期刊文献+
共找到905篇文章
< 1 2 46 >
每页显示 20 50 100
A Cross Attention Transformer-Mixed Feedback Video Recommendation Algorithm Based on DIEN
1
作者 Jianwei Zhang Zhishang Zhao +3 位作者 Zengyu Cai Yuan Feng Liang Zhu Yahui Sun 《Computers, Materials & Continua》 SCIE EI 2025年第1期977-996,共20页
The rapid development of short video platforms poses new challenges for traditional recommendation systems.Recommender systems typically depend on two types of user behavior feedback to construct user interest profile... The rapid development of short video platforms poses new challenges for traditional recommendation systems.Recommender systems typically depend on two types of user behavior feedback to construct user interest profiles:explicit feedback(interactive behavior),which significantly influences users’short-term interests,and implicit feedback(viewing time),which substantially affects their long-term interests.However,the previous model fails to distinguish between these two feedback methods,leading it to predict only the overall preferences of users based on extensive historical behavior sequences.Consequently,it cannot differentiate between users’long-term and shortterm interests,resulting in low accuracy in describing users’interest states and predicting the evolution of their interests.This paper introduces a video recommendationmodel calledCAT-MFRec(CrossAttention Transformer-Mixed Feedback Recommendation)designed to differentiate between explicit and implicit user feedback within the DIEN(Deep Interest Evolution Network)framework.This study emphasizes the separate learning of the two types of behavioral feedback,effectively integrating them through the cross-attention mechanism.Additionally,it leverages the long sequence dependence capabilities of Transformer technology to accurately construct user interest profiles and predict the evolution of user interests.Experimental results indicate that CAT-MF Rec significantly outperforms existing recommendation methods across various performance indicators.This advancement offers new theoretical and practical insights for the development of video recommendations,particularly in addressing complex and dynamic user behavior patterns. 展开更多
关键词 Video recommendation user interest cross-attention TRANSFORMER
在线阅读 下载PDF
A Hybrid Framework Combining Rule-Based and Deep Learning Approaches for Data-Driven Verdict Recommendations
2
作者 Muhammad Hameed Siddiqi Menwa Alshammeri +6 位作者 Jawad Khan Muhammad Faheem Khan Asfandyar Khan Madallah Alruwaili Yousef Alhwaiti Saad Alanazi Irshad Ahmad 《Computers, Materials & Continua》 2025年第6期5345-5371,共27页
As legal cases grow in complexity and volume worldwide,integrating machine learning and artificial intelligence into judicial systems has become a pivotal research focus.This study introduces a comprehensive framework... As legal cases grow in complexity and volume worldwide,integrating machine learning and artificial intelligence into judicial systems has become a pivotal research focus.This study introduces a comprehensive framework for verdict recommendation that synergizes rule-based methods with deep learning techniques specifically tailored to the legal domain.The proposed framework comprises three core modules:legal feature extraction,semantic similarity assessment,and verdict recommendation.For legal feature extraction,a rule-based approach leverages Black’s Law Dictionary and WordNet Synsets to construct feature vectors from judicial texts.Semantic similarity between cases is evaluated using a hybrid method that combines rule-based logic with an LSTM model,analyzing the feature vectors of query cases against a legal knowledge base.Verdicts are then recommended through a rule-based retrieval system,enhanced by predefined legal statutes and regulations.By merging rule-based methodologies with deep learning,this framework addresses the interpretability challenges often associated with contemporary AImodels,thereby enhancing both transparency and generalizability across diverse legal contexts.The system was rigorously tested using a legal corpus of 43,000 case laws across six categories:Criminal,Revenue,Service,Corporate,Constitutional,and Civil law,ensuring its adaptability across a wide range of judicial scenarios.Performance evaluation showed that the feature extraction module achieved an average accuracy of 91.6%with an F-Score of 95%.The semantic similarity module,tested using Manhattan,Euclidean,and Cosine distance metrics,achieved 88%accuracy and a 93%F-Score for short queries(Manhattan),89%accuracy and a 93.7%F-Score for medium-length queries(Euclidean),and 87%accuracy with a 92.5%F-Score for longer queries(Cosine).The verdict recommendation module outperformed existing methods,achieving 90%accuracy and a 93.75%F-Score.This study highlights the potential of hybrid AI frameworks to improve judicial decision-making and streamline legal processes,offering a robust,interpretable,and adaptable solution for the evolving demands of modern legal systems. 展开更多
关键词 Verdict recommendation legal knowledge base judicial text case laws semantic similarity legal domain features RULE-BASED deep learning
在线阅读 下载PDF
Improving Robustness for Tag Recommendation via Self-Paced Adversarial Metric Learning
3
作者 Zhengshun Fei Jianxin Chen +1 位作者 Gui Chen Xinjian Xiang 《Computers, Materials & Continua》 2025年第3期4237-4261,共25页
Tag recommendation systems can significantly improve the accuracy of information retrieval by recommending relevant tag sets that align with user preferences and resource characteristics.However,metric learning method... Tag recommendation systems can significantly improve the accuracy of information retrieval by recommending relevant tag sets that align with user preferences and resource characteristics.However,metric learning methods often suffer from high sensitivity,leading to unstable recommendation results when facing adversarial samples generated through malicious user behavior.Adversarial training is considered to be an effective method for improving the robustness of tag recommendation systems and addressing adversarial samples.However,it still faces the challenge of overfitting.Although curriculum learning-based adversarial training somewhat mitigates this issue,challenges still exist,such as the lack of a quantitative standard for attack intensity and catastrophic forgetting.To address these challenges,we propose a Self-Paced Adversarial Metric Learning(SPAML)method.First,we employ a metric learning model to capture the deep distance relationships between normal samples.Then,we incorporate a self-paced adversarial training model,which dynamically adjusts the weights of adversarial samples,allowing the model to progressively learn from simpler to more complex adversarial samples.Finally,we jointly optimize the metric learning loss and self-paced adversarial training loss in an adversarial manner,enhancing the robustness and performance of tag recommendation tasks.Extensive experiments on the MovieLens and LastFm datasets demonstrate that SPAML achieves F1@3 and NDCG@3 scores of 22%and 32.7%on the MovieLens dataset,and 19.4%and 29%on the LastFm dataset,respectively,outperforming the most competitive baselines.Specifically,F1@3 improves by 4.7%and 6.8%,and NDCG@3 improves by 5.0%and 6.9%,respectively. 展开更多
关键词 Tag recommendation metric learning adversarial training self-paced adversarial training ROBUSTNESS
在线阅读 下载PDF
Analysis of Causes and Recommendations for Premature Bolting in Huarong Large Leaf Mustard
4
作者 Shengquan SU Shaoxiang CHEN +3 位作者 Yunhua YAN Xu LIU Anzhong LI Daoyun GONG 《Plant Diseases and Pests》 2025年第1期34-37,共4页
A survey conducted on the premature bolting of Huarong large leaf mustard from 2018 to 2024 revealed that Huarong large leaf mustard sown in middle August was associated with a higher propensity for premature bolting.... A survey conducted on the premature bolting of Huarong large leaf mustard from 2018 to 2024 revealed that Huarong large leaf mustard sown in middle August was associated with a higher propensity for premature bolting. Furthermore, it was observed that the earlier being sown, the greater the rate of premature bolting when being sown prior to middle August. The rate of premature bolting observed in seedlings sown on August 8 was recorded at 35.6%. It was noted that as the age of the seedlings increased, the rate of premature bolting correspondingly increased. There were notable differences in the tolerance of various cultivars to elevated temperatures and prolonged sunlight exposure. For instance, cultivars such as Zhangjie 1 and Sichuan Shaguodi, which exhibit greater heat resistance, did not demonstrate premature bolting when sown in early August. The prolonged exposure to elevated temperatures, drought conditions, and extended periods of sunlight during the seedling stage of Huarong large leaf mustard, coupled with delayed irrigation and transplantation, contributed to the occurrence of premature bolting. The Huarong large leaf mustard, when been sown from late August to early September and transplanted at the appropriate time, exhibited normal growth and development, with no instances of premature bolting observed. It is advisable to select heat-resistant varieties, such as Zhangjie 1, prior to middle August. Huarong large leaf mustard should be sown in early to middle September. Additionally, it is essential to ensure centralized production and timely release of seeds, prompt transplantation and harvesting, and enhance the management of pests and diseases. 展开更多
关键词 Huarong large leaf mustard Premature bolting CAUSE recommendation
在线阅读 下载PDF
Personal Style Guided Outfit Recommendation with Multi-Modal Fashion Compatibility Modeling
5
作者 WANG Kexin ZHANG Jie +3 位作者 ZHANG Peng SUN Kexin ZHAN Jiamei WEI Meng 《Journal of Donghua University(English Edition)》 2025年第2期156-167,共12页
A personalized outfit recommendation has emerged as a hot research topic in the fashion domain.However,existing recommendations do not fully exploit user style preferences.Typically,users prefer particular styles such... A personalized outfit recommendation has emerged as a hot research topic in the fashion domain.However,existing recommendations do not fully exploit user style preferences.Typically,users prefer particular styles such as casual and athletic styles,and consider attributes like color and texture when selecting outfits.To achieve personalized outfit recommendations in line with user style preferences,this paper proposes a personal style guided outfit recommendation with multi-modal fashion compatibility modeling,termed as PSGNet.Firstly,a style classifier is designed to categorize fashion images of various clothing types and attributes into distinct style categories.Secondly,a personal style prediction module extracts user style preferences by analyzing historical data.Then,to address the limitations of single-modal representations and enhance fashion compatibility,both fashion images and text data are leveraged to extract multi-modal features.Finally,PSGNet integrates these components through Bayesian personalized ranking(BPR)to unify the personal style and fashion compatibility,where the former is used as personal style features and guides the output of the personalized outfit recommendation tailored to the target user.Extensive experiments on large-scale datasets demonstrate that the proposed model is efficient on the personalized outfit recommendation. 展开更多
关键词 personalized outfit recommendation fashion compatibility modeling style preference multi-modal representation Bayesian personalized ranking(BPR) style classifier
暂未订购
Real-time operational parameter recommendation system for tunnel boring machines:Application and performance analysis
6
作者 WANG Shuangjing WU Leijie LI Xu 《Journal of Mountain Science》 2025年第5期1819-1831,共13页
The accurate selection of operational parameters is critical for ensuring the safety,efficiency,and automation of Tunnel Boring Machine(TBM)operations.This study proposes a similarity-based framework integrating model... The accurate selection of operational parameters is critical for ensuring the safety,efficiency,and automation of Tunnel Boring Machine(TBM)operations.This study proposes a similarity-based framework integrating model-based boring indexes(derived from rock fragmentation mechanisms)and Euclidean distance analysis to achieve real-time recommendations of TBM operational parameters.Key performance indicators-thrust(F),torque(T),and penetration(p)-were used to calculate three model-based boring indexes(a,b,k),which quantify dynamic rock fragmentation behavior.A dataset of 359 candidate samples,reflecting diverse geological conditions from the Yin-Chao water conveyance project in Inner Mongolia,China,was utilized to validate the framework.The system dynamically recommends parameters by matching real-time data with historical cases through standardized Euclidean distance,achieving high accuracy.Specifically,the mean absolute error(MAE)for rotation speed(n)was 0.10 r/min,corresponding to a mean absolute percentage error(MAPE)of 1.09%.For advance rate(v),the MAE was 3.4 mm/min,with a MAPE of 4.50%.The predicted thrust(F)and torque(T)values exhibited strong agreement with field measurements,with MAEs of 270 kN and 178 kN∙m,respectively.Field applications demonstrated a 30%reduction in parameter adjustment time compared to empirical methods.This work provides a robust solution for real-time TBM control,advancing intelligent tunneling in complex geological environments. 展开更多
关键词 Tunnel Boring Machine Similarity based method Boring indexes Operational parameters Realtime recommendation
原文传递
A New Fuzzy Number Similarity Measure Based on Quadratic-Mean Operator for Handling Fuzzy Recommendation Problems
7
作者 Shijay Chen 《Journal of Computer and Communications》 2025年第1期108-124,共17页
This study presents a new approach that advances the algorithm of similarity measures between generalized fuzzy numbers. Following a brief introduction to some properties of the proposed method, a comparative analysis... This study presents a new approach that advances the algorithm of similarity measures between generalized fuzzy numbers. Following a brief introduction to some properties of the proposed method, a comparative analysis based on 36 sets of generalized fuzzy numbers was performed, in which the degree of similarity of the fuzzy numbers was calculated with the proposed method and seven methods established by previous studies in the literature. The results of the analytical comparison show that the proposed similarity outperforms the existing methods by overcoming their drawbacks and yielding accurate outcomes in all calculations of similarity measures under consideration. Finally, in a numerical example that involves recommending cars to customers based on a nine-member linguistic term set, the proposed similarity measure proves to be competent in addressing fuzzy number recommendation problems. 展开更多
关键词 Quadratic-Mean Operator Generalized Fuzzy Numbers Similarity Measures Fuzzy Number recommendation
在线阅读 下载PDF
DMGNN:A Dual Multi-Relational GNN Model for Enhanced Recommendation
8
作者 Siyue Li Tian Jin +3 位作者 Erfan Wang Ranting Tao Jiaxin Lu Kai Xi 《Computers, Materials & Continua》 2025年第8期2331-2353,共23页
In the era of exponential growth of digital information,recommender algorithms are vital for helping users navigate vast data to find relevant items.Traditional approaches such as collaborative filtering and contentba... In the era of exponential growth of digital information,recommender algorithms are vital for helping users navigate vast data to find relevant items.Traditional approaches such as collaborative filtering and contentbasedmethods have limitations in capturing complex,multi-faceted relationships in large-scale,sparse datasets.Recent advances in Graph Neural Networks(GNNs)have significantly improved recommendation performance by modeling high-order connection patterns within user-item interaction networks.However,existing GNN-based models like LightGCN and NGCF focus primarily on single-type interactions and often overlook diverse semantic relationships,leading to reduced recommendation diversity and limited generalization.To address these challenges,this paper proposes a dual multi-relational graph neural network recommendation algorithm based on relational interactions.Our approach constructs two complementary graph structures:a User-Item Interaction Graph(UIIG),which explicitly models direct user behaviors such as clicks and purchases,and a Relational Association Graph(RAG),which uncovers latent associations based on user similarities and item attributes.The proposed Dual Multi-relational Graph Neural Network(DMGNN)features two parallel branches that perform multi-layer graph convolutional operations,followed by an adaptive fusion mechanism to effectively integrate information from both graphs.This design enhances the model’s capacity to capture diverse relationship types and complex relational patterns.Extensive experiments conducted on benchmark datasets—including MovieLens-1M,Amazon-Electronics,and Yelp—demonstrate thatDMGNN outperforms state-of-the-art baselines,achieving improvements of up to 12.3%in Precision,9.7%in Recall,and 11.5%in F1 score.Moreover,DMGNN significantly boosts recommendation diversity by 15.2%,balancing accuracy with exploration.These results highlight the effectiveness of leveraging hierarchical multi-relational information,offering a promising solution to the challenges of data sparsity and relation heterogeneity in recommendation systems.Our work advances the theoretical understanding of multi-relational graph modeling and presents practical insights for developing more personalized,diverse,and robust recommender systems. 展开更多
关键词 recommendation algorithm graph neural network multi-relational graph relational interaction
在线阅读 下载PDF
Integration of Federated Learning and Graph Convolutional Networks for Movie Recommendation Systems
9
作者 Sony Peng Sophort Siet +3 位作者 Ilkhomjon Sadriddinov Dae-Young Kim Kyuwon Park Doo-Soon Park 《Computers, Materials & Continua》 2025年第5期2041-2057,共17页
Recommendation systems(RSs)are crucial in personalizing user experiences in digital environments by suggesting relevant content or items.Collaborative filtering(CF)is a widely used personalization technique that lever... Recommendation systems(RSs)are crucial in personalizing user experiences in digital environments by suggesting relevant content or items.Collaborative filtering(CF)is a widely used personalization technique that leverages user-item interactions to generate recommendations.However,it struggles with challenges like the cold-start problem,scalability issues,and data sparsity.To address these limitations,we develop a Graph Convolutional Networks(GCNs)model that captures the complex network of interactions between users and items,identifying subtle patterns that traditional methods may overlook.We integrate this GCNs model into a federated learning(FL)framework,enabling themodel to learn fromdecentralized datasets.This not only significantly enhances user privacy—a significant improvement over conventionalmodels but also reassures users about the safety of their data.Additionally,by securely incorporating demographic information,our approach further personalizes recommendations and mitigates the coldstart issue without compromising user data.We validate our RSs model using the openMovieLens dataset and evaluate its performance across six key metrics:Precision,Recall,Area Under the Receiver Operating Characteristic Curve(ROC-AUC),F1 Score,Normalized Discounted Cumulative Gain(NDCG),and Mean Reciprocal Rank(MRR).The experimental results demonstrate significant enhancements in recommendation quality,underscoring that combining GCNs with CF in a federated setting provides a transformative solution for advanced recommendation systems. 展开更多
关键词 recommendation systems collaborative filtering graph convolutional networks federated learning framework
在线阅读 下载PDF
HMGS:Hierarchical Matching Graph Neural Network for Session-Based Recommendation
10
作者 Pengfei Zhang Rui Xin +5 位作者 Xing Xu Yuzhen Wang Xiaodong Li Xiao Zhang Meina Song Zhonghong Ou 《Computers, Materials & Continua》 2025年第6期5413-5428,共16页
Session-based recommendation systems(SBR)are pivotal in suggesting items by analyzing anonymized sequences of user interactions.Traditional methods,while competent,often fall short in two critical areas:they fail to a... Session-based recommendation systems(SBR)are pivotal in suggesting items by analyzing anonymized sequences of user interactions.Traditional methods,while competent,often fall short in two critical areas:they fail to address potential inter-session item transitions,which are behavioral dependencies that extend beyond individual session boundaries,and they rely on monolithic item aggregation to construct session representations.This approach does not capture the multi-scale and heterogeneous nature of user intent,leading to a decrease in modeling accuracy.To overcome these limitations,a novel approach called HMGS has been introduced.This system incorporates dual graph architectures to enhance the recommendation process.A global transition graph captures latent cross-session item dependencies,while a heterogeneous intra-session graph encodesmulti-scale item embeddings through localized feature propagation.Additionally,amulti-tier graphmatchingmechanism aligns user preference signals across different granularities,significantly improving interest localization accuracy.Empirical validation on benchmark datasets(Tmall and Diginetica)confirms HMGS’s efficacy against state-of-the-art baselines.Quantitative analysis reveals performance gains of 20.54%and 12.63%in Precision@10 on Tmall and Diginetica,respectively.Consistent improvements are observed across auxiliary metrics,with MRR@10,Precision@20,and MRR@20 exhibiting enhancements between 4.00%and 21.36%,underscoring the framework’s robustness in multi-faceted recommendation scenarios. 展开更多
关键词 Session-based recommendation graph network multi-level matching
在线阅读 下载PDF
HyTiFRec:Hybrid Time-Frequency Dual-Branch Transformer for Sequential Recommendation
11
作者 Dawei Qiu Peng Wu +1 位作者 Xiaoming Zhang Renjie Xu 《Computers, Materials & Continua》 2025年第5期1753-1769,共17页
Recently,many Sequential Recommendation methods adopt self-attention mechanisms to model user preferences.However,these methods tend to focus more on low-frequency information while neglecting highfrequency informatio... Recently,many Sequential Recommendation methods adopt self-attention mechanisms to model user preferences.However,these methods tend to focus more on low-frequency information while neglecting highfrequency information,which makes them ineffective in balancing users’long-and short-term preferences.At the same time,manymethods overlook the potential of frequency domainmethods,ignoring their efficiency in processing frequency information.To overcome this limitation,we shift the focus to the combination of time and frequency domains and propose a novel Hybrid Time-Frequency Dual-Branch Transformer for Sequential Recommendation,namely HyTiFRec.Specifically,we design two hybrid filter modules:the learnable hybrid filter(LHF)and the window hybrid filter(WHF).We combine these with the Efficient Attention(EA)module to form the dual-branch structure to replace the self-attention components in Transformers.The EAmodule is used to extract sequential and global information.The LHF andWHF modules balance the proportion of different frequency bands,with LHF globally modulating the spectrum in the frequency domain and WHF retaining frequency components within specific local frequency bands.Furthermore,we use a time domain residual information addition operation in the hybrid filter module,which reduces information loss and further facilitates the hybrid of time-frequency methods.Extensive experiments on five widely-used real-world datasets show that our proposed method surpasses state-of-the-art methods. 展开更多
关键词 Sequential recommendation frequency domain efficient attention
在线阅读 下载PDF
MAMGBR: Group-Buying Recommendation Model Based on Multi-Head Attention Mechanism and Multi-Task Learning
12
作者 Zongzhe Xu Ming Yu 《Computers, Materials & Continua》 2025年第8期2805-2826,共22页
As the group-buying model shows significant progress in attracting new users,enhancing user engagement,and increasing platform profitability,providing personalized recommendations for group-buying users has emerged as... As the group-buying model shows significant progress in attracting new users,enhancing user engagement,and increasing platform profitability,providing personalized recommendations for group-buying users has emerged as a new challenge in the field of recommendation systems.This paper introduces a group-buying recommendation model based on multi-head attention mechanisms and multi-task learning,termed the Multi-head Attention Mechanisms and Multi-task Learning Group-Buying Recommendation(MAMGBR)model,specifically designed to optimize group-buying recommendations on e-commerce platforms.The core dataset of this study comes from the Chinese maternal and infant e-commerce platform“Beibei,”encompassing approximately 430,000 successful groupbuying actions and over 120,000 users.Themodel focuses on twomain tasks:recommending items for group organizers(Task Ⅰ)and recommending participants for a given group-buying event(Task Ⅱ).In model evaluation,MAMGBR achieves an MRR@10 of 0.7696 for Task I,marking a 20.23%improvement over baseline models.Furthermore,in Task II,where complex interaction patterns prevail,MAMGBR utilizes auxiliary loss functions to effectively model the multifaceted roles of users,items,and participants,leading to a 24.08%increase in MRR@100 under a 1:99 sample ratio.Experimental results show that compared to benchmark models,such as NGCF and EATNN,MAMGBR’s integration ofmulti-head attentionmechanisms,expert networks,and gating mechanisms enables more accurate modeling of user preferences and social associations within group-buying scenarios,significantly enhancing recommendation accuracy and platform group-buying success rates. 展开更多
关键词 Group-buying recommendation multi-head attention mechanism multi-task learning
在线阅读 下载PDF
Management of non-obstructive azoospermia: advances, challenges, and expert recommendations
13
作者 Amarnath Rambhatla Parviz K Kavoussi +1 位作者 Rupin Shah Ashok Agarwal 《Asian Journal of Andrology》 2025年第3期277-278,I0003,I0004,共4页
This special issue of the Asian Journal of Andrology is fully dedicated to the thematic area of non-obstructive azoospermia(NOA),one of the most complex and challenging conditions in the realm of andrology,urology,and... This special issue of the Asian Journal of Andrology is fully dedicated to the thematic area of non-obstructive azoospermia(NOA),one of the most complex and challenging conditions in the realm of andrology,urology,and reproductive medicine. 展开更多
关键词 non obstructive azoospermia ADVANCES MANAGEMENT expert recommendations CHALLENGES Asian Journal Andrology
原文传递
Clustering-based recommendation method with enhanced grasshopper optimisation algorithm
14
作者 Zihao Zhao Yingchun Xia +7 位作者 Wenjun Xu Hui Yu Shuai Yang Cheng Chen Xiaohui Yuan Xiaobo Zhou Qingyong Wang Lichuan Gu 《CAAI Transactions on Intelligence Technology》 2025年第2期494-509,共16页
In the era of big data,personalised recommendation systems are essential for enhancing user engagement and driving business growth.However,traditional recommendation algorithms,such as collaborative filtering,face sig... In the era of big data,personalised recommendation systems are essential for enhancing user engagement and driving business growth.However,traditional recommendation algorithms,such as collaborative filtering,face significant challenges due to data sparsity,algorithm scalability,and the difficulty of adapting to dynamic user preferences.These limitations hinder the ability of systems to provide highly accurate and personalised recommendations.To address these challenges,this paper proposes a clustering-based recommendation method that integrates an enhanced Grasshopper Optimisation Algorithm(GOA),termed LCGOA,to improve the accuracy and efficiency of recommendation systems by optimising cluster centroids in a dynamic environment.By combining the K-means algorithm with the enhanced GOA,which incorporates a Lévy flight mechanism and multi-strategy co-evolution,our method overcomes the centroid sensitivity issue,a key limitation in traditional clustering techniques.Experimental results across multiple datasets show that the proposed LCGOA-based method significantly outperforms conventional recommendation algorithms in terms of recommendation accuracy,offering more relevant content to users and driving greater customer satisfaction and business growth. 展开更多
关键词 collaborative recommendation Grasshopper Optimization Algorithm(GOA) K‐means clustering Lévy flight
在线阅读 下载PDF
Data Empowerment in Precision Marketing: Algorithm Recommendations and Their Associated Risks
15
作者 Di Zhou 《Proceedings of Business and Economic Studies》 2025年第1期111-118,共8页
This paper examines the impact of algorithmic recommendations and data-driven marketing on consumer engagement and business performance.By leveraging large volumes of user data,businesses can deliver personalized cont... This paper examines the impact of algorithmic recommendations and data-driven marketing on consumer engagement and business performance.By leveraging large volumes of user data,businesses can deliver personalized content that enhances user experiences and increases conversion rates.However,the growing reliance on these technologies introduces significant risks,including privacy violations,algorithmic bias,and ethical concerns.This paper explores these challenges and provides recommendations for businesses to mitigate associated risks while optimizing marketing strategies.It highlights the importance of transparency,fairness,and user control in ensuring responsible and effective data-driven marketing. 展开更多
关键词 Data-driven marketing Algorithmic recommendations Privacy and ethics
在线阅读 下载PDF
Evaluating the performance of the PREDAC method in flu vaccine recommendations over the past decade(2013-2023)
16
作者 Yousong Peng Lei Yang +6 位作者 Weijuan Huang Mi Liu Xiao Ding Xiangjun Du Yuelong Shu Taijiao Jiang Dayan Wang 《Virologica Sinica》 2025年第2期288-291,共4页
Dear Editor,Influenza viruses cause significant mortality and morbidity in humans.Vaccination is currently the most effective way to combat the virus(Perofsky and Nelson,2020).Unfortunately,the influenza virus frequen... Dear Editor,Influenza viruses cause significant mortality and morbidity in humans.Vaccination is currently the most effective way to combat the virus(Perofsky and Nelson,2020).Unfortunately,the influenza virus frequently changes its antigenicity through rapid mutations,leading to decreased vaccine efficacy or even failure.To improve vaccine effectiveness,it is necessary to monitor antigenic variation and update vaccine strains when significant antigenic variation occurs(Perofsky and Nelson,2020;Malik et al.,2024). 展开更多
关键词 antigenic variation influenza viruses update vaccine strains vaccination effectiveness influenza virus predac method monitor antigenic variation vaccine recommendations
原文传递
Promoting Tailored Hotel Recommendations Based on Traveller Preferences:A Circular Intuitionistic Fuzzy Decision Support Model
17
作者 Sana Shahab Ibtehal Alazman +4 位作者 Ashit Kumar Dutta Mohd Anjum Vladimir Simic Zeljko Stevic Nouf Abdulrahman Alqahtani 《Computer Modeling in Engineering & Sciences》 2025年第5期2155-2183,共29页
With the increasing complexity of hotel selection,traditional decision-making models often struggle to account for uncertainty and interrelated criteria.Multi-criteria decision-making(MCDM)techniques,particularly thos... With the increasing complexity of hotel selection,traditional decision-making models often struggle to account for uncertainty and interrelated criteria.Multi-criteria decision-making(MCDM)techniques,particularly those based on fuzzy logic,provide a robust framework for handling such challenges.This paper presents a novel approach to MCDM within the framework of Circular Intuitionistic Fuzzy Sets(C-IFS)by combining three distinct methodologies:Weighted Aggregated Sum Product Assessment(WASPAS),an Alternative Ranking Order Method Accounting for Two-Step Normalization(AROMAN),and the CRITIC method(Criteria Importance Through Inter-criteria Correlation).To address the dynamic nature of traveler preferences in hotel selection,the study employs a comprehensive set of criteria encompassing aspects such as location proximity,amenities,pricing,customer reviews,environmental impact,safety,booking flexibility,and cultural experiences.The CRITIC method is used to determine the importance of each criterion by assessing intercriteria correlations.AROMAN is employed for the systematic evaluation of alternatives,considering their additive relationships and providing a weighted assessment.WASPAS further analyzes the results obtained from AROMAN,incorporating both positive and negative aspects for a comprehensive evaluation.The integration of C-IFS enhances the model’s ability to manage uncertainty and imprecision in the decision-making process.Through a case study,we demonstrate the effectiveness of this integrated approach,offering decision-makers valuable insights for selecting the most suitable hotel option in alignment with the diverse preferences of contemporary travelers.This research contributes to the evolving field of decision science by showcasing the practical applicability of these methodologies within a C-IFS framework for complex decision scenarios. 展开更多
关键词 Multi-criteria decision-making circular intuitionistic fuzzy sets hotel recommendations
在线阅读 下载PDF
A Deep Collaborative Neural Generative Embedding for Rating Prediction in Movie Recommendation Systems
18
作者 Ravi Nahta Nagaraj Naik +1 位作者 Srivinay Swetha Parvatha Reddy Chandrasekhara 《Computer Modeling in Engineering & Sciences》 2025年第7期461-487,共27页
The exponential growth of over-the-top(OTT)entertainment has fueled a surge in content consumption across diverse formats,especially in regional Indian languages.With the Indian film industry producing over 1500 films... The exponential growth of over-the-top(OTT)entertainment has fueled a surge in content consumption across diverse formats,especially in regional Indian languages.With the Indian film industry producing over 1500 films annually in more than 20 languages,personalized recommendations are essential to highlight relevant content.To overcome the limitations of traditional recommender systems-such as static latent vectors,poor handling of cold-start scenarios,and the absence of uncertainty modeling-we propose a deep Collaborative Neural Generative Embedding(C-NGE)model.C-NGE dynamically learns user and item representations by integrating rating information and metadata features in a unified neural framework.It uses metadata as sampled noise and applies the reparameterization trick to capture latent patterns better and support predictions for new users or items without retraining.We evaluate CNGE on the Indian Regional Movies(IRM)dataset,along with MovieLens 100 K and 1 M.Results show that our model consistently outperforms several existing methods,and its extensibility allows for incorporating additional signals like user reviews and multimodal data to enhance recommendation quality. 展开更多
关键词 Cold start problem recommender systems METADATA deep learning collaborative filtering generative model
在线阅读 下载PDF
World Federation of Acupuncture-Moxibustion Societies Clinical Practice Guideline on Acupuncture-Moxibustion:Non-Specific Low Back Pain recommendation summaries 被引量:4
19
作者 Xiao-xu LIU Ying-ying GUO +9 位作者 Yu-tong FEI Man HUANG Yong-ming YE Jin-na YU Hui-ze LIN Wen-xi YAN Lan-ping LIU Ke-xin ZHU Jun LIANG Tao YANG 《World Journal of Acupuncture-Moxibustion》 CAS CSCD 2024年第3期213-221,共9页
Clinical Practice Guideline on Acupuncture and Moxibustion:Nonspecific low back pain was revised and released by the Standards Working Committee of World Federation of Acupuncture-Moxibustion Societies(WFAS)on October... Clinical Practice Guideline on Acupuncture and Moxibustion:Nonspecific low back pain was revised and released by the Standards Working Committee of World Federation of Acupuncture-Moxibustion Societies(WFAS)on October 9,2023.This is the first clinical practice guideline(CPG)on acupuncture and moxibustion for nonspecific low back pain approved by an international academic organization,which provides the evidence-based recommendations and practical therapeutic protocols for international acupuncture practitioners.This CPG was developed by following Grades of Recommendation,Assessment,Development,and Evaluation(GRADE)methodology,and the Principles of the World Health Organization Handbook for Guideline Development.The guideline development group(GDG)from different countries,with different professions,played a critical role in the formulation of clinical questions,recommendations,and therapeutic protocols.Recommendations are the key content of a CPG and the direct answers to clinical questions.Hence,this article focuses on the recommendations of this CPG.The recommendations were formulated using the modified Delphi method and the GRADE grid rules,based on the updated systematic reviews of clinical evidence.A total of seven recommendations for ten clinical questions were formulated in this CPG,including one conditional recommendation for either the intervention or the comparison based on very low quality of evidence,and six conditional recommendations for the intervention based on very low quality of evidence. 展开更多
关键词 Nonspecific lowbackpain Acupuncture MOXIBUSTION Clinical practice guideline recommendationS
原文传递
A multilayer network diffusion-based model for reviewer recommendation 被引量:1
20
作者 黄羿炜 徐舒琪 +1 位作者 蔡世民 吕琳媛 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期700-717,共18页
With the rapid growth of manuscript submissions,finding eligible reviewers for every submission has become a heavy task.Recommender systems are powerful tools developed in computer science and information science to d... With the rapid growth of manuscript submissions,finding eligible reviewers for every submission has become a heavy task.Recommender systems are powerful tools developed in computer science and information science to deal with this problem.However,most existing approaches resort to text mining techniques to match manuscripts with potential reviewers,which require high-quality textual information to perform well.In this paper,we propose a reviewer recommendation algorithm based on a network diffusion process on a scholar-paper multilayer network,with no requirement for textual information.The network incorporates the relationship of scholar-paper pairs,the collaboration among scholars,and the bibliographic coupling among papers.Experimental results show that our proposed algorithm outperforms other state-of-the-art recommendation methods that use graph random walk and matrix factorization and methods that use machine learning and natural language processing,with improvements of over 7.62%in recall,5.66%in hit rate,and 47.53%in ranking score.Our work sheds light on the effectiveness of multilayer network diffusion-based methods in the reviewer recommendation problem,which will help to facilitate the peer-review process and promote information retrieval research in other practical scenes. 展开更多
关键词 reviewer recommendation multilayer network network diffusion model recommender systems complex networks
原文传递
上一页 1 2 46 下一页 到第
使用帮助 返回顶部