pollution.This study investigates the efficacy of carbon dioxide radical anion(CO_(2)·^(-))mediated advanced reduction processes(ARPs)for the reductive dechlorination of chlorinated alkanes using small molecular monocarboxylic acids(SMAs)under UV irradiation.The study focused on formic acid(HCOOH),acetic acid(CH_3COOH),and propionic acid(CH_3CH_(2)COOH)to generate CO_(2)·^(-),revealing that UV/HCOOH system exhibits a notably high chloroform(CF)degradation efficiency of 97.8%in 90 min.Kinetic studies indicated a linear relationship between the HCOOH concentrations and the observed reaction rate constants(k_(obs)),demonstrating that CO_(2)·^(-)production is crucial for CF degradation.Electron paramagnetic resonance spectroscopy identified CO_(2)·^(-)and hydroxyl radicals(HO·)as the active species,with the former playing a predominant role in CF degradation.The study also explored the influence of carbon chain length in SMAs on CF degradation,finding that longer chains decrease the degradation efficiency,potentially due to reduced UV activation.A higher reaction rate constant(k_(obs))under acidic conditions,with a marked decrease in efficiency as the pH exceeds 3.7,where HCOO^(-)becomes predominant.This study enhances our understanding of CO_(2)·^(-)mediated ARPs and explores potential applications in environmental remediation,providing insights into the pathways and mechanisms of CF degradation.The UV/SMAs systems offer advantages for practical applications,such as milder reaction conditions and higher efficiency compared to traditional methods.展开更多
The thermal effects,spontaneity and proceeding degree of 32 chemical reactions during coal reductive decomposition phosphogypsum(PG)to prepare CaO and SO_(2)are analyzed utilizing thermodynamic theory and method.The i...The thermal effects,spontaneity and proceeding degree of 32 chemical reactions during coal reductive decomposition phosphogypsum(PG)to prepare CaO and SO_(2)are analyzed utilizing thermodynamic theory and method.The ideal reaction temperature for PG decomposition and desulfurization is 1173-1273 K.The 10 key chemical reactions controlling coal reductive decomposition PG have been selected.The heat release of critical exothermic reactions can satisfy the autothermal operation of PG decomposition and desulfurization process.Meanwhile,the spontaneity of oxidation reactions has thermodynamically priority over reduction reactions.But the reaction mechanism shows that the oxidation of CaS by O_(2)is in parallel competition with the reduction of CaSO_(4)by CO and C.Furthermore,clarifying the regulatory mechanisms of PG decomposition temperature and reaction atmosphere(reducibility and oxidation)is beneficial for maximizing the production of CaO and SO_(2).展开更多
The growing demand for Ni and Co in the new energy sector necessitates efficient extraction methods for limonitic laterite ores.This study demonstrated the effectiveness of sodium sulfate(Na_(2)SO_(4))as an additive f...The growing demand for Ni and Co in the new energy sector necessitates efficient extraction methods for limonitic laterite ores.This study demonstrated the effectiveness of sodium sulfate(Na_(2)SO_(4))as an additive for enhancing the co-enrichment of Ni and Co during solid-state reduction.Na_(2)SO_(4)promoted the formation of two distinct liquid phases,low-melting-point FeS-FeO-Fe and NaAlSiO_(4)-NaFeSiO_(4),facilitating the migration and aggregation of Ni-Co-Fe alloy particles,leading to a high-grade alloy powder with 11.98wt%Ni and 0.88wt%Co and recoveries of 94.03%and 80.16%,respectively.Ni-Co-Fe particle growth was mainly driven by the FeS-FeO-Fe eutectic melt,aligned with a liquid-phase sintering mechanism.Pilot-scale rotary kiln experiments validated the industrial feasibility of this approach,which offers a promising solution for the sustainable extraction of these critical metals.展开更多
Primary diamines play an important role in the chemical industry,where they are widely used as raw materials for the manufacture of pharmaceuticals and polymers.Currently,primary diamines are mainly derived from petro...Primary diamines play an important role in the chemical industry,where they are widely used as raw materials for the manufacture of pharmaceuticals and polymers.Currently,primary diamines are mainly derived from petroleum,while harsh or toxic conditions are often needed.Biomass is abundant and renewable,which serves as a promising alternative raw material to produce primary diamines.This review primarily focuses on the synthesis of 2,5-bis(aminomethyl)furan(BAMF),a bio-based diamine with potential as a biomonomer for polyamides and polyureas.Specifically,this review emphasizes the synthesis of BAMF fromthree biomass-derived alcohols and aldehydes,namely 5-hydroxymethylfurfural(HMF),2,5-bis(hydroxymethyl)furan(BHMF),and 2,5-diformylfuran(DFF).These are the key substrates to get BAMF and could be readily obtained from carbohydrates.Even though great effort has been put into the synthesis of BAMF,it remains a tough problem to obtain BAMF with a high yield at a low cost due to the inevitable side reactions,such as unwanted hydrogenation reactions and condensation reactions.Many strategies have been proposed to solve this problem,such as the hydrogen-borrowing strategy and stepwise reductive amination strategy.Herein,we will summarize the key advancements in this area,and discuss the challenges that need to be responded in the future,hoping to provide an insight into the design and development of a more efficient system for the production of biomass-derived diamines.展开更多
Zinc ferrite is the principal constituent in zinc neutral-leach residue(NLR) which is commonly treated by hot-acid leaching in electrolytic zinc plants. Reductive leaching of zinc ferrite with sphalerite concentrate...Zinc ferrite is the principal constituent in zinc neutral-leach residue(NLR) which is commonly treated by hot-acid leaching in electrolytic zinc plants. Reductive leaching of zinc ferrite with sphalerite concentrate as a reducing agent was performed. It was found that leaching of zinc ferrite in the presence of sphalerit concentrate was a viable process that effectively extracted zinc and indium and converted Fe^3+ into Fe^2+ at the same time. Reflux leaching tests by two stages were performed to achieve extractions of 98.1% for zinc and 97.5% for indium, and a Fe^2+/Fe^3+ molar ratio of 9.6 in leach solution was also obtained. The leaching behaviors of other elements, such as iron, copper and tin were also studied. The results showed that iron and copper were completely leached, whereas tin presented lower extraction values.展开更多
A novel process for sulfidation of ZnO by co-grinding with sulfur and reductive additives (P, Fe, A1, and Mg) was developed. The sulfidation extent of ZnO with the addition of P, Fe, A1 or Mg can reach 85.2%, 81.6%,...A novel process for sulfidation of ZnO by co-grinding with sulfur and reductive additives (P, Fe, A1, and Mg) was developed. The sulfidation extent of ZnO with the addition of P, Fe, A1 or Mg can reach 85.2%, 81.6%, 96.7% and 92.6% after grinding for 4, 6, 1 and 1 h, respectively. Based on the chemical phase composition analysis and morphological characteristics of sulfidized products by XRD, SEM and TEM, a possible reaction mechanism, mechanically induced self-propagating reaction (MSR), was proposed to explain the sulfidization reaction. In addition, the floatability of sulfidized products was investigated for the recovery of metal sulfide and ZnS can be concentrated with a high concentration ratio and concentrate grade. By using the sulfidizing process, it is expected that the recovery of zinc from the wastes or purification of heavy-metal-containing hazardous residues is technically feasible.展开更多
Pure compounds and kaolin were employed to investigate the reaction behavior of ferric oxide in thetrinarysystem Fe2O3?SiO2?Al2O3 during reductive sintering process. The thermodynamic analyses and reductive sintering ...Pure compounds and kaolin were employed to investigate the reaction behavior of ferric oxide in thetrinarysystem Fe2O3?SiO2?Al2O3 during reductive sintering process. The thermodynamic analyses and reductive sintering experimental results show that ferrous oxide generated from the reduction of ferric oxide by carbon can react with silicon dioxide and aluminum oxide to form ferrous silicate and hercynite at 1173 K, respectively. In the trinary system Fe2O3?SiO2?Al2O3, ferrous oxide obtained from ferric oxide reduction preferentially reacts with aluminum oxide to form hercynite, and the reaction of ferrous oxide with silicon dioxide occurs only when there is surplus ferrous oxide after the exhaustion of aluminum oxide. When sintering temperature rises to 1473 K, hercynite further reacts with silicon dioxide to form mullite and ferrous oxide. Results presented in this work may throw a new light upon the separation of alumina and silica present in Al/Fe-bearing materials with low mass ratio of alumina to silica in alumina production.展开更多
Zinc neutral leaching residue(ZNLR) from hydrometallurgical zinc smelting processing can be determined as hazardous intermediate containing considerable amounts of Cd and Zn which have great threats to the environme...Zinc neutral leaching residue(ZNLR) from hydrometallurgical zinc smelting processing can be determined as hazardous intermediate containing considerable amounts of Cd and Zn which have great threats to the environment. The ZNLR contained approximately 35.99% Zn, 15.93% Fe and 0.26% Cd, and Cd mainly existed as ferrites in the ZNLR in this research. Reductive acid leaching of ZNLR was investigated. The effects of hydrazine sulfate concentration, initial sulfuric acid concentration, temperature, duration and liquid-to-solid ratio on the extraction of Cd, Zn and Fe were examined. The extraction efficiencies of Cd, Zn and Fe reached 90.81%, 95.83% and 94.19%, respectively when the leaching parameters were fixed as follows: hydrazine sulfate concentration, 33.3 g/L; sulfuric acid concentration, 80 g/L; temperature, 95 °C; duration of leaching, 120 min; liquid-to-solid ratio, 10 m L/g and agitation, 400 r/min. XRD and SEM-EDS analyses of the leaching residue confirmed that lead sulfate(Pb SO4) and hydrazinium zinc sulfate((N2H5)2Zn(SO4)2) were the main phases remaining in the reductive leaching residue.展开更多
Manganese oxide ores from Gabon and Xiangxi were leached with waste tea as reductant in dilute sulfuric acid solution. The effects of waste tea dosage, concentration of sulfuric acid, liquid-to-solid ratio, leaching t...Manganese oxide ores from Gabon and Xiangxi were leached with waste tea as reductant in dilute sulfuric acid solution. The effects of waste tea dosage, concentration of sulfuric acid, liquid-to-solid ratio, leaching temperature and reaction time on leaching process were explored. The leaching efficiency of Gabonese manganese oxide ore reached almost 100% under the optimal condition which was determined as follows: manganese oxide ore to waste tea mass ratio of 10:1, sulfuric acid concentration of 2.5 molFL, liquid-to-solid ratio of 7.5:1, leaching temperature of 368 K, time of 8 h. The leaching efficiency of Xiangxi manganese oxide ore reached 99.8% under the optimal condition which was determined as follows: manganese oxide ore to waste tea mass ratio of 10:1, sulfuric acid concentration of 1.7 mol/L, liquid-to-solid ratio of 7.5:1, leaching temperature of 368 K, time of 8 h. The leaching process followed the internal diffusion controlled kinetic model, and the apparent activation energies of Gabonese manganese oxide ore and Xiangxi manganese oxide ore were calculated to be 38.2 kJ/mol and 20.4 kJ/mol, respectively. The morphological changes and mineralogical forms of the ore before and after the chemical treatment were discussed with the support of XRD analysis and SEM analysis.展开更多
The kinetics of reductive leaching of manganese from low grade pyrolusite in dilute sulfuric acid in the presence of molasses alcohol wastewater was investigated. The shrinking core model was applied to quantify the e...The kinetics of reductive leaching of manganese from low grade pyrolusite in dilute sulfuric acid in the presence of molasses alcohol wastewater was investigated. The shrinking core model was applied to quantify the effects of reaction parameters on leaching rate. The leaching rate increases with reaction temperature, concentrations of H 2 SO 4 and organic matter in molasses alcohol wastewater increase and ore particle size decreases. The leaching process follows the kinetics of a shrinking core model and the apparent activation energy is 57.5 kJ·mol –1 . The experimental results indicate a reaction order of 0.52 for H2SO4 concentration and 0.90 for chemical oxygen demand (COD) of molasses alcohol wastewater. It is concluded that the reductive leaching of pyrolusite with molasses alcohol wastewater is controlled by the diffusion through the ash/inert layer composed of the associated minerals.展开更多
Hydrazine sulfate was used as a reducing agent for the leaching of Li,Ni,Co and Mn from spent lithium-ion batteries.The effects of the reaction conditions on the leaching mechanism and kinetics were characterized and ...Hydrazine sulfate was used as a reducing agent for the leaching of Li,Ni,Co and Mn from spent lithium-ion batteries.The effects of the reaction conditions on the leaching mechanism and kinetics were characterized and examined.97%of the available Li,96%of the available Ni,95%of the available Co,and 86%of the available Mn are extracted under the following optimized conditions:sulfuric acid concentration of 2.0 mol/L,hydrazine sulfate dosage of 30 g/L,solid-to-liquid ratio of 50 g/L,temperature of 80℃,and leaching time of 60 min.The activation energies of the leaching are determined to be 44.32,59.37 and 55.62 k J/mol for Li,Ni and Co,respectively.By performing X-ray diffraction and scanning electron microscopy in conjunction with energy dispersive X-ray spectroscopy,it is confirmed that the main phase in the leaching residue is MnO2.The results show that hydrazine sulfate is an effective reducing agent in the acid leaching process for spent lithium-ion batteries.展开更多
The kinetics of reductive leaching of manganese from a low-grade manganese oxide ore were studied using cellulose as reductant in dilute sulfuric acid medium.It was found that when the stirring speed was higher than 2...The kinetics of reductive leaching of manganese from a low-grade manganese oxide ore were studied using cellulose as reductant in dilute sulfuric acid medium.It was found that when the stirring speed was higher than 200 r/min,the effect of gas film diffusion on manganese extraction efficiency could be neglected,and the kinetic behavior was investigated under the condition of elimination of external diffusion influence on the leaching process.Effects of leaching temperature,mass ratio of cellulose and ore,and the sulfuric acid concentration on manganese extraction efficiency were discussed.The kinetic data were analyzed based on the shrinking core model,which indicated that the leaching process was dominated by both ash layer diffusion and chemical reaction at the initial stage,with the progress of leaching reaction,the rate-controlling step switched to the ash layer diffusion.It was also concluded that the sulfuric acid concentration had the most significant influence on the leaching rate,the reaction orders with respect to the sulfuric acid concentration were 2.102 in the first 60 min,and 3.642 in the later 90 min,while the reaction orders for mass ratio of cellulose and ore were 0.660 and 0.724,respectively.An Arrhenius relationship was used to relate the temperature to the rate of leaching,from which apparent activation energies were calculated to be 46.487 kJ/mol and 62.290 kJ/mol at the two stages,respectively.Finally,the overall leaching rate equations for the manganese dissolution reaction with cellulose in sulphuric acid solution were developed.The morphological changes and mineralogical forms of the ore before and after the chemical treatment were discussed with the support of SEM and XRD analyses.展开更多
A novel egg-shell Pd-S catalyst with palladium metal as the core and a membrane of palladium sulfide as the surface has been prepared by sulphidizing Pd/C with H2S. This catalyst is effective for the reductive alkylat...A novel egg-shell Pd-S catalyst with palladium metal as the core and a membrane of palladium sulfide as the surface has been prepared by sulphidizing Pd/C with H2S. This catalyst is effective for the reductive alkylation of p-amino diphenylamine (PADPA) and methylisobutyl ketone (MIBK) to afford N-(1,3-dimethylbutyl)-N^-phenyl-p-phenylenedianine (DBPPD) with conversion up to 99.42% and selectivity to 97.46%. Comparing with the other common palladium sulfide catalysts, the membrane of palladium sulfide on the surface and the core of palladium metal cause the Pd on the surface of the new catalyst in a lower sulfur coordination, which improves its activity. Our result indicates that this new egg-shell Pd-S/C is an efficient hydrogenation catalyst.展开更多
Reductive immobilization of radioactive pertechnetate(99TcO4^-) in simulated groundwater was studied by prepared carboxymethyl cellulose(CMC) and starch stabilized zero valent iron nanoparticles(nZVI),and long-term re...Reductive immobilization of radioactive pertechnetate(99TcO4^-) in simulated groundwater was studied by prepared carboxymethyl cellulose(CMC) and starch stabilized zero valent iron nanoparticles(nZVI),and long-term remobilization of reduced Tc was also evaluated under anoxic and oxic conditions.The stabilized nZVI can effectively reduce soluble 99Tc(Ⅶ) to insoluble 99 Tc(Ⅳ),and they can be easily delivered into a contaminated groundwater zone and facilitate in situ remediation.In this study,CMCstabilized nZVI showed higher reactivity than that using starch as the stabilizer.Batch experiments indicated that more than 99% of 99 Tc(Ⅶ)(CO=12 mg/mL) was reduced and removed from groundwater by CMC-stabilized nZVI with a CMC content of 0.2%(w/w) at a broad pH of 5-8.X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS) analyses further confirmed that 99Tc(Ⅶ)O4^-transformed into 99Tc(Ⅳ)O2(s).The presence of bicarbonate exhibited insignificant effect on Tc immobilization,while humic acid(HA) inhibited reaction mainly due to retardation on electron transfer and formation of Tc(IV)-HA complexes.More interesting,the immobilized Tc(Ⅳ) remained insoluble even after 120 d under anoxic condition,while only^21 % was remobilized when exposed to air.Therefore,biomacromolecules stabilized nZVI nanoparticles could be a viable alternative for in situ remediation of radioactive contamination in groundwater.展开更多
A novel tandem reductive amination/intermolecular nucleophilic aromatic substitution (SNAr) sequence has been established for the synthesis of amine containing pyrimidine in formation of one carbon-oxygen and one carb...A novel tandem reductive amination/intermolecular nucleophilic aromatic substitution (SNAr) sequence has been established for the synthesis of amine containing pyrimidine in formation of one carbon-oxygen and one carbon-nitrogen bonds in a one-pot fashion. Treatment of aldehyde with arylamine, 2-methanesulfonyl-4,6-dimeth-oxypyrimidine and sodium borohydride provides good overall yield. The p-toluenesulfonic acid (PTSA) can be used as activator and is generally needed in the reaction. Dioxane is the preferred reaction solvent, but reactions can also be carried out in tetrahydrofuran (THF), MeCN, toluene and dichloromethane. The procedure is carried out effectively in the presence of K2CO3. The reaction proceeds smoothly with aromatic aldehydes and arylamines possessing elec-tron-donating or-withdrawing groups. This method can be applied to the synthesis of the oilseed rape herbicide and is superior to the classical one in several aspects: cutting out several purification steps, minimizing solvent use and chemical waste, and saving time. Its advantages such as operational convenience, high-efficient synthesis, and starting material availability make it a desirable method for preparing amines with molecular diversity and biological activity.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(QNTD202302)National Natural Science Foundation of China(22378024)the Foreign expert program(G2022109001L).
文摘Developing a cost-effective and environmentally friendly process for the production of valuable chemicals from abundant herbal biomass receives great attentions in recent years.Herein,taking advantage of the“lignin first”strategy,corn straw is converted to valuable chemicals including lignin monomers,furfural and 5-methoxymethylfurfural via a two steps process.The key of this research lies in the development of a green and low-cost catalytic process utilizing magnetic Raney Ni catalyst and high boiling point ethylene glycol.The utilization of neat ethylene glycol as the sole slovent under atmospheric conditions obviates the need for additional additives,thereby facilitating the entire process to be conducted in glass flasks and rendering it highly convenient for scaling up.In the initial step,depolymerization of corn straw lignin resulted in a monomer yield of 18.1 wt%.Subsequently,in a dimethyl carbonate system,the carbohydrate component underwent complete conversion in a one-pot process,yielding furfural and 5-methoxymethylfurfural as the primary products with an impressive yield of 47.7%.
基金supported by the Key Research and Development Program of Shandong Province,China(No 2021CXGC010803)Pan’an County Chinese Medicine Industry Project(No.PZYF202103).
文摘Reductive soil disinfestation(RSD)is commonly employed for soil remediation in greenhouse cultivation.However,its influence on antibiotic resistance genes(ARGs)in soil remains uncertain.This study investigated the dynamic changes in soil communities,potential bacterial pathogens,and ARG profiles under various organicmaterial treatments during RSD,including distillers’grains,potato peel,peanut vine,and peanut vine combined with charcoal.Results revealed that applying diverse organic materials in RSD significantly altered bacterial community composition and diminished the relative abundance of potential bacterial pathogens(P<0.05).The relative abundance of high-risk ARGs decreased by 10.7%-30.6%after RSD treatments,the main decreased ARG subtypeswere AAC(3)_Via,dfrA1,ErmB,lnuB,aadA.Actinobacteria was the primary host of ARGs and was suppressed by RSD.Soil physicochemical properties,such as total nitrogen,soil pH,total carbon,were crucial factors affecting ARG profiles.Our findings demonstrated that RSD treatment inhibited pathogenic bacteria and could be an option for reducing high-risk ARG proliferation in soil.
文摘An efficient visible-light induced nickel-catalyzed reductive Heck reaction of alkenes by using mild organic reductant Hantzsch ester(HEH)instead of traditional metal reductants or hydride reagents was developed.The reductive hydroarylation of acrylates with aryl halides was successfully achieved without requiring exogenous photoredox catalysts.This reaction is highlighted by the simple and mild conditions,good functional group tolerance,thus providing a complementary approach for alkenes reductive Heck reaction.
文摘Polyfluoroarenes represent an essential group of compounds in the fields of medical and material chemistry.It is still a challenge to synthesize alkylated polyfluoroarenes.Herein,a Ni-catalyzed reductive alkylation of polyfluoroarenes with alkyl halides under mild conditions is reported.Polyfluoroarenes(3~6 F)can reacted smoothly with a diverse range of alkyl halides,such as primary,secondary,and tertiary alkyl iodides.The efficient formation of C(sp2)—C(sp3)can be achieved through the combination of Ni catalysis and(Bpin)2/K2CO3 as terminal reductant.
文摘A chromium(II)-catalyzed reduction cross coupling reaction was reported.This reaction utilizes inexpensive and readily available chromium dichloride as a catalyst and 4,4'-di-tert-butyl-bipyridine as a ligand to achieve reduction cross coupling between trifluoromethyl olefins and alkyl bromides under mild conditions,effectively synthesizing difluoroalkene derivatives.This reaction exhibits good substrate universality and is compatible with multiple important functional groups,providing a concise synthetic pathway for constructing conjugated difluoroalkenes containing allyl difluoromethylene structural units.Preliminary mechanistic experiments indicate that alkyl bromides first undergo a reduction process to generate corresponding alkyl radicals,followed by addition to trifluoromethyl olefins.After binding with Cr(II),they undergo aβ-fluorine elimination process to generate difluoroalkenes.
基金supported by the National Natural Science Foundation of China(Nos.52270165 and 51978537)the Key Laboratory of Safety for Geotechnical and Structural Engineering of Hubei Province。
文摘The persistence of chlorinated alkanes in aquatic environments poses significant health risks due to its biotoxicity and high volatility,which contributes to both water and air pollution.This study investigates the efficacy of carbon dioxide radical anion(CO_(2)·^(-))mediated advanced reduction processes(ARPs)for the reductive dechlorination of chlorinated alkanes using small molecular monocarboxylic acids(SMAs)under UV irradiation.The study focused on formic acid(HCOOH),acetic acid(CH_3COOH),and propionic acid(CH_3CH_(2)COOH)to generate CO_(2)·^(-),revealing that UV/HCOOH system exhibits a notably high chloroform(CF)degradation efficiency of 97.8%in 90 min.Kinetic studies indicated a linear relationship between the HCOOH concentrations and the observed reaction rate constants(k_(obs)),demonstrating that CO_(2)·^(-)production is crucial for CF degradation.Electron paramagnetic resonance spectroscopy identified CO_(2)·^(-)and hydroxyl radicals(HO·)as the active species,with the former playing a predominant role in CF degradation.The study also explored the influence of carbon chain length in SMAs on CF degradation,finding that longer chains decrease the degradation efficiency,potentially due to reduced UV activation.A higher reaction rate constant(k_(obs))under acidic conditions,with a marked decrease in efficiency as the pH exceeds 3.7,where HCOO^(-)becomes predominant.This study enhances our understanding of CO_(2)·^(-)mediated ARPs and explores potential applications in environmental remediation,providing insights into the pathways and mechanisms of CF degradation.The UV/SMAs systems offer advantages for practical applications,such as milder reaction conditions and higher efficiency compared to traditional methods.
基金financial support by the Phosphogypsum Low-Temperature Decomposition to Produce Calcium-Based Materials and Sulfuric Acid Raw Gas Technology(Horizontal Project)(8503009049)National Natural Science Foundation of China(52376101).
文摘The thermal effects,spontaneity and proceeding degree of 32 chemical reactions during coal reductive decomposition phosphogypsum(PG)to prepare CaO and SO_(2)are analyzed utilizing thermodynamic theory and method.The ideal reaction temperature for PG decomposition and desulfurization is 1173-1273 K.The 10 key chemical reactions controlling coal reductive decomposition PG have been selected.The heat release of critical exothermic reactions can satisfy the autothermal operation of PG decomposition and desulfurization process.Meanwhile,the spontaneity of oxidation reactions has thermodynamically priority over reduction reactions.But the reaction mechanism shows that the oxidation of CaS by O_(2)is in parallel competition with the reduction of CaSO_(4)by CO and C.Furthermore,clarifying the regulatory mechanisms of PG decomposition temperature and reaction atmosphere(reducibility and oxidation)is beneficial for maximizing the production of CaO and SO_(2).
基金financially supported by the National Natural Science Foundation of China(Nos.52174288 and 51804346)the Fundamental Research Funds for the Central Universities of Central South University,China(No.1053320231449).
文摘The growing demand for Ni and Co in the new energy sector necessitates efficient extraction methods for limonitic laterite ores.This study demonstrated the effectiveness of sodium sulfate(Na_(2)SO_(4))as an additive for enhancing the co-enrichment of Ni and Co during solid-state reduction.Na_(2)SO_(4)promoted the formation of two distinct liquid phases,low-melting-point FeS-FeO-Fe and NaAlSiO_(4)-NaFeSiO_(4),facilitating the migration and aggregation of Ni-Co-Fe alloy particles,leading to a high-grade alloy powder with 11.98wt%Ni and 0.88wt%Co and recoveries of 94.03%and 80.16%,respectively.Ni-Co-Fe particle growth was mainly driven by the FeS-FeO-Fe eutectic melt,aligned with a liquid-phase sintering mechanism.Pilot-scale rotary kiln experiments validated the industrial feasibility of this approach,which offers a promising solution for the sustainable extraction of these critical metals.
基金financially supported by China Scholarship Council,Science and Technology Project of the State Administration for Market Regulation(2022MK111)the Fundamental Research Funds for the Central Universities.
文摘Primary diamines play an important role in the chemical industry,where they are widely used as raw materials for the manufacture of pharmaceuticals and polymers.Currently,primary diamines are mainly derived from petroleum,while harsh or toxic conditions are often needed.Biomass is abundant and renewable,which serves as a promising alternative raw material to produce primary diamines.This review primarily focuses on the synthesis of 2,5-bis(aminomethyl)furan(BAMF),a bio-based diamine with potential as a biomonomer for polyamides and polyureas.Specifically,this review emphasizes the synthesis of BAMF fromthree biomass-derived alcohols and aldehydes,namely 5-hydroxymethylfurfural(HMF),2,5-bis(hydroxymethyl)furan(BHMF),and 2,5-diformylfuran(DFF).These are the key substrates to get BAMF and could be readily obtained from carbohydrates.Even though great effort has been put into the synthesis of BAMF,it remains a tough problem to obtain BAMF with a high yield at a low cost due to the inevitable side reactions,such as unwanted hydrogenation reactions and condensation reactions.Many strategies have been proposed to solve this problem,such as the hydrogen-borrowing strategy and stepwise reductive amination strategy.Herein,we will summarize the key advancements in this area,and discuss the challenges that need to be responded in the future,hoping to provide an insight into the design and development of a more efficient system for the production of biomass-derived diamines.
基金Project(2014CB643404)supported by the National Basic Research Program of ChinaProjects(51564030,51474117,51304093,51364022)supported by the National Natural Science Foundation of China+1 种基金Project(0120150070)supported by Yunnan Applied Basic Reach Project,ChinaProject(ZD2014003)supported by the Education Department of Yunnan Province,China
文摘Zinc ferrite is the principal constituent in zinc neutral-leach residue(NLR) which is commonly treated by hot-acid leaching in electrolytic zinc plants. Reductive leaching of zinc ferrite with sphalerite concentrate as a reducing agent was performed. It was found that leaching of zinc ferrite in the presence of sphalerit concentrate was a viable process that effectively extracted zinc and indium and converted Fe^3+ into Fe^2+ at the same time. Reflux leaching tests by two stages were performed to achieve extractions of 98.1% for zinc and 97.5% for indium, and a Fe^2+/Fe^3+ molar ratio of 9.6 in leach solution was also obtained. The leaching behaviors of other elements, such as iron, copper and tin were also studied. The results showed that iron and copper were completely leached, whereas tin presented lower extraction values.
基金Project(50925417) supported by the China National Funds for Distinguished Young ScientistsProject(50830301) supported by the National Natural Science Foundation of China+1 种基金Projects(2010AA065203,2011AA061001) supported by the National High-tech Research Program of ChinaProject(NCET-10-0840) supported by the Program for New Century Excellent Talents in University,China
文摘A novel process for sulfidation of ZnO by co-grinding with sulfur and reductive additives (P, Fe, A1, and Mg) was developed. The sulfidation extent of ZnO with the addition of P, Fe, A1 or Mg can reach 85.2%, 81.6%, 96.7% and 92.6% after grinding for 4, 6, 1 and 1 h, respectively. Based on the chemical phase composition analysis and morphological characteristics of sulfidized products by XRD, SEM and TEM, a possible reaction mechanism, mechanically induced self-propagating reaction (MSR), was proposed to explain the sulfidization reaction. In addition, the floatability of sulfidized products was investigated for the recovery of metal sulfide and ZnS can be concentrated with a high concentration ratio and concentrate grade. By using the sulfidizing process, it is expected that the recovery of zinc from the wastes or purification of heavy-metal-containing hazardous residues is technically feasible.
基金Project(51274243)supported by the National Natural Science Foundation of China
文摘Pure compounds and kaolin were employed to investigate the reaction behavior of ferric oxide in thetrinarysystem Fe2O3?SiO2?Al2O3 during reductive sintering process. The thermodynamic analyses and reductive sintering experimental results show that ferrous oxide generated from the reduction of ferric oxide by carbon can react with silicon dioxide and aluminum oxide to form ferrous silicate and hercynite at 1173 K, respectively. In the trinary system Fe2O3?SiO2?Al2O3, ferrous oxide obtained from ferric oxide reduction preferentially reacts with aluminum oxide to form hercynite, and the reaction of ferrous oxide with silicon dioxide occurs only when there is surplus ferrous oxide after the exhaustion of aluminum oxide. When sintering temperature rises to 1473 K, hercynite further reacts with silicon dioxide to form mullite and ferrous oxide. Results presented in this work may throw a new light upon the separation of alumina and silica present in Al/Fe-bearing materials with low mass ratio of alumina to silica in alumina production.
基金Project(2012FJ1010)supported by the Key Project of Science and Technology of Hunan ProvinceChina+2 种基金Project(51474247)supported by the National Natural Science Foundation of ChinaProject(2012GS430201)supported by the Science and Technology Program for Public WellbeingChina
文摘Zinc neutral leaching residue(ZNLR) from hydrometallurgical zinc smelting processing can be determined as hazardous intermediate containing considerable amounts of Cd and Zn which have great threats to the environment. The ZNLR contained approximately 35.99% Zn, 15.93% Fe and 0.26% Cd, and Cd mainly existed as ferrites in the ZNLR in this research. Reductive acid leaching of ZNLR was investigated. The effects of hydrazine sulfate concentration, initial sulfuric acid concentration, temperature, duration and liquid-to-solid ratio on the extraction of Cd, Zn and Fe were examined. The extraction efficiencies of Cd, Zn and Fe reached 90.81%, 95.83% and 94.19%, respectively when the leaching parameters were fixed as follows: hydrazine sulfate concentration, 33.3 g/L; sulfuric acid concentration, 80 g/L; temperature, 95 °C; duration of leaching, 120 min; liquid-to-solid ratio, 10 m L/g and agitation, 400 r/min. XRD and SEM-EDS analyses of the leaching residue confirmed that lead sulfate(Pb SO4) and hydrazinium zinc sulfate((N2H5)2Zn(SO4)2) were the main phases remaining in the reductive leaching residue.
基金Project(2010FJ1011)supported by the Major Project of Hunan Science and Technology,ChinaProject(cstc2012ggB90002)supported by the Chongqing Key Science and Technology Program,China
文摘Manganese oxide ores from Gabon and Xiangxi were leached with waste tea as reductant in dilute sulfuric acid solution. The effects of waste tea dosage, concentration of sulfuric acid, liquid-to-solid ratio, leaching temperature and reaction time on leaching process were explored. The leaching efficiency of Gabonese manganese oxide ore reached almost 100% under the optimal condition which was determined as follows: manganese oxide ore to waste tea mass ratio of 10:1, sulfuric acid concentration of 2.5 molFL, liquid-to-solid ratio of 7.5:1, leaching temperature of 368 K, time of 8 h. The leaching efficiency of Xiangxi manganese oxide ore reached 99.8% under the optimal condition which was determined as follows: manganese oxide ore to waste tea mass ratio of 10:1, sulfuric acid concentration of 1.7 mol/L, liquid-to-solid ratio of 7.5:1, leaching temperature of 368 K, time of 8 h. The leaching process followed the internal diffusion controlled kinetic model, and the apparent activation energies of Gabonese manganese oxide ore and Xiangxi manganese oxide ore were calculated to be 38.2 kJ/mol and 20.4 kJ/mol, respectively. The morphological changes and mineralogical forms of the ore before and after the chemical treatment were discussed with the support of XRD analysis and SEM analysis.
基金Supported by the National Natural Science Foundation of China (20866001) the Natural Science Foundation of GuangxiProvince (0832035)
文摘The kinetics of reductive leaching of manganese from low grade pyrolusite in dilute sulfuric acid in the presence of molasses alcohol wastewater was investigated. The shrinking core model was applied to quantify the effects of reaction parameters on leaching rate. The leaching rate increases with reaction temperature, concentrations of H 2 SO 4 and organic matter in molasses alcohol wastewater increase and ore particle size decreases. The leaching process follows the kinetics of a shrinking core model and the apparent activation energy is 57.5 kJ·mol –1 . The experimental results indicate a reaction order of 0.52 for H2SO4 concentration and 0.90 for chemical oxygen demand (COD) of molasses alcohol wastewater. It is concluded that the reductive leaching of pyrolusite with molasses alcohol wastewater is controlled by the diffusion through the ash/inert layer composed of the associated minerals.
基金Project(51674298)supported by the National Natural Science Foundation of ChinaProject supported by Anhui Province Research and Development Innovation Program,China。
文摘Hydrazine sulfate was used as a reducing agent for the leaching of Li,Ni,Co and Mn from spent lithium-ion batteries.The effects of the reaction conditions on the leaching mechanism and kinetics were characterized and examined.97%of the available Li,96%of the available Ni,95%of the available Co,and 86%of the available Mn are extracted under the following optimized conditions:sulfuric acid concentration of 2.0 mol/L,hydrazine sulfate dosage of 30 g/L,solid-to-liquid ratio of 50 g/L,temperature of 80℃,and leaching time of 60 min.The activation energies of the leaching are determined to be 44.32,59.37 and 55.62 k J/mol for Li,Ni and Co,respectively.By performing X-ray diffraction and scanning electron microscopy in conjunction with energy dispersive X-ray spectroscopy,it is confirmed that the main phase in the leaching residue is MnO2.The results show that hydrazine sulfate is an effective reducing agent in the acid leaching process for spent lithium-ion batteries.
基金Project(2010FJ1011)supported by the Major Project of Science and Technology of Hunan Province,China
文摘The kinetics of reductive leaching of manganese from a low-grade manganese oxide ore were studied using cellulose as reductant in dilute sulfuric acid medium.It was found that when the stirring speed was higher than 200 r/min,the effect of gas film diffusion on manganese extraction efficiency could be neglected,and the kinetic behavior was investigated under the condition of elimination of external diffusion influence on the leaching process.Effects of leaching temperature,mass ratio of cellulose and ore,and the sulfuric acid concentration on manganese extraction efficiency were discussed.The kinetic data were analyzed based on the shrinking core model,which indicated that the leaching process was dominated by both ash layer diffusion and chemical reaction at the initial stage,with the progress of leaching reaction,the rate-controlling step switched to the ash layer diffusion.It was also concluded that the sulfuric acid concentration had the most significant influence on the leaching rate,the reaction orders with respect to the sulfuric acid concentration were 2.102 in the first 60 min,and 3.642 in the later 90 min,while the reaction orders for mass ratio of cellulose and ore were 0.660 and 0.724,respectively.An Arrhenius relationship was used to relate the temperature to the rate of leaching,from which apparent activation energies were calculated to be 46.487 kJ/mol and 62.290 kJ/mol at the two stages,respectively.Finally,the overall leaching rate equations for the manganese dissolution reaction with cellulose in sulphuric acid solution were developed.The morphological changes and mineralogical forms of the ore before and after the chemical treatment were discussed with the support of SEM and XRD analyses.
基金supported by Zhejiang Provincial Natural Science Foundation of China(No LY12B03009)Program from Science and Technology Department of Zhejiang Province(No2011R09020-03)
文摘A novel egg-shell Pd-S catalyst with palladium metal as the core and a membrane of palladium sulfide as the surface has been prepared by sulphidizing Pd/C with H2S. This catalyst is effective for the reductive alkylation of p-amino diphenylamine (PADPA) and methylisobutyl ketone (MIBK) to afford N-(1,3-dimethylbutyl)-N^-phenyl-p-phenylenedianine (DBPPD) with conversion up to 99.42% and selectivity to 97.46%. Comparing with the other common palladium sulfide catalysts, the membrane of palladium sulfide on the surface and the core of palladium metal cause the Pd on the surface of the new catalyst in a lower sulfur coordination, which improves its activity. Our result indicates that this new egg-shell Pd-S/C is an efficient hydrogenation catalyst.
基金partially supported by the National Natural Science Foundation of China(No.41230638)a grant from the USDA AAES 2015 Hatch and Multistate funding program
文摘Reductive immobilization of radioactive pertechnetate(99TcO4^-) in simulated groundwater was studied by prepared carboxymethyl cellulose(CMC) and starch stabilized zero valent iron nanoparticles(nZVI),and long-term remobilization of reduced Tc was also evaluated under anoxic and oxic conditions.The stabilized nZVI can effectively reduce soluble 99Tc(Ⅶ) to insoluble 99 Tc(Ⅳ),and they can be easily delivered into a contaminated groundwater zone and facilitate in situ remediation.In this study,CMCstabilized nZVI showed higher reactivity than that using starch as the stabilizer.Batch experiments indicated that more than 99% of 99 Tc(Ⅶ)(CO=12 mg/mL) was reduced and removed from groundwater by CMC-stabilized nZVI with a CMC content of 0.2%(w/w) at a broad pH of 5-8.X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS) analyses further confirmed that 99Tc(Ⅶ)O4^-transformed into 99Tc(Ⅳ)O2(s).The presence of bicarbonate exhibited insignificant effect on Tc immobilization,while humic acid(HA) inhibited reaction mainly due to retardation on electron transfer and formation of Tc(IV)-HA complexes.More interesting,the immobilized Tc(Ⅳ) remained insoluble even after 120 d under anoxic condition,while only^21 % was remobilized when exposed to air.Therefore,biomacromolecules stabilized nZVI nanoparticles could be a viable alternative for in situ remediation of radioactive contamination in groundwater.
基金Project (Nos. Y407118 and D3080282) supported by the Natural Science Foundation of Zhejiang Province, China
文摘A novel tandem reductive amination/intermolecular nucleophilic aromatic substitution (SNAr) sequence has been established for the synthesis of amine containing pyrimidine in formation of one carbon-oxygen and one carbon-nitrogen bonds in a one-pot fashion. Treatment of aldehyde with arylamine, 2-methanesulfonyl-4,6-dimeth-oxypyrimidine and sodium borohydride provides good overall yield. The p-toluenesulfonic acid (PTSA) can be used as activator and is generally needed in the reaction. Dioxane is the preferred reaction solvent, but reactions can also be carried out in tetrahydrofuran (THF), MeCN, toluene and dichloromethane. The procedure is carried out effectively in the presence of K2CO3. The reaction proceeds smoothly with aromatic aldehydes and arylamines possessing elec-tron-donating or-withdrawing groups. This method can be applied to the synthesis of the oilseed rape herbicide and is superior to the classical one in several aspects: cutting out several purification steps, minimizing solvent use and chemical waste, and saving time. Its advantages such as operational convenience, high-efficient synthesis, and starting material availability make it a desirable method for preparing amines with molecular diversity and biological activity.