期刊文献+
共找到1,625篇文章
< 1 2 82 >
每页显示 20 50 100
A novel four-component reaction involving ring-opening/recyclization of 1,3-thiazolidinedione
1
作者 SUN Jing, XIA ErYan, ZHANG LiLi & YAN ChaoGuo College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China 《Science China Chemistry》 SCIE EI CAS 2010年第4期863-868,共6页
The multicomponent reactions of 1,3-thiazolidinedione, malononitrile, aromatic aldehydes and α-phenylethylamine or β-phenylethylamine in acetonitrile at room temperature produce dihydrothiophene ureidoformamide deri... The multicomponent reactions of 1,3-thiazolidinedione, malononitrile, aromatic aldehydes and α-phenylethylamine or β-phenylethylamine in acetonitrile at room temperature produce dihydrothiophene ureidoformamide derivatives in moderate yields through a domino ring-opening/recyclization reaction of 1,3-thiazolidinedione. On treatment with DDQ, dihydrothiophenes are dehydrogenated to convert efficiently to thiophenes in the mild condition. 展开更多
关键词 MULTICOMPONENT REACTION RING-OPENING recyclization dihydrothiophene THIAZOLIDINEDIONE
暂未订购
Durability of SAP-modified Fully Recycled Concrete under Freeze-Thaw Cycles
2
作者 XING Zhengguang PENG Erxing +3 位作者 ZHANG Mingyi PEI Wansheng HU Xiaoying SUN Haoyue 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期179-188,共10页
This study introduces superabsorbent polymers(SAP)into recycled concrete and,through freeze-thaw cycle tests,unconfined compressive strength tests,and nuclear magnetic resonance(NMR)analysis,evaluates the freeze-thaw ... This study introduces superabsorbent polymers(SAP)into recycled concrete and,through freeze-thaw cycle tests,unconfined compressive strength tests,and nuclear magnetic resonance(NMR)analysis,evaluates the freeze-thaw resistance and durability of recycled concrete samples under varying freeze-thaw cycles.The results indicate that an appropriate addition of SAP significantly enhances the freeze-thaw resistance of recycled concrete.After 200 freeze-thaw cycles,the RS0.6 sample retained good surface integrity,demonstrating the best performance.Compared to NAC,its mass loss decreased by 1.16%,the relative dynamic modulus improved by 7.01%,and the compressive strength loss rate decreased by 5.41%.Additionally,T2 spectrum analysis revealed that adding SAP optimized the pore structure of recycled concrete and mitigated pore development during freeze-thaw cycles.As the number of freeze-thaw cycles increased,the RS0.3 and RS0.6 samples demonstrated superior frost resistance compared to NAC.However,an excessive amount of SAP increased pore expansion during subsequent freeze-thaw cycles,ultimately weakening frost resistance. 展开更多
关键词 Recycled concrete SAP freeze-thaw cycle pore structure DURABILITY
原文传递
Effect of Fly Ash on Frost Resistance and Regeneration of Recycled Aggregate Concrete
3
作者 ZHU Pinghua CHRISTIAN Bihoza +3 位作者 CHEN Xintong WANG Xingjie LIU Hui YAN Xiancui 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期138-146,共9页
We investigated the effects of fly ash(FA)content on the mechanical properties of recycled aggregate concrete(RAC)and its regeneration potential under freeze and thaw(F-T)cycles.The physical properties of second-gener... We investigated the effects of fly ash(FA)content on the mechanical properties of recycled aggregate concrete(RAC)and its regeneration potential under freeze and thaw(F-T)cycles.The physical properties of second-generation recycled concrete aggregates(RCA)were used to analyze the regeneration potential of RAC after F-T cycles.Scanning electron microscopy was used to study the interfacial transition zone microstructure of RAC after F-T cycles.Results showed that adding 20%FA to RAC significantly enhanced its mechanical properties and frost resistance.Before the F-T cycles,the compressive strength of RAC with 20%FA reached 48.3 MPa,exceeding research strength target of 40 MPa.A majority of second-generation RCA with FA had been verified to attain class Ⅲ,which enabled their practical application in non-structural projects such as backfill trenches and road pavement.However,the second-generation RCA with 20%FA can achieve class Ⅱ,making it ideal for 40 MPa structural concrete. 展开更多
关键词 fly-ash content frost resistance recycled aggregate concrete MICROSTRUCTURE regeneration potential
原文传递
Basic Mechanical Properties and Microstructure of Sustainable Recycled Coral Aggregate Concrete
4
作者 WANG Lei LU Jiahui +5 位作者 ZHANG Jiwang YI Jin ZHU Dexiang HUANG Dongming QIN Yan LI Yajie 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期217-226,共10页
Crushing waste coral concrete into recycled aggregates to create recycled coral aggregate concrete(RCAC)contributes to sustainable construction development on offshore islands and reefs.To investigate the impact of re... Crushing waste coral concrete into recycled aggregates to create recycled coral aggregate concrete(RCAC)contributes to sustainable construction development on offshore islands and reefs.To investigate the impact of recycled coral aggregate on concrete properties,this study performed a comprehensive analysis of the physical properties of recycled coral aggregate and the basic mechanical properties and microstructure of RCAC.The test results indicate that,compared to coral debris,the crushing index of recycled coral aggregate was reduced by 9.4%,while porosity decreased by 33.5%.Furthermore,RCAC retained the early strength characteristics of coral concrete,with compressive strength and flexural strength exhibiting a notable increase as the water-cement ratio decreased.Under identical conditions,the compressive strength and flexural strength of RCAC were 12.7% and 2.5% higher than coral concrete's,respectively,with porosity correspondingly reduced from 3.13% to 5.11%.This enhancement could be attributed to the new mortar filling the recycled coral aggregate.Scanning electron microscopy(SEM)analysis revealed three distinct interface transition zones within RCAC,with the‘new mortar-old mortar’interface identified as the weakest.The above findings provided a reference for the sustainable use of coral concrete in constructing offshore islands. 展开更多
关键词 recycled coral aggregate sustainable concrete mechanical properties MICROSTRUCTURE interfacial transition zone
原文传递
Heavy metal risks and policy analysis on using industrial waste salts for making value-added snow-melting agents
5
作者 Yubiao Ma Jiaxin Yin +2 位作者 Yunfei Wang Lei Wang Jianxin Zhu 《Journal of Environmental Sciences》 2026年第1期756-766,共11页
Industrial waste salts are commonly used to make value-added snow-melting agents to ensure traffic safety in northern China during winter and spring after snowfall.However,heavy metals in industrial waste salts may po... Industrial waste salts are commonly used to make value-added snow-melting agents to ensure traffic safety in northern China during winter and spring after snowfall.However,heavy metals in industrial waste salts may pose certain environmental risks.Snow-melting agents and snow samples were collected and analyzed from highways,arterial roads,footbridges,and other locations in Beijing after the snowstorm in December 2023.It was found that the main component of snow-melting agents was sodium chloride with high concentrations of Cu,Mn,and Zn,which are not regulated in the current policies,despite the recent promotion of environmentally friendly snow-melting agents.The Pb,Zn and Cr contents of some snow samples exceeded the limitation value of surface water quality standards,potentially affecting the soil and water environment near roadsides,although the snow-melting agents comply with relevant standards,which indicates the policy gap in the management of recycled industrial salts.We reviewed and analyzed the relevant standards for snow-melting agents and industrial waste salts proposed nationally and internationally over the past 30 years.Through comparative analysis,we proposed relevant policy recommendations to the existing quality standards of snow-melting agents and the management regulations of industrial waste salts,and the formulation of corresponding usage strategies,aimed at reducing the potential environmental release of heavy metals from the use of snow-melting agents,thereby promoting more sustainable green urban development and environmentally sound waste management. 展开更多
关键词 Snow-melting agent Heavy metals Industrial waste salts recycled Comparative analysis
原文传递
Recycling technologies of spent lithium-ion batteries and future directions:A review 被引量:4
6
作者 Xue-song GAO Meng WU +5 位作者 Guang-jin ZHAO Kun-hong GU Jia-jia WU Hong-bo ZENG Wen-qing QIN Jun-wei HAN 《Transactions of Nonferrous Metals Society of China》 2025年第1期271-295,共25页
Lithium-ion batteries(LIBs)are the most popular energy storage devices due to their high energy density,high operating voltage,and long cycle life.However,green and effective recycling methods are needed because LIBs ... Lithium-ion batteries(LIBs)are the most popular energy storage devices due to their high energy density,high operating voltage,and long cycle life.However,green and effective recycling methods are needed because LIBs contain heavy metals such as Co,Ni,and Mn and organic compounds inside,which seriously threaten human health and the environment.In this work,we review the current status of spent LIB recycling,discuss the traditional pyrometallurgical and hydrometallurgical recovery processes,and summarize the existing short-process recovery technologies such as salt-assisted roasting,flotation processes,and direct recycling.Finally,we analyze the problems and potential research prospects of the current recycling process,and point out that the multidisciplinary integration of recycling will become the mainstream technology for the development of spent LIBs. 展开更多
关键词 spent lithium battery short-process recycling secondary resources PRETREATMENT metal recovery
在线阅读 下载PDF
Preferential association of PBDEs and PAHs with mineral particles vs.dissolved organic carbon:Implications for groundwater contamination at e-waste sites 被引量:2
7
作者 Cuiyi Yang Lin Duan +3 位作者 Jing Wang Chuanjia Jiang Tong Zhang Wei Chen 《Journal of Environmental Sciences》 2025年第4期288-296,共9页
Polybrominated biphenyl ethers(PBDEs)and polycyclic aromatic hydrocarbons(PAHs)are commonly detected contaminants at e-waste recycling sites.Against the conventional wisdom that PBDEs and PAHs are highly immobile and ... Polybrominated biphenyl ethers(PBDEs)and polycyclic aromatic hydrocarbons(PAHs)are commonly detected contaminants at e-waste recycling sites.Against the conventional wisdom that PBDEs and PAHs are highly immobile and persist primarily in shallowsurface soils,increasing evidence shows that these compounds can leach into the groundwater.Herein,we compare the leachabilities of PBDEs vs.PAHs from contaminated soils collected at an e-waste recycling site in Tianjin,China.Considerable amounts of BDE-209(0.3–2 ng/L)and phenanthrene(42–106 ng/L),the most abundant PBDE and PAH at the site,are detected in the effluents of columns packed with contaminated soils,with the specific concentrations varying with hydrodynamic and solution chemistry conditions.Interestingly,the leaching potential of BDE-209 appears to be closely related to the release of colloidal mineral particles,whereas the leachability of phenanthrene correlates well with the concentration of dissolved organic carbon in the effluent,but showing essentially no correlation with the concentration of mineral particles.The surprisingly different trends of the leachability observed between BDE-209 and phenanthrene is counterintuitive,as PBDEs and PAHs often co-exist at e-waste recycling sites(particularly at the sites wherein incineration is being practiced)and share many similarities in terms of physicochemical properties.One possible explanation is that due to its extremely low solubility,BDE-209 predominantly exists in free-phase(i.e.,as solid(nano)particles),whereas the more soluble phenanthrene is mainly sorbed to soil organic matter.Findings in this study underscore the need to better understand the mobility of highly hydrophobic organic contaminants at contaminated sites for improved risk management. 展开更多
关键词 Polybrominated diphenyl ethers Polycyclic aromatic hydrocarbons Colloidal mineral particles Dissolved organic carbon e-Waste recycling
原文传递
Epoxy-Based Chain Extenders in Polylactic Acid (PLA): A Comprehensive Review of Structure, Performance, and Challenges 被引量:1
8
作者 Hao Duan Xiaoyan Shang +3 位作者 Xihao Wu Liuliu Ma Chen Xing Jun Zhu 《Journal of Materials Science and Chemical Engineering》 2025年第1期20-44,共25页
Amid the escalating plastic pollution issue, the development of biodegradable and recyclable polymeric materials has become a focus within the scientific community. Chain extenders, which are an important class of com... Amid the escalating plastic pollution issue, the development of biodegradable and recyclable polymeric materials has become a focus within the scientific community. Chain extenders, which are an important class of compounds, facilitate the elongation of polymer chains through reactive functional groups, thereby enhancing the performance of the materials. Epoxy-based chain extenders, due to their cost-effectiveness, low toxicity, high reaction efficiency, and effective reactivity with hydroxyl and carboxyl groups, have emerged as a promising class of chain extenders. This manuscript comprehensively elaborates on the varieties, structural characteristics, and performance of chain extenders, the challenges they face, and the methods for their modification. Special emphasis is placed on the application of epoxy-based chain extenders in biodegradable polymers, such as polylactic acid (PLA), and their subsequent influence on the structural and performance properties of these materials. 展开更多
关键词 Chain Extender Epoxy Type GMA BIODEGRADABLE PLA RECYCLE
在线阅读 下载PDF
Toward Joule heating recycling of spent lithium-ion batteries:A rising direct regeneration method 被引量:1
9
作者 Haoxuan Yu Meiting Huang +4 位作者 Yifeng Li Liang Chen Hui Lv Liming Yang Xubiao Luo 《Journal of Energy Chemistry》 2025年第6期501-513,I0012,共14页
Lithium-ion batteries(LIBs)are critical for the rapid growth of electric vehicles(EVs),but their inherent lifespan leads to numerous retirements and resource challenges.The efficacy of conventional recycling technique... Lithium-ion batteries(LIBs)are critical for the rapid growth of electric vehicles(EVs),but their inherent lifespan leads to numerous retirements and resource challenges.The efficacy of conventional recycling techniques is increasingly compromised by their high energy consumption and secondary pollution,rendering them less responsive to greener and more sustainable requirement of rapid development.Thus,the direct recycling process emerged and was considered as a more expedient and convenient method of recycling compared to the conventional recycling modes that are currently in study.However,due to the reliance on the indispensable sintering process,direct recycling still faces considerable challenges,motivating researchers to explore faster,greener,and more cost-effective strategies for LIBs recycling,Inspiringly,Joule heating recycling(JHR),an emerging technique,offers rapid,efficient impurity removal and material regeneration with minimal environmental impact,addressing limitations of existing methods.This method reduces the time for direct recycling of spent LIBs by a factor of at least three orders of magnitude and exhibits significant potential for future industrial production.Unfortunately,due to the lack of systematic organization and reporting,this next generation approach to direct recycling of spent LIBs has not yet gained much interest.To facilitate a more profound comprehension of rising flash recycling strategy,in this study,JHR is distinguished into two distinctive implementation pathways(including flash Joule heating and carbon thermal shock),designed to accommodate varying pretreatment stages and diverse spent LIBs materials.Subsequently,the advantages of the recently developed JHR of spent LIBs in terms of material performance,environmental friendliness,and economic viability are discussed in detail.Ultimately,with the goal of achieving more attractive society effects,the future direction of JHR of spent LIBs and its potential for practical application are proposed and envisaged. 展开更多
关键词 Joule heating Spent lithium-ionbatteries Flash recycling REGENERATION Upcycling
在线阅读 下载PDF
Soil colloids can significantly enhance spreading of polybromodiphenyl ethers in groundwater by serving as an effective carrier 被引量:1
10
作者 Lin Duan Min Li +1 位作者 Jiameng Liu Wei Chen 《Journal of Environmental Sciences》 2025年第1期93-100,共8页
Polybromodiphenyl ethers(PBDEs),the widely used flame retardants,are common contaminants in surface soils at e-waste recycling sites.The association of PBDEs with soil colloids has been observed,indicating the potenti... Polybromodiphenyl ethers(PBDEs),the widely used flame retardants,are common contaminants in surface soils at e-waste recycling sites.The association of PBDEs with soil colloids has been observed,indicating the potential risk to groundwater due to colloid-facilitated transport.However,the extent to which soil colloidsmay enhance the spreading of PBDEs in groundwater is largely unknown.Herein,we report the co-transport of decabromodiphenyl ester(BDE-209)and soil colloids in saturated porous media.The colloids released froma soil sample collected at an e-waste recycling site in Tianjin,China,contain high concentration of PBDEs,with BDE-209 being the most abundant conger(320±30 mg/kg).The colloids exhibit relatively high mobility in saturated sand columns,under conditions commonly observed in groundwater environments.Notably,under all the tested conditions(i.e.,varying flow velocity,pH,ionic species and ionic strength),the mass of eluted BDE-209 correlates linearly with that of eluted soil colloids,even though the mobility of the colloids varies markedly depending on the specific hydrodynamic and solution chemistry conditions involved.Additionally,the mass of BDE-209 retained in the columns also correlates strongly with themass of retained colloids.Apparently,the PBDEs remain bound to soil colloids during transport in porous media.Findings in this study indicate that soil colloidsmay significantly promote the transport of PBDEs in groundwater by serving as an effective carrier.This might be the reason why the highly insoluble and adsorptive PBDEs are found in groundwater at some PBDE-contaminated sites. 展开更多
关键词 Polybromodiphenyl ethers Soil colloids E-waste recycling sites GROUNDWATER Facilitated transport
原文传递
Thermodynamic and experimental evaluation of the sustainable recycling of magnesium alloy scrap by vacuum distillation based on vapor-liquid equilibrium 被引量:1
11
作者 Lipeng Wang Dong Liang +6 位作者 Yang Tian Jianxue Chai Rui Li Shuji Wu Bin Yang Baoqiang Xu Yong Deng 《Journal of Magnesium and Alloys》 2025年第1期283-295,共13页
Magnesium(Mg)alloys are widely used lightweight structural materials for automobiles and help reduce carbon emissions.However,their use increases the production of Mg alloy scrap,which is recycled at a much lower rate... Magnesium(Mg)alloys are widely used lightweight structural materials for automobiles and help reduce carbon emissions.However,their use increases the production of Mg alloy scrap,which is recycled at a much lower rate than aluminum,and its greater complexity poses challenges to existing recycling processes.Although vacuum distillation can be used to recycle Mg alloy scrap,this requires optimizing and maximizing metal recirculation,but there has been no thermodynamic analysis of this process.In this study,the feasibility and controllability of separating inclusions and 23 metal impurities were evaluated,and their distribution and removal limits were quantified.Thermodynamic analyses and experimental results showed that inclusions and impurity metals of separation coefficient lgβ_(i)≤-5,including Cu,Fe,Co,and Ni below 0.001 ppm,could be removed from the matrix.All Zn entered the recycled Mg,while impurities with-1<lgβ_(i)<-5 such as Li,Ca,and Mn severely affected the purity of the recycled Mg during the later stage of distillation.Therefore,an optimization strategy for vacuum distillation recycling:lower temperatures and higher system pressures for Zn separation in the early stage,and the early termination of the recovery process in the later stage or a continuous supply of raw melt can also prevent contamination during recycling.The alloying elements Al and Zn in Mg alloy scrap can be further recovered and purified by vacuum distillation when economically feasible,to maximize the recycling of metal resources. 展开更多
关键词 Magnesium alloy Scrap recycling Thermodynamic analysis Impurity removal Vacuum distillation
在线阅读 下载PDF
Progress in study of spray pyrolysis technology for chloride salt solutions in rare earth extraction and separation processes 被引量:1
12
作者 Ziyi Cheng Xiaowei Huang +5 位作者 Zongyu Feng Jianping Long Hai Yu Meng Wang Juanyu Yang Haiqing Hao 《Journal of Rare Earths》 2025年第10期2053-2064,I0001,共13页
This paper focuses on the preparation of rare earth oxide products from rare earth chloride solutions during the rare earth extraction and separation processes,as well as the recycling of magnesium chloride solutions.... This paper focuses on the preparation of rare earth oxide products from rare earth chloride solutions during the rare earth extraction and separation processes,as well as the recycling of magnesium chloride solutions.It proposes the idea of introducing spray pyrolysis technology into the rare earth extraction and separation processes.This paper briefly describes the development history of chloride spray pyrolysis technology,focusing on the research status and application progress of rare earth chloride solution and magnesium chloride solution spray pyrolysis technology,as well as spray pyrolysis equipment.The paper also analyzes the challenges and technical intricacies associated with applying spray pyrolysis technology to chloride solutions in the rare earth extraction and separation processes.Additionally,it explores future trends and proposes strategies to facilitate the full recycling of acids and bases,streamline the process flow,and enhance the prospects for green and low-carbon rare earth metallurgy. 展开更多
关键词 Rare earths Separation processes Spray pyrolysis technology Chloride salt solutions Green recycling
原文传递
Analyzing fatigue behaviors and predicting fatigue life of cement-stabilized permeable recycled aggregate material 被引量:1
13
作者 YANG Tao XIAO Yuan-jie +6 位作者 LI Yun-bo WANG Xiao-ming HUA Wen-jun HE Qing-yu CHEN Yu-liang ZHOU Zhen MENG Fan-wei 《Journal of Central South University》 2025年第4期1481-1502,共22页
Permeable roads generally exhibit inferior mechanical properties and shorter service life than traditional dense-graded/impermeable roads.Furthermore,the incorporation of recycled aggregates in their construction may ... Permeable roads generally exhibit inferior mechanical properties and shorter service life than traditional dense-graded/impermeable roads.Furthermore,the incorporation of recycled aggregates in their construction may exacerbate these limitations.To address these issues,this study introduced a novel cement-stabilized permeable recycled aggregate material.A total of 162 beam specimens prepared with nine different levels of cement-aggregate ratio were tested to evaluate their permeability,bending load,and bending fatigue life.The experimental results indicate that increasing the content of recycled aggregates led to a reduction in both permeability and bending load.Additionally,the inclusion of recycled aggregates diminished the energy dissipation capacity of the specimens.These findings were used to establish a robust relationship between the initial damage in cement-stabilized permeable recycled aggregate material specimens and their fatigue life,and to propose a predictive model for their fatigue performance.Further,a method for assessing fatigue damage based on the evolution of fatigue-induced strain and energy dissipation was developed.The findings of this study provide valuable insights into the mechanical behavior and fatigue performance of cement-stabilized permeable recycled aggregate materials,offering guidance for the design of low-carbon-emission,permeable,and durable roadways incorporating recycled aggregates. 展开更多
关键词 cement-stabilized permeable recycle aggregate materials PERMEABILITY fatigue life prediction fatigue damage energy dissipation
在线阅读 下载PDF
Recycling Polyvinyl Chloride(PVC)Pipe Wastes into PVC/ZnO Nanofiber-Based Triboelectric Nanogenerators 被引量:1
14
作者 Shabnam Yavari Merey Sembay +3 位作者 Yersaiyn Bushanov Zhumabay Bakenov Mehdi Shafiee Gulnur Kalimuldina 《Energy & Environmental Materials》 2025年第3期282-294,共13页
Recycling plastic waste into triboelectric nanogenerators(TENGs)presents a sustainable approach to energy harvesting,self-powered sensing,and environmental remediation.This study investigates the recycling of polyviny... Recycling plastic waste into triboelectric nanogenerators(TENGs)presents a sustainable approach to energy harvesting,self-powered sensing,and environmental remediation.This study investigates the recycling of polyvinyl chloride(PVC)pipe waste polymers into nanofibers(NFs)optimized for TENG applications.We focused on optimizing the morphology of recycled PVC polymer to NFs and enhancing their piezoelectric properties by incorporating ZnO nanoparticles(NPs).The optimized PVC/0.5 wt%ZnO NFs were tested with Nylon-6 NFs,and copper(Cu)electrodes.The Nylon-6 NFs exhibited a power density of 726.3μWcm^(-2)—1.13 times higher than Cu and maintained 90%stability after 172800 cycles,successfully powering various colored LEDs.Additionally,a 3D-designed device was developed to harvest energy from biomechanical movements such as finger tapping,hand tapping,and foot pressing,making it suitable for wearable energy harvesting,automatic switches,and invisible sensors in surveillance systems.This study demonstrates that recycling polymers for TENG devices can effectively address energy,sensor,and environmental challenges. 展开更多
关键词 energy harvesting motion sensors piezoelectric zinc oxide polyvinyl chloride(PVC) RECYCLING triboelectric nanogenerators
在线阅读 下载PDF
Industrial Untapped Rotational Kinetic Energy Assessment for Sustainable Energy Recycling 被引量:1
15
作者 See Wei Jing Md Tanjil Sarker +2 位作者 Gobbi Ramasamy Siva Priya Thiagarajah Fazlul Aman 《Energy Engineering》 2025年第3期905-927,共23页
Electrical energy can be harvested from the rotational kinetic energy of moving bodies,consisting of both mechanical and kinetic energy as a potential power source through electromagnetic induction,similar to wind ene... Electrical energy can be harvested from the rotational kinetic energy of moving bodies,consisting of both mechanical and kinetic energy as a potential power source through electromagnetic induction,similar to wind energy applications.In industries,rotational bodies are commonly present in operations,yet this kinetic energy remains untapped.This research explores the energy generation characteristics of two rotational body types,disk-shaped and cylinder-shaped under specific experimental setups.The hardware setup included a direct current(DC)motor driver,power supply,DC generator,mechanical support,and load resistance,while the software setup involved automation testing tools and data logging.Electromagnetic induction was used to harvest energy,and experiments were conducted at room temperature(25℃)with controlled variables like speed and friction.Results showed the disk-shaped body exhibited higher energy efficiency than the cylinder-shaped body,largely due to lower mechanical losses.The disk required only two bearings,while the cylinder required four,resulting in lower bearing losses for the disk.Additionally,the disk experienced only air friction,whereas the cylinder encountered friction from a soft,uneven rubber material,increasing surface contact losses.Under a 40 W resistive load,the disk demonstrated a 17.1%energy loss due to mechanical friction,achieving up to 15.55 J of recycled energy.Conversely,the cylinder body experienced a 48.05%energy loss,delivering only 51.95%of energy to the load.These insights suggest significant potential for designing efficient energy recycling systems in industrial settings,particularly in manufacturing and processing industries where rotational machinery is prevalent.Despite its lower energy density,this system could be beneficially integrated with energy storage solutions,enhancing sustainability in industrial practices. 展开更多
关键词 Rotational kinetic energy electromagnetic induction energy harvesting disk-shaped body cylinder-shaped body energy efficiency mechanical loss industrial energy recycling sustainable energy solutions
在线阅读 下载PDF
RF Optimizer Model for Predicting Compressive Strength of Recycled Concrete
16
作者 LIU Lin WANG Liuyan +1 位作者 WANG Hui SUN Huayue 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期215-223,共9页
Traditional machine learning(ML)encounters the challenge of parameter adjustment when predicting the compressive strength of reclaimed concrete.To address this issue,we introduce two optimized hybrid models:the Bayesi... Traditional machine learning(ML)encounters the challenge of parameter adjustment when predicting the compressive strength of reclaimed concrete.To address this issue,we introduce two optimized hybrid models:the Bayesian optimization model(B-RF)and the optimal model(Stacking model).These models are applied to a data set comprising 438 observations with five input variables,with the aim of predicting the compressive strength of reclaimed concrete.Furthermore,we evaluate the performance of the optimized models in comparison to traditional machine learning models,such as support vector regression(SVR),decision tree(DT),and random forest(RF).The results reveal that the Stacking model exhibits superior predictive performance,with evaluation indices including R2=0.825,MAE=2.818 and MSE=14.265,surpassing the traditional models.Moreover,we also performed a characteristic importance analysis on the input variables,and we concluded that cement had the greatest influence on the compressive strength of reclaimed concrete,followed by water.Therefore,the Stacking model can be recommended as a compressive strength prediction tool to partially replace laboratory compressive strength testing,resulting in time and cost savings. 展开更多
关键词 machine learning recycled concrete compressive strength
原文传递
A Printing Press
17
作者 Campbell Chang Ruth Devlin 《空中英语教室(初级版.大家说英语)》 2025年第10期36-37,54,55,共4页
Find It What did people use years ago to print things?Each year,the world produces millions of pounds of paper.A lot goes into the trash.Recycling means waste can be used again.To recycle paper,you usually need specia... Find It What did people use years ago to print things?Each year,the world produces millions of pounds of paper.A lot goes into the trash.Recycling means waste can be used again.To recycle paper,you usually need special tools and machines.But what if you could recycle paper by yourself?You could turn used paper into writing paper. 展开更多
关键词 printing press recycle paperyou RECYCLING MACHINES recycle paper TOOLS PAPER
原文传递
Compressive Behaviour of Reinforced Concrete Columns Using Recycled Building Glass Instead of Sand Aggregate in Concrete
18
作者 Thanh-Quang-Khai Lam Thi-Thuy-Trang Vo K.S.Sreekeshava 《Journal of Building Material Science》 2025年第1期1-19,共19页
Exploring alternative aggregates or recycled aggregates to substitute traditional concrete aggregates,particularly sand aggregates,which are becoming more limited and must comply with environmental protection standard... Exploring alternative aggregates or recycled aggregates to substitute traditional concrete aggregates,particularly sand aggregates,which are becoming more limited and must comply with environmental protection standards,is essential.Research has explored various alternative materials to sand in concrete,including concrete from demolished buildings,and broken glass from projects,among others.Investigating the use of recycled broken glass to substitute sand aggregates and implementing this research in compression columns is crucial.This paper examines the compressive behavior of reinforced concrete columns that utilize recycled glass particles as a substitute for sand in concrete.The research findings establish the relationships:load and vertical displacement,load and deformation at the column head,mid-column,and column base;the formation and propagation of cracks in the column,while considering factors such as the percentage of recycled glass,the arrangement of stirrups,and the amount of load-bearing steel influencing the performance of square reinforced concrete columns under compression.The feasibility of using recycled glass as a substitute for sand in column structures subjected to compression has been demonstrated,with the ideal replacement content for sand aggregate in reinforced concrete columns in this study ranging from 0%to 10%.The column’s load-bearing ability dropped from 250 kN to 150 kN when 100%recycled glass was used instead of sand.This is a 40%drop,and cracks started to show up sooner.The research will support recycling broken glass instead of using sand in building,improving the environment and reducing natural sand use. 展开更多
关键词 Recycled Aggregate Compressive Behaviour Sand Aggregate Concrete Mixture Vertical Displacement Recycled Glass
在线阅读 下载PDF
Recent advances of sustainable and recyclable polymer materials from renewable resources
19
作者 Ting Luo Yun Hu +2 位作者 Meng Zhang Puyou Jia Yonghong Zhou 《Resources Chemicals and Materials》 2025年第2期13-23,共11页
With the increasing consumption of non renewable resources such as oil,the traditional polymer manufacturing industry that relies on fossil resources is facing unprecedented challenges.The design,synthesis,and recycli... With the increasing consumption of non renewable resources such as oil,the traditional polymer manufacturing industry that relies on fossil resources is facing unprecedented challenges.The design,synthesis,and recycling of renewable and environmentally friendly bio-based polymers as alternatives to petroleum based polymers have become hot topics in research and industrial fields.Biomass has been used as a raw material to design and synthesize closed-loop recyclable polymers,which is of great significance in addressing the waste of resources and negative impact on the environment in the traditional polymer preparation process.This review summarized recent advances in the design,synthesis,and properties of closed-loop recyclable bio-based polymers,focusing on the sustainability and recyclability of bio-based materials,followed by a brief discussion of the potential applications of closed-loop recyclable bio-based polymers in emerging applications such as 3D printing and friction electric nanogenerators.In addition,perspectives and recommendations for future research on closedloop recyclable bio-based polymers were presented. 展开更多
关键词 Bio-based polymer Closed-loop recycling Dynamic crosslinking Chemical recycling
在线阅读 下载PDF
Batteries Receive a Second Life
20
作者 GE LIJUN 《China Today》 2025年第6期37-39,共3页
Recycling electric vehicle batteries has become a priority in China.NEW stationary power storage cabinets have been set up beside the parking lots of the Green Eco Manufacture(GEM)Industrial Park in Wuhan,Hubei Provin... Recycling electric vehicle batteries has become a priority in China.NEW stationary power storage cabinets have been set up beside the parking lots of the Green Eco Manufacture(GEM)Industrial Park in Wuhan,Hubei Province,to charge electric vehicles(EVs). 展开更多
关键词 BATTERIES China stationary power storage cabinets recycling electric vehicle batteries RECYCLING charge electric vehicles evs electric vehicle batteries priority
在线阅读 下载PDF
上一页 1 2 82 下一页 到第
使用帮助 返回顶部