We report the results of the experiment on synthesizing ^(287,288)Mc isotopes (Z=115) using the fusionevaporation reaction ^(243)Am(^(48)Ca,4n,3n)^(287,288)Mc at the Spectrometer for Heavy Atoms and Nuclear Structure-...We report the results of the experiment on synthesizing ^(287,288)Mc isotopes (Z=115) using the fusionevaporation reaction ^(243)Am(^(48)Ca,4n,3n)^(287,288)Mc at the Spectrometer for Heavy Atoms and Nuclear Structure-2(SHANS2),a gas-filled recoil separator located at the China Accelerator Facility for Superheavy Elements(CAFE2).In total,20 decay chains are attributed to ^(288)Mc and 1 decay chain is assigned to ^(287)Mc.The measured oa-decay properties of ^(287,288)Mc as well as its descendants are consistent with the known data.No additional decay chains originating from the 2n or 5n reaction channels were detected.The excitation function of the ^(243)Am(^(48)Ca,3n)^(288)Mc reaction was measured at the cross-section level of picobarn,which indicates the promising capability for the study of heavy and superheavy nuclei at the facility.展开更多
The poor electrical conductivity of metal-organic frameworks(MOFs)limits their electrocatalytic performance in the oxygen evolution reaction(OER).In this study,a Py@Co-MOF composite material based on pyrene(Py)molecul...The poor electrical conductivity of metal-organic frameworks(MOFs)limits their electrocatalytic performance in the oxygen evolution reaction(OER).In this study,a Py@Co-MOF composite material based on pyrene(Py)molecules and{[Co2(BINDI)(DMA)_(2)]·DMA}_(n)(Co-MOF,H4BINDI=N,N'-bis(5-isophthalic acid)naphthalenediimide,DMA=N,N-dimethylacetamide)was synthesized via a one-pot method,leveragingπ-πinteractions between pyrene and Co-MOF to modulate electrical conductivity.Results demonstrate that the Py@Co-MOF catalyst exhibited significantly enhanced OER performance compared to pure Co-MOF or pyrene-based electrodes,achieving an overpotential of 246 mV at a current density of 10 mA·cm^(-2) along with excellent stability.Density functional theory(DFT)calculations reveal that the formation of O*in the second step is the rate-determining step(RDS)during the OER process on Co-MOF,with an energy barrier of 0.85 eV due to the weak adsorption affinity of the OH*intermediate for Co sites.CCDC:2419276.展开更多
Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon...Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon neutrality goals.The hydrogenation of CO_(2)to methanol not only enables carbon sequestration and recycling,but also provides a route to produce high value-added fuels and basic chemical feedstocks,holding significant environmental and economic potential.However,this conversion process is thermodynamically and kinetically limited,and traditional catalyst systems(e.g.,Cu/ZnO/Al_(2)O_(3))exhibit inadequate activity,selectivity,and stability under mild conditions.Therefore,the development of novel high-performance catalysts with precisely tunable structures and functionalities is imperative.Metal-organic frameworks(MOFs),as crystalline porous materials with high surface area,tunable pore structures,and diverse metal-ligand compositions,have the great potential in CO_(2)hydrogenation catalysis.Their structural design flexibility allows for the construction of well-dispersed active sites,tailored electronic environments,and enhanced metal-support interactions.This review systematically summarizes the recent advances in MOF-based and MOF-derived catalysts for CO_(2)hydrogenation to methanol,focusing on four design strategies:(1)spatial confinement and in situ construction,(2)defect engineering and ion-exchange,(3)bimetallic synergy and hybrid structure design,and(4)MOF-derived nanomaterial synthesis.These approaches significantly improve CO_(2)conversion and methanol selectivity by optimizing metal dispersion,interfacial structures,and reaction pathways.The reaction mechanism is further explored by focusing on the three main reaction pathways:the formate pathway(HCOO*),the RWGS(Reverse Water Gas Shift reaction)+CO*hydrogenation pathway,and the trans-COOH pathway.In situ spectroscopic studies and density functional theory(DFT)calculations elucidate the formation and transformation of key intermediates,as well as the roles of active sites,metal-support interfaces,oxygen vacancies,and promoters.Additionally,representative catalytic performance data for MOFbased systems are compiled and compared,demonstrating their advantages over traditional catalysts in terms of CO_(2)conversion,methanol selectivity,and space-time yield.Future perspectives for MOF-based CO_(2)hydrogenation catalysts will prioritize two main directions:structural design and mechanistic understanding.The precise construction of active sites through multi-metallic synergy,defect engineering,and interfacial electronic modulation should be made to enhance catalyst selectivity and stability.In addition,advanced in situ characterization techniques combined with theoretical modeling are essential to unravel the detailed reaction mechanisms and intermediate behaviors,thereby guiding rational catalyst design.Moreover,to enable industrial application,challenges related to thermal/hydrothermal stability,catalyst recyclability,and cost-effective large-scale synthesis must be addressed.The development of green,scalable preparation methods and the integration of MOF catalysts into practical reaction systems(e.g.,flow reactors)will be crucial for bridging the gap between laboratory research and commercial deployment.Ultimately,multi-scale structure-performance optimization and catalytic system integration will be vital for accelerating the industrialization of MOF-based CO_(2)-to-methanol technologies.展开更多
The sulfation and decomposition process has proven effective in selectively extracting lithium from lepidolite.It is essential to clarify the thermochemical behavior and kinetic parameters of decomposition reactions.A...The sulfation and decomposition process has proven effective in selectively extracting lithium from lepidolite.It is essential to clarify the thermochemical behavior and kinetic parameters of decomposition reactions.Accordingly,comprehensive kinetic study by employing thermalgravimetric analysis at various heating rates was presented in this paper.Two main weight loss regions were observed during heating.The initial region corresponded to the dehydration of crystal water,whereas the subsequent region with overlapping peaks involved complex decomposition reactions.The overlapping peaks were separated into two individual reaction peaks and the activation energy of each peak was calculated using isoconversional kinetics methods.The activation energy of peak 1 exhibited a continual increase as the reaction conversion progressed,while that of peak 2 steadily decreased.The optimal kinetic models,identified as belonging to the random nucleation and subsequent growth category,provided valuable insights into the mechanism of the decomposition reactions.Furthermore,the adjustment factor was introduced to reconstruct the kinetic mechanism models,and the reconstructed models described the kinetic mechanism model more accurately for the decomposition reactions.This study enhanced the understanding of the thermochemical behavior and kinetic parameters of the lepidolite sulfation product decomposition reactions,further providing theoretical basis for promoting the selective extraction of lithium.展开更多
Developing efficient and durable electrocatalysts for acidic oxygen evolution reaction(OER)is pivotal for advancing proton exchange membrane water electrolysis(PEMWEs),yet balancing activity and stability remains a fo...Developing efficient and durable electrocatalysts for acidic oxygen evolution reaction(OER)is pivotal for advancing proton exchange membrane water electrolysis(PEMWEs),yet balancing activity and stability remains a formidable challenge.Herein,we propose a dual-engineering strategy to stabilize Ru-based catalysts by synergizing the oxygen vacancy site-synergized mechanism-lattice oxygen mechanism(OVSM-LOM)with Ru-N bond stabilization.The engineered RuO_(2)@NCC catalyst exhibits exceptional OER performance in 0.5 M H2SO4,achieving an ultralow overpotential of 215 mV at 10 mA cm^(-2) and prolonged stability for over 327 h.The catalyst delivers 300 h of continuous operation at 1 A cm^(-2),with a negligible degradation rate of only 0.067 mV h-1,further demonstrating its potential for practical application.Oxygen vacancies unlock the OVSM-LOM pathway,bypassing the sluggish adsorbate evolution mechanism(AEM)and accelerating reaction kinetics,while the Ru-N bonds suppress Ru dissolution by anchoring low-valent Ru centers.Quasi-in situ X-ray photoelectron spectroscopy(XPS),X-ray absorption spectroscopy(XAS),and isotopic labeling experiments confirm the lattice oxygen participation with *O formation as the rate-determining step.The Ru-N bonds reinforce the structural integrity by stabilizing low-valent Ru centers and inhibiting overoxidation.Theoretical calculations further verify that the synergistic interaction between OVs and Ru-O(N)active sites optimizes the Ru d-band center and stabilizes intermediates,while Ru-N coordination enhances structural integrity.This study establishes a novel paradigm for designing robust acidic OER catalysts through defect and coordination engineering,bridging the gap between activity and stability for sustainable energy technologies.展开更多
The differences in the competitive reactions of hydrogarnet and quicklime when reacting with titaniumcontaining and silicon-containing minerals during the Bayer digestion process were investigated.Thermodynamic analys...The differences in the competitive reactions of hydrogarnet and quicklime when reacting with titaniumcontaining and silicon-containing minerals during the Bayer digestion process were investigated.Thermodynamic analysis,artificial mineral experiments,and an evaluation of the digestion effect of natural diasporic bauxite were conducted.The results indicate that hydrogarnet shows a preferential reaction with anatase,and this preference becomes more pronounced as the silicon saturation coefficient increases.In contrast,quicklime participates in non-selective reactions with both anatase and desilication products(DSP).The preference of hydrogarnet for anatase significantly enhances the utilization efficiency of CaO in the high-temperature Bayer digestion process.展开更多
Metal halide perovskites(MHPs)with striking electrical and optical properties have appeared at the forefront of semiconductor materials for photocatalytic redox reactions but still suffer from some intrinsic drawbacks...Metal halide perovskites(MHPs)with striking electrical and optical properties have appeared at the forefront of semiconductor materials for photocatalytic redox reactions but still suffer from some intrinsic drawbacks such as inferior stability,severe charge-carrier recombination,and limited active sites.Heterojunctions have recently been widely constructed to improve light absorption,passivate surface for enhanced stability,and promote charge-carrier dynamics of MHPs.However,little attention has been paid to the review of MHPs-based heterojunctions for photocatalytic redox reactions.Here,recent advances of MHPs-based heterojunctions for photocatalytic redox reactions are highlighted.The structure,synthesis,and photophysical properties of MHPs-based heterojunctions are first introduced,including basic principles,categories(such as Schottky junction,type-I,type-II,Z-scheme,and S-scheme junction),and synthesis strategies.MHPs-based heterojunctions for photocatalytic redox reactions are then reviewed in four categories:H2evolution,CO_(2)reduction,pollutant degradation,and organic synthesis.The challenges and prospects in solar-light-driven redox reactions with MHPs-based heterojunctions in the future are finally discussed.展开更多
Heteroatom-doped carbon is considered a promising alternative to commercial Pt/C as an efficient catalyst for the oxygen reduction reaction(ORR).This study presents the synthesis of iron-loaded,sulfur and nitrogen co-...Heteroatom-doped carbon is considered a promising alternative to commercial Pt/C as an efficient catalyst for the oxygen reduction reaction(ORR).This study presents the synthesis of iron-loaded,sulfur and nitrogen co-doped carbon(Fe/SNC)via in situ incorporation of 2-aminothiazole molecules into zeolitic imidazolate framework-8(ZIF-8)through coordination between metal ions and organic ligands.Sulfur and nitrogen doping in carbon supports effectively modulates the electronic structure of the catalyst,increases the Brunauer-Emmett-Teller surface area,and exposes more Fe-N_(x)active centers.Fe-loaded,S and N co-doped carbon with Fe/S molar ratio of 1:10(Fe/SNC-10)exhibits a half-wave potential of 0.902 V vs.RHE.After 5000 cycles of cyclic voltammetry,its half-wave potential decreases by only 20 mV vs.RHE,indicating excellent stability.Due to sulfur s lower electronegativity,the electronic structure of the Fe-N_(x)active center is modulated.Additionally,the larger atomic radius of sulfur introduces defects into the carbon support.As a result,Fe/SNC-10 demonstrates superior ORR activity and stability in alkaline solution compared with Fe-loaded N-doped carbon(Fe/NC).Furthermore,the zinc-air battery assembled with the Fe/SNC-10 catalyst shows enhanced performance relative to those assembled with Fe/NC and Pt/C catalysts.This work offers a novel design strategy for advanced energy storage and conversion applications.展开更多
Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespr...Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespread attention for CO_(2)RR due to their high catalytic activity,selectivity,excellent stability,and low cost.However,they still need to be further improved to meet the needs of industrial applications.This review article comprehensively summarizes the recent advances in regulation strategies of Bi-based catalysts and can be divided into six categories:(1)defect engineering,(2)atomic doping engineering,(3)organic framework engineering,(4)inorganic heterojunction engineering,(5)crystal face engineering,and(6)alloying and polarization engineering.Meanwhile,the corresponding catalytic mechanisms of each regulation strategy will also be discussed in detail,aiming to enable researchers to understand the structure-property relationship of the improved Bibased catalysts fundamentally.Finally,the challenges and future opportunities of the Bi-based catalysts in the photoelectrocatalytic CO_(2)RR application field will also be featured from the perspectives of the(1)combination or synergy of multiple regulatory strategies,(2)revealing formation mechanism and realizing controllable synthesis,and(3)in situ multiscale investigation of activation pathways and uncovering the catalytic mechanisms.On the one hand,through the comparative analysis and mechanism explanation of the six major regulatory strategies,a multidimensional knowledge framework of the structure-activity relationship of Bi-based catalysts can be constructed for researchers,which not only deepens the atomic-level understanding of catalytic active sites,charge transport paths,and the adsorption behavior of intermediate products,but also provides theoretical guiding principles for the controllable design of new catalysts;on the other hand,the promising collaborative regulation strategies,controllable synthetic paths,and the in situ multiscale characterization techniques presented in this work provides a paradigm reference for shortening the research and development cycle of high-performance catalysts,conducive to facilitating the transition of photoelectrocatalytic CO_(2)RR technology from the laboratory routes to industrial application.展开更多
Accelerated industrialization combined with over-applied nitrogen fertilizers results in serious nitrate pollution insurface and ground water,disrupting the balance of the global nitrogen cycle.Electrochemical nitrate...Accelerated industrialization combined with over-applied nitrogen fertilizers results in serious nitrate pollution insurface and ground water,disrupting the balance of the global nitrogen cycle.Electrochemical nitrate reduction(eNO_(3)RR)emerges as an attractive strategy to simultaneously enable nitrate removal and decentralized ammo-nia fabrication,restoring the globally perturbed nitrogen cycle.However,complex deoxygenation-hydrogenationprocesses and sluggish proton-electron transfer kinetics significantly hinder practical application of eNO_(3)RR.In this study,we developed carbon-coated Cu-Ni bimetallic catalysts derived from metal-organic frameworks(MOFs)to facilitate eNO_(3)RR.The unique structural features of catalyst promote enhanced synergy between Cuand Ni,effectively addressing critical challenges in nitrate reduction.Comprehensive structural and electrochem-ical analysis demonstrate that electrochemical nitrate-to-nitrite conversion mainly takes place on active Cu sites,the introduction of Ni could efficiently accelerate the generation of aquatic active hydrogen,promoting the hy-drogenation of oxynitrides during eNO_(3)RR.In addition,Ni introduction could push up the d-band center of thecatalyst,thus enhancing the adsorption and activation of nitrate and the corresponding intermediates.Detailedreaction pathways for nitrate-to-ammonia conversion are illuminated by rotating disk electrode(RDE),in-situFourier-transform infrared spectroscopy,in-situ Raman spectrum and electrochemical impedance spectroscopy(EIS).Benefiting from the synergistic effect of Cu and Ni,optimum catalyst exhibited excellent nitrate reductionperformance.This work provides a new idea for elucidating the underlying eNO_(3)RR reaction mechanisms andcontributes a promising strategy for designing efficient bimetallic electrocatalysts.展开更多
Some active metal oxides(Al_(2)O_(3),TiO_(2),and Cr_(2)O_(3))were selected as dopants to the Al_(2)O_(3)-based ceramic shells for investment casting of K417G superalloy.The effects of dopant types and contents(0,2,5,a...Some active metal oxides(Al_(2)O_(3),TiO_(2),and Cr_(2)O_(3))were selected as dopants to the Al_(2)O_(3)-based ceramic shells for investment casting of K417G superalloy.The effects of dopant types and contents(0,2,5,and 8 wt.%)on the wettability and interfacial reaction between the alloy and shell were investigated by a sessile-drop experiment.The results show that increasing the Al_(2)O_(3) doping contents(0−8 wt.%)reduces the porosity(21.74%−10.08%)and roughness(3.22−1.34μm)of the shell surface.The increase in Cr_(2)O_(3) dopant content(2−8 wt.%)further exacerbates the interfacial reaction,leading to an increase in the thickness of the reaction layer(2.6−3.1μm)and a decrease in the wetting angle(93.9°−91.0°).The addition of Al_(2)O_(3) and TiO_(2) dopants leads to the formation of Al_(2)TiO_(5) composite oxides in the reaction products,which effectively inhibits the interfacial reaction.The increase in TiO_(2) dopant contents(0−8 wt.%)further promotes the formation of Al_(2)TiO_(5),which decreases the thickness of the interfacial reaction layer(3.9−1.2μm)and increases the wetting angle(95.0°−103.8°).The introduced dopants enhance the packing density of the shell surface,while simultaneously suppress the diffusion of active metal elements from the alloy matrix to the interface.展开更多
The investigation of reaction kinetics is the key to understanding the nature of reaction processes.However,monitoring fast photochemical reactions by mass spectrometry remains challenging.Herein,we developed an optic...The investigation of reaction kinetics is the key to understanding the nature of reaction processes.However,monitoring fast photochemical reactions by mass spectrometry remains challenging.Herein,we developed an optical focusing inductive electrospray(OF-iESI)mass spectrometry platform for real-time and in-situ photoreaction monitoring.Coaxial irradiation from back of nanoelectrospray emitter with a taper section was utilized,so the emitter could act as optical lens to help achieving much larger optical power density at emitter tip compared to other sections,which allowed for in-situ reaction monitoring of photoreactions.Through theoretical calculations,the highest optical power density region volume was ca.45 nL.We also integrated a controller for the laser source(450 nm),enabling the modulation of pulse duration(>1 ms).This facilitates the study of photochemical reaction kinetics.The in-situ capability of this device was proved by capturing the short-lived photogenerated intermediates during the dehydrogenation of tetrahydroquinoline.This device was further used to investigate the kinetics of triplet energy transfer based Paternò-Büchi reaction.The reaction order has hitherto remained undetermined while the result of OF-iESI suggested it followed pseudo-second-order reaction kinetics.The short-lived donor-acceptor collision complex intermediate was also successfully identified by tandem mass spectrometry.展开更多
Designing highly active electrocatalysts for the hydrogen evolution reaction(HER)and oxygen evolution and reduction reactions(OER and ORR)is pivotal to renewable energy technology.Herein,based on density functional th...Designing highly active electrocatalysts for the hydrogen evolution reaction(HER)and oxygen evolution and reduction reactions(OER and ORR)is pivotal to renewable energy technology.Herein,based on density functional theory(DFT)calculations,we systematically investigate the catalytic activity of iron-nitrogen-carbon based covalent organic frameworks(COF)monolayers with axially coordinated ligands(denotes as Fe N_(4)-X@COF,X refers to axial ligand,X=-SCN,-I,-H,-SH,-NO_(2),-Br,-ClO,-Cl,-HCO_(3),-NO,-ClO_(2),-OH,-CN and-F).The calculated results demonstrate that all the catalysts possess good thermodynamic and electrochemical stabilities.The different ligands axially ligated to the Fe active center could induce changes in the charge of the Fe center,which further regulates the interaction strength between intermediates and catalysts that governs the catalytic activity.Importantly,FeN_(4)-SH@COF and Fe N_(4)-OH@COF are efficient bifunctional catalysts for HER and OER,FeN_(4)-OH@COF and FeN_(4)-I@COF are promising bifunctional catalysts for OER and ORR.These findings not only reveal promising bifunctional HER/OER and OER/ORR catalysts but also provide theoretical guidance for designing optimum ironnitrogen-carbon based catalysts.展开更多
Electrochemical carbon dioxide reduction reaction(CO_(2)RR)converts CO_(2) into valuable chemicals by consuming renewable electricity at mild conditions,making it a promising approach to achieving carbon neutrality.Ho...Electrochemical carbon dioxide reduction reaction(CO_(2)RR)converts CO_(2) into valuable chemicals by consuming renewable electricity at mild conditions,making it a promising approach to achieving carbon neutrality.However,the reaction of CO_(2) with hydroxide ions to form carbonates leads to low carbon utilization and energy efficiency in near-neutral or alkaline CO_(2)RR.The high concentration of protons in acidic media can effectively mitigate carbonate formation and deposition,thereby significantly minimizing carbon loss and energy consumption.Unfortunately,hydrogen evolution reaction(HER)is more kinetically favorable than CO_(2)RR in acidic media.Herein,we comprehensively overview recent progress in acidic CO_(2)RR and propose two strategies derived from the competing reaction pathways of HER and CO_(2)RR:one focuses on regulating the H+mass transport,while the other aims to modulate the intrinsic kinetic activity of CO_(2)RR.The two strategies are designed to compete for the limited active sites on the catalyst surface,inhibit side reactions,and enhance the activity and selectivity of CO_(2)RR.The representative approaches include modulating the interface electric field,constructing a local alkaline environment,and regulating competing adsorption sites.Finally,we also review the technical challenges and future perspectives of acidic CO_(2)RR coupled with membrane electrode assemblies(MEAs).展开更多
Three efficient methods for the synthesis of a series of Cu(Ⅱ) and Cu(Ⅰ) complexes based on imidazo[1,5-a]pyridine derivatives were developed.These methods include the following:(ⅰ)Cu(Ⅱ) salts were used as metal s...Three efficient methods for the synthesis of a series of Cu(Ⅱ) and Cu(Ⅰ) complexes based on imidazo[1,5-a]pyridine derivatives were developed.These methods include the following:(ⅰ)Cu(Ⅱ) salts were used as metal sources and N,N-dimethylformamide was employed as a solvent as well as a reductant to produce Cu(Ⅰ) complexes.(ⅱ) An iodide-containing compound was utilized as a ligand and iodide source to prepare complexes.An in situ metalligand reaction occurred and an iodide-bridged copper complex was generated.(ⅲ) A series of aldehydes were added to the reaction systems to induce in situ metal-ligand reactions between the aldehydes and the imidazo[1,5-a]pyridine derivatives,producing polydentate ligand scaffolds.Eight complexes were prepared and characterized.The catalytic activities of these complexes toward the ketalization of ketones by ethylene glycol were investigated.With the exception of complex4,the remaining seven complexes all showed high catalytic activity.The lower activity of 4 may be due to the larger radius of bridging iodide ions and the shorter Cu(Ⅰ)…Cu(Ⅰ) distance.CCDC:2357696,1·2CH_(2)Cl_(2);2357697,2;2018292,3;2092192,4;2092190,5;2155557,6;2406155,7;2406156,8·EtOH.展开更多
Chemical reactions,which transform one set of substances to another,drive research in chemistry and biology.Recently,computer-aided chemical reaction prediction has spurred rapidly growing interest,and various deep le...Chemical reactions,which transform one set of substances to another,drive research in chemistry and biology.Recently,computer-aided chemical reaction prediction has spurred rapidly growing interest,and various deep learning-based algorithms have been proposed.However,current efforts primarily focus on developing models that support specific applications,with less emphasis on building unified frameworks that predict chemical reactions.Here,we developed Bidirectional Chemical Intelligent Net(Bi CINet),a prediction framework based on Bidirectional and Auto-Regressive Transformers(BARTs),for predicting chemical reactions in various tasks,including the bidirectional prediction of organic synthesis and enzyme-mediated chemical reactions.This versatile framework was trained using general chemical reactions and achieved top-1 forward and backward accuracies of 80.7%and 48.6%,respectively,for the public benchmark dataset USPTO_50K.By multitask transfer learning and integrating various task prompts into the model,Bi CINet enables retrosynthetic planning and metabolic prediction for small molecules,as well as retrosynthetic analysis and enzyme-catalyzed product prediction for natural products.These results demonstrate the superiority of our multifunctional framework for comprehensively understanding chemical reactions.展开更多
Continuous-flow upgrading of pentaerythritol synthesis technology via base-catalyzed aldol and Cannizzaro reactions of formaldehyde and acetaldehyde faces the challenge of effectively controlling the critical side rea...Continuous-flow upgrading of pentaerythritol synthesis technology via base-catalyzed aldol and Cannizzaro reactions of formaldehyde and acetaldehyde faces the challenge of effectively controlling the critical side reaction of hydroxymethyl acetaldehyde(HA)to the acrolein intermediate.Here,we first identified the forms of industrial formaldehyde as methane diol that easily converts to the alkaline formaldehyde under alkaline(NaOH)environment.The carbonyl group of alkaline formaldehyde induces deprotonation of acetaldehyde instead of the recognized base-hydroxyl group-induced deprotonation,and it needs to overcome only 18.31 kcal·mol^(-1)(1 kcal=4.186 kJ)energy barrier to form key intermediates of HA.The sodium solvation cage formed by NaOH hexa-coordinated formaldehyde effectively inhibits the alkalinity,thus contributing to a high energy barrier(46.21 kcal·mol^(-1))to unwanted acrolein formation.In addition,the solvation cage gradually opens to increase the alkalinity with the consumption of formaldehyde,thus facilitating the subsequent Cannizzaro reaction(to overcome 11.77 kcal·mol^(-1)).In comparison,strong alkalinity promotes the formation of acrolein(36.65 kcal·mol^(-1))to initiate the acetal side reaction,while weak alkalinity reduces the possibility of the Cannizzaro reaction(to overcome 20.44 kcal·mol^(-1)).This theoretically reveals the importance of the segmented feeding of weak and strong bases to successively control the aldol reaction and Cannizzaro reaction,and the combination of Na_(2)CO_(3) or HCOONa with NaOH improves the pentaerythritol yield by 7%to 13%compared to that of NaOH alone(70%yield)within 1 min at a throughput of 155.7 ml·min^(-1).展开更多
Unsaturated alcohols are a class of Biogenic volatile organic compounds(BVOCs)emitted in large quantities by plants when damaged or under adverse environmental conditions,and studies on their atmospheric degradation a...Unsaturated alcohols are a class of Biogenic volatile organic compounds(BVOCs)emitted in large quantities by plants when damaged or under adverse environmental conditions,and studies on their atmospheric degradation at night are still lacking.We used chamber experiments to study the gas-phase reactions of three unsaturated alcohols,E-2-penten-1-ol,Z-2-hexen-1-ol and Z-3-hepten-1-ol,with NO_(3)radicals(NO_(3)•)during the night.The rate constants of these reactions were(11.7±1.76)×10^(−13),(8.55±1.33)×10^(−13)and(6.08±0.47)×10^(−13)cm^(3)/(molecule·s)at 298K and 760 Torr,respectively.In contrast,the reaction rate of similar substances with ozone was about 10^(−18)cm^(3)/(molecule·s),which indicates that the reaction with NO_(3)•is themain oxidation pathway for unsaturated alcohols at night.Small molecule aldehydes and ketones were the main gas-phase organic products of the reaction of three aldehydes and ketones with NO_(3)•,and the total small molecule aldehydes and ketones yields can reach between 45%-60%.They mainly originate from the breakage of alkoxy radicals,and different breakage sites determine different product distributions.In addition,the SOA yields of the three unsaturated alcohols with NO_(3)•were 7.1%±1.0%,12.5%±1.9%and 30.0%±4.5%,respectively,whichweremuch higher than those of similarly structured substances with O_(3)or OH radicals(•OH).The results of high-resolution mass spectrometry shows that the main components of Secondary organic aerosol(SOA)of the three unsaturated alcohols are dimeric compounds containing several nitrate groups,which are formed through the polymerization of oxyalkyl radicals.展开更多
An in-depth understanding of the catalyst surface evolution is crucial for precise control of active sites,yet this aspect has often been overlooked.This study reveals the spontaneous anion regulation mechanism of Br-...An in-depth understanding of the catalyst surface evolution is crucial for precise control of active sites,yet this aspect has often been overlooked.This study reveals the spontaneous anion regulation mechanism of Br-doped CoP electrocatalysts in the alkaline hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).The introduction of Br modulates the electronic structure of the Co site,endowing Br-CoP with a more metallic character.In addition,P ion leaching promotes the in situ reconstruction of Br-CoOOH,which is the real active site for the OER reaction.Meanwhile,the HER situation is different.On the basis of P ion leaching,the leaching of Br ions promotes the formation of CoP-Co(OH)_(2) active species.In addition,Br doping enhances the adsorption of^(*)H,showing excellent H adsorption free energy,thereby greatly improving the HER activity.Simultaneously,it also enhances the adsorption of OOH^(*),effectively facilitating the occurrence of OER reactions.Br-CoP only needs 261 and 76 mV overpotential to drive the current density of 20 mA cm^(-2) and 10 mA^(-2),which can be maintained unchanged for 100 h.This study provides new insights into anion doping strategies and catalyst reconstruction mechanisms.展开更多
Storing hydrogen in green methanol is a well-known and cost-effective way for long-term energy storage.However,using green methanol in fuel cell technologies requires electrocatalysts with superior resistance to poiso...Storing hydrogen in green methanol is a well-known and cost-effective way for long-term energy storage.However,using green methanol in fuel cell technologies requires electrocatalysts with superior resistance to poisoning induced by intermediate species.This study introduces a new class of palladium-based rare earth(RE)alloys with exceptional resistance to methanol for the oxygen reduction reaction(ORR)and outstanding resistance to carbon monoxide poisoning for the hydrogen oxidation reaction(HOR).The PdEr catalyst achieved unparalleled ORR activity amongst the Pd-based rare earth alloys and demonstrated remarkable resistance to methanol poisoning,which is two orders of magnitude higher than commercial Pt/C catalysts.Furthermore,the PdEr catalyst shows high hydrogen oxidation activity under 100 ppm CO.Comprehensive analysis demonstrates that the RE element-enriched sublayer tuning of the Pd-skin's surface strain is responsible for the enhanced ORR and HOR capabilities.This modification allows for precise control over the adsorption strength of critical intermediates while concurrently diminishing the adsorption energy of methanol and CO on the PdEr surface.展开更多
基金supported in part by the National Key R&D Program of China (Contract Nos.2023YFA1606500,2024YFE0109800,and 2024YFE0110400)Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB34010000)+5 种基金the Gansu Key Project of Science and Technology (Grant No.23ZDGA014)the Guangdong Major Project of Basic and Applied Basic Research (Grant No.2021B0301030006)the National Natural Science Foundation of China (Grant Nos.12105328,W2412040,12475126,12422507,12035011,12375118,12435008,and W2412043)the Chinese Academy of Sciences Project for Young Scientists in Basic Research(Grant No.YSBR-002)the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant Nos.2020409 and 2023439)the Russian Science Foundation (Grant No.25-42-00003)。
文摘We report the results of the experiment on synthesizing ^(287,288)Mc isotopes (Z=115) using the fusionevaporation reaction ^(243)Am(^(48)Ca,4n,3n)^(287,288)Mc at the Spectrometer for Heavy Atoms and Nuclear Structure-2(SHANS2),a gas-filled recoil separator located at the China Accelerator Facility for Superheavy Elements(CAFE2).In total,20 decay chains are attributed to ^(288)Mc and 1 decay chain is assigned to ^(287)Mc.The measured oa-decay properties of ^(287,288)Mc as well as its descendants are consistent with the known data.No additional decay chains originating from the 2n or 5n reaction channels were detected.The excitation function of the ^(243)Am(^(48)Ca,3n)^(288)Mc reaction was measured at the cross-section level of picobarn,which indicates the promising capability for the study of heavy and superheavy nuclei at the facility.
文摘The poor electrical conductivity of metal-organic frameworks(MOFs)limits their electrocatalytic performance in the oxygen evolution reaction(OER).In this study,a Py@Co-MOF composite material based on pyrene(Py)molecules and{[Co2(BINDI)(DMA)_(2)]·DMA}_(n)(Co-MOF,H4BINDI=N,N'-bis(5-isophthalic acid)naphthalenediimide,DMA=N,N-dimethylacetamide)was synthesized via a one-pot method,leveragingπ-πinteractions between pyrene and Co-MOF to modulate electrical conductivity.Results demonstrate that the Py@Co-MOF catalyst exhibited significantly enhanced OER performance compared to pure Co-MOF or pyrene-based electrodes,achieving an overpotential of 246 mV at a current density of 10 mA·cm^(-2) along with excellent stability.Density functional theory(DFT)calculations reveal that the formation of O*in the second step is the rate-determining step(RDS)during the OER process on Co-MOF,with an energy barrier of 0.85 eV due to the weak adsorption affinity of the OH*intermediate for Co sites.CCDC:2419276.
基金Supported by the National Key Research and Development Program of China(2023YFB4104500,2023YFB4104502)the National Natural Science Foundation of China(22138013)the Taishan Scholar Project(ts201712020).
文摘Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon neutrality goals.The hydrogenation of CO_(2)to methanol not only enables carbon sequestration and recycling,but also provides a route to produce high value-added fuels and basic chemical feedstocks,holding significant environmental and economic potential.However,this conversion process is thermodynamically and kinetically limited,and traditional catalyst systems(e.g.,Cu/ZnO/Al_(2)O_(3))exhibit inadequate activity,selectivity,and stability under mild conditions.Therefore,the development of novel high-performance catalysts with precisely tunable structures and functionalities is imperative.Metal-organic frameworks(MOFs),as crystalline porous materials with high surface area,tunable pore structures,and diverse metal-ligand compositions,have the great potential in CO_(2)hydrogenation catalysis.Their structural design flexibility allows for the construction of well-dispersed active sites,tailored electronic environments,and enhanced metal-support interactions.This review systematically summarizes the recent advances in MOF-based and MOF-derived catalysts for CO_(2)hydrogenation to methanol,focusing on four design strategies:(1)spatial confinement and in situ construction,(2)defect engineering and ion-exchange,(3)bimetallic synergy and hybrid structure design,and(4)MOF-derived nanomaterial synthesis.These approaches significantly improve CO_(2)conversion and methanol selectivity by optimizing metal dispersion,interfacial structures,and reaction pathways.The reaction mechanism is further explored by focusing on the three main reaction pathways:the formate pathway(HCOO*),the RWGS(Reverse Water Gas Shift reaction)+CO*hydrogenation pathway,and the trans-COOH pathway.In situ spectroscopic studies and density functional theory(DFT)calculations elucidate the formation and transformation of key intermediates,as well as the roles of active sites,metal-support interfaces,oxygen vacancies,and promoters.Additionally,representative catalytic performance data for MOFbased systems are compiled and compared,demonstrating their advantages over traditional catalysts in terms of CO_(2)conversion,methanol selectivity,and space-time yield.Future perspectives for MOF-based CO_(2)hydrogenation catalysts will prioritize two main directions:structural design and mechanistic understanding.The precise construction of active sites through multi-metallic synergy,defect engineering,and interfacial electronic modulation should be made to enhance catalyst selectivity and stability.In addition,advanced in situ characterization techniques combined with theoretical modeling are essential to unravel the detailed reaction mechanisms and intermediate behaviors,thereby guiding rational catalyst design.Moreover,to enable industrial application,challenges related to thermal/hydrothermal stability,catalyst recyclability,and cost-effective large-scale synthesis must be addressed.The development of green,scalable preparation methods and the integration of MOF catalysts into practical reaction systems(e.g.,flow reactors)will be crucial for bridging the gap between laboratory research and commercial deployment.Ultimately,multi-scale structure-performance optimization and catalytic system integration will be vital for accelerating the industrialization of MOF-based CO_(2)-to-methanol technologies.
基金financially supported by the National Natural Science Foundation of China(Nos.52034002 and U2202254)the Fundamental Research Funds for the Central Universities,China(No.FRF-TT-19-001)。
文摘The sulfation and decomposition process has proven effective in selectively extracting lithium from lepidolite.It is essential to clarify the thermochemical behavior and kinetic parameters of decomposition reactions.Accordingly,comprehensive kinetic study by employing thermalgravimetric analysis at various heating rates was presented in this paper.Two main weight loss regions were observed during heating.The initial region corresponded to the dehydration of crystal water,whereas the subsequent region with overlapping peaks involved complex decomposition reactions.The overlapping peaks were separated into two individual reaction peaks and the activation energy of each peak was calculated using isoconversional kinetics methods.The activation energy of peak 1 exhibited a continual increase as the reaction conversion progressed,while that of peak 2 steadily decreased.The optimal kinetic models,identified as belonging to the random nucleation and subsequent growth category,provided valuable insights into the mechanism of the decomposition reactions.Furthermore,the adjustment factor was introduced to reconstruct the kinetic mechanism models,and the reconstructed models described the kinetic mechanism model more accurately for the decomposition reactions.This study enhanced the understanding of the thermochemical behavior and kinetic parameters of the lepidolite sulfation product decomposition reactions,further providing theoretical basis for promoting the selective extraction of lithium.
基金support from the National Natural Science Foundation of China(Nos.12305373 and 52276220)the Guangzhou Basic Research Program(No.SL2024A04J00234).
文摘Developing efficient and durable electrocatalysts for acidic oxygen evolution reaction(OER)is pivotal for advancing proton exchange membrane water electrolysis(PEMWEs),yet balancing activity and stability remains a formidable challenge.Herein,we propose a dual-engineering strategy to stabilize Ru-based catalysts by synergizing the oxygen vacancy site-synergized mechanism-lattice oxygen mechanism(OVSM-LOM)with Ru-N bond stabilization.The engineered RuO_(2)@NCC catalyst exhibits exceptional OER performance in 0.5 M H2SO4,achieving an ultralow overpotential of 215 mV at 10 mA cm^(-2) and prolonged stability for over 327 h.The catalyst delivers 300 h of continuous operation at 1 A cm^(-2),with a negligible degradation rate of only 0.067 mV h-1,further demonstrating its potential for practical application.Oxygen vacancies unlock the OVSM-LOM pathway,bypassing the sluggish adsorbate evolution mechanism(AEM)and accelerating reaction kinetics,while the Ru-N bonds suppress Ru dissolution by anchoring low-valent Ru centers.Quasi-in situ X-ray photoelectron spectroscopy(XPS),X-ray absorption spectroscopy(XAS),and isotopic labeling experiments confirm the lattice oxygen participation with *O formation as the rate-determining step.The Ru-N bonds reinforce the structural integrity by stabilizing low-valent Ru centers and inhibiting overoxidation.Theoretical calculations further verify that the synergistic interaction between OVs and Ru-O(N)active sites optimizes the Ru d-band center and stabilizes intermediates,while Ru-N coordination enhances structural integrity.This study establishes a novel paradigm for designing robust acidic OER catalysts through defect and coordination engineering,bridging the gap between activity and stability for sustainable energy technologies.
基金the financial support from the Natural Science Foundation of Hunan Province,China(No.2022JJ40616)。
文摘The differences in the competitive reactions of hydrogarnet and quicklime when reacting with titaniumcontaining and silicon-containing minerals during the Bayer digestion process were investigated.Thermodynamic analysis,artificial mineral experiments,and an evaluation of the digestion effect of natural diasporic bauxite were conducted.The results indicate that hydrogarnet shows a preferential reaction with anatase,and this preference becomes more pronounced as the silicon saturation coefficient increases.In contrast,quicklime participates in non-selective reactions with both anatase and desilication products(DSP).The preference of hydrogarnet for anatase significantly enhances the utilization efficiency of CaO in the high-temperature Bayer digestion process.
基金financially supported by National Natural Science Foundation of China(No.22302155)the Fundamental Research Funds of the Center Universities(No.D5000240188)the research program of ZJUT(YJY-ZS-20240001)。
文摘Metal halide perovskites(MHPs)with striking electrical and optical properties have appeared at the forefront of semiconductor materials for photocatalytic redox reactions but still suffer from some intrinsic drawbacks such as inferior stability,severe charge-carrier recombination,and limited active sites.Heterojunctions have recently been widely constructed to improve light absorption,passivate surface for enhanced stability,and promote charge-carrier dynamics of MHPs.However,little attention has been paid to the review of MHPs-based heterojunctions for photocatalytic redox reactions.Here,recent advances of MHPs-based heterojunctions for photocatalytic redox reactions are highlighted.The structure,synthesis,and photophysical properties of MHPs-based heterojunctions are first introduced,including basic principles,categories(such as Schottky junction,type-I,type-II,Z-scheme,and S-scheme junction),and synthesis strategies.MHPs-based heterojunctions for photocatalytic redox reactions are then reviewed in four categories:H2evolution,CO_(2)reduction,pollutant degradation,and organic synthesis.The challenges and prospects in solar-light-driven redox reactions with MHPs-based heterojunctions in the future are finally discussed.
基金financial support of the National Natural Science Foundation of China(No.52472271)the National Key Research and Development Program of China(No.2023YFE0115800)。
文摘Heteroatom-doped carbon is considered a promising alternative to commercial Pt/C as an efficient catalyst for the oxygen reduction reaction(ORR).This study presents the synthesis of iron-loaded,sulfur and nitrogen co-doped carbon(Fe/SNC)via in situ incorporation of 2-aminothiazole molecules into zeolitic imidazolate framework-8(ZIF-8)through coordination between metal ions and organic ligands.Sulfur and nitrogen doping in carbon supports effectively modulates the electronic structure of the catalyst,increases the Brunauer-Emmett-Teller surface area,and exposes more Fe-N_(x)active centers.Fe-loaded,S and N co-doped carbon with Fe/S molar ratio of 1:10(Fe/SNC-10)exhibits a half-wave potential of 0.902 V vs.RHE.After 5000 cycles of cyclic voltammetry,its half-wave potential decreases by only 20 mV vs.RHE,indicating excellent stability.Due to sulfur s lower electronegativity,the electronic structure of the Fe-N_(x)active center is modulated.Additionally,the larger atomic radius of sulfur introduces defects into the carbon support.As a result,Fe/SNC-10 demonstrates superior ORR activity and stability in alkaline solution compared with Fe-loaded N-doped carbon(Fe/NC).Furthermore,the zinc-air battery assembled with the Fe/SNC-10 catalyst shows enhanced performance relative to those assembled with Fe/NC and Pt/C catalysts.This work offers a novel design strategy for advanced energy storage and conversion applications.
基金supports from the National Natural Science Foundation of China(Grant Nos.12305372 and 22376217)the National Key Research&Development Program of China(Grant Nos.2022YFA1603802 and 2022YFB3504100)+1 种基金the projects of the key laboratory of advanced energy materials chemistry,ministry of education(Nankai University)key laboratory of Jiangxi Province for persistent pollutants prevention control and resource reuse(2023SSY02061)are gratefully acknowledged.
文摘Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespread attention for CO_(2)RR due to their high catalytic activity,selectivity,excellent stability,and low cost.However,they still need to be further improved to meet the needs of industrial applications.This review article comprehensively summarizes the recent advances in regulation strategies of Bi-based catalysts and can be divided into six categories:(1)defect engineering,(2)atomic doping engineering,(3)organic framework engineering,(4)inorganic heterojunction engineering,(5)crystal face engineering,and(6)alloying and polarization engineering.Meanwhile,the corresponding catalytic mechanisms of each regulation strategy will also be discussed in detail,aiming to enable researchers to understand the structure-property relationship of the improved Bibased catalysts fundamentally.Finally,the challenges and future opportunities of the Bi-based catalysts in the photoelectrocatalytic CO_(2)RR application field will also be featured from the perspectives of the(1)combination or synergy of multiple regulatory strategies,(2)revealing formation mechanism and realizing controllable synthesis,and(3)in situ multiscale investigation of activation pathways and uncovering the catalytic mechanisms.On the one hand,through the comparative analysis and mechanism explanation of the six major regulatory strategies,a multidimensional knowledge framework of the structure-activity relationship of Bi-based catalysts can be constructed for researchers,which not only deepens the atomic-level understanding of catalytic active sites,charge transport paths,and the adsorption behavior of intermediate products,but also provides theoretical guiding principles for the controllable design of new catalysts;on the other hand,the promising collaborative regulation strategies,controllable synthetic paths,and the in situ multiscale characterization techniques presented in this work provides a paradigm reference for shortening the research and development cycle of high-performance catalysts,conducive to facilitating the transition of photoelectrocatalytic CO_(2)RR technology from the laboratory routes to industrial application.
基金supported by the Natural Science Foundation of China(No.52101279)the Key Scientific Research Foundation of Education department of Hunan Province(No.24A0003)the Scientific Research Project of Education Department of Hunan Province(No.21B000)and the Fundamental Research Funds for the Central Universities of Central South University.
文摘Accelerated industrialization combined with over-applied nitrogen fertilizers results in serious nitrate pollution insurface and ground water,disrupting the balance of the global nitrogen cycle.Electrochemical nitrate reduction(eNO_(3)RR)emerges as an attractive strategy to simultaneously enable nitrate removal and decentralized ammo-nia fabrication,restoring the globally perturbed nitrogen cycle.However,complex deoxygenation-hydrogenationprocesses and sluggish proton-electron transfer kinetics significantly hinder practical application of eNO_(3)RR.In this study,we developed carbon-coated Cu-Ni bimetallic catalysts derived from metal-organic frameworks(MOFs)to facilitate eNO_(3)RR.The unique structural features of catalyst promote enhanced synergy between Cuand Ni,effectively addressing critical challenges in nitrate reduction.Comprehensive structural and electrochem-ical analysis demonstrate that electrochemical nitrate-to-nitrite conversion mainly takes place on active Cu sites,the introduction of Ni could efficiently accelerate the generation of aquatic active hydrogen,promoting the hy-drogenation of oxynitrides during eNO_(3)RR.In addition,Ni introduction could push up the d-band center of thecatalyst,thus enhancing the adsorption and activation of nitrate and the corresponding intermediates.Detailedreaction pathways for nitrate-to-ammonia conversion are illuminated by rotating disk electrode(RDE),in-situFourier-transform infrared spectroscopy,in-situ Raman spectrum and electrochemical impedance spectroscopy(EIS).Benefiting from the synergistic effect of Cu and Ni,optimum catalyst exhibited excellent nitrate reductionperformance.This work provides a new idea for elucidating the underlying eNO_(3)RR reaction mechanisms andcontributes a promising strategy for designing efficient bimetallic electrocatalysts.
基金supported by the National Natural Science Foundation of China (No. 52374292)China Baowu Low Carbon Metallurgy Innovation Foundation, China (No. BWLCF202309)the Natural Science Foundation of Changsha City, China (No. KQ2208271)。
文摘Some active metal oxides(Al_(2)O_(3),TiO_(2),and Cr_(2)O_(3))were selected as dopants to the Al_(2)O_(3)-based ceramic shells for investment casting of K417G superalloy.The effects of dopant types and contents(0,2,5,and 8 wt.%)on the wettability and interfacial reaction between the alloy and shell were investigated by a sessile-drop experiment.The results show that increasing the Al_(2)O_(3) doping contents(0−8 wt.%)reduces the porosity(21.74%−10.08%)and roughness(3.22−1.34μm)of the shell surface.The increase in Cr_(2)O_(3) dopant content(2−8 wt.%)further exacerbates the interfacial reaction,leading to an increase in the thickness of the reaction layer(2.6−3.1μm)and a decrease in the wetting angle(93.9°−91.0°).The addition of Al_(2)O_(3) and TiO_(2) dopants leads to the formation of Al_(2)TiO_(5) composite oxides in the reaction products,which effectively inhibits the interfacial reaction.The increase in TiO_(2) dopant contents(0−8 wt.%)further promotes the formation of Al_(2)TiO_(5),which decreases the thickness of the interfacial reaction layer(3.9−1.2μm)and increases the wetting angle(95.0°−103.8°).The introduced dopants enhance the packing density of the shell surface,while simultaneously suppress the diffusion of active metal elements from the alloy matrix to the interface.
基金financially supported by the National Natural Science Foundation of China(Nos.22104112 and 22374110)the Fundamental Research Funds for the Central Universities。
文摘The investigation of reaction kinetics is the key to understanding the nature of reaction processes.However,monitoring fast photochemical reactions by mass spectrometry remains challenging.Herein,we developed an optical focusing inductive electrospray(OF-iESI)mass spectrometry platform for real-time and in-situ photoreaction monitoring.Coaxial irradiation from back of nanoelectrospray emitter with a taper section was utilized,so the emitter could act as optical lens to help achieving much larger optical power density at emitter tip compared to other sections,which allowed for in-situ reaction monitoring of photoreactions.Through theoretical calculations,the highest optical power density region volume was ca.45 nL.We also integrated a controller for the laser source(450 nm),enabling the modulation of pulse duration(>1 ms).This facilitates the study of photochemical reaction kinetics.The in-situ capability of this device was proved by capturing the short-lived photogenerated intermediates during the dehydrogenation of tetrahydroquinoline.This device was further used to investigate the kinetics of triplet energy transfer based Paternò-Büchi reaction.The reaction order has hitherto remained undetermined while the result of OF-iESI suggested it followed pseudo-second-order reaction kinetics.The short-lived donor-acceptor collision complex intermediate was also successfully identified by tandem mass spectrometry.
基金supported by the National Natural Science Foundation of China(Nos.22102167 and U21A20317)。
文摘Designing highly active electrocatalysts for the hydrogen evolution reaction(HER)and oxygen evolution and reduction reactions(OER and ORR)is pivotal to renewable energy technology.Herein,based on density functional theory(DFT)calculations,we systematically investigate the catalytic activity of iron-nitrogen-carbon based covalent organic frameworks(COF)monolayers with axially coordinated ligands(denotes as Fe N_(4)-X@COF,X refers to axial ligand,X=-SCN,-I,-H,-SH,-NO_(2),-Br,-ClO,-Cl,-HCO_(3),-NO,-ClO_(2),-OH,-CN and-F).The calculated results demonstrate that all the catalysts possess good thermodynamic and electrochemical stabilities.The different ligands axially ligated to the Fe active center could induce changes in the charge of the Fe center,which further regulates the interaction strength between intermediates and catalysts that governs the catalytic activity.Importantly,FeN_(4)-SH@COF and Fe N_(4)-OH@COF are efficient bifunctional catalysts for HER and OER,FeN_(4)-OH@COF and FeN_(4)-I@COF are promising bifunctional catalysts for OER and ORR.These findings not only reveal promising bifunctional HER/OER and OER/ORR catalysts but also provide theoretical guidance for designing optimum ironnitrogen-carbon based catalysts.
基金supported by the National Natural Science Foundation of China(52301259 and 22208019)the Research Fund Program for Young Scholars of Beijing Institute of Technology。
文摘Electrochemical carbon dioxide reduction reaction(CO_(2)RR)converts CO_(2) into valuable chemicals by consuming renewable electricity at mild conditions,making it a promising approach to achieving carbon neutrality.However,the reaction of CO_(2) with hydroxide ions to form carbonates leads to low carbon utilization and energy efficiency in near-neutral or alkaline CO_(2)RR.The high concentration of protons in acidic media can effectively mitigate carbonate formation and deposition,thereby significantly minimizing carbon loss and energy consumption.Unfortunately,hydrogen evolution reaction(HER)is more kinetically favorable than CO_(2)RR in acidic media.Herein,we comprehensively overview recent progress in acidic CO_(2)RR and propose two strategies derived from the competing reaction pathways of HER and CO_(2)RR:one focuses on regulating the H+mass transport,while the other aims to modulate the intrinsic kinetic activity of CO_(2)RR.The two strategies are designed to compete for the limited active sites on the catalyst surface,inhibit side reactions,and enhance the activity and selectivity of CO_(2)RR.The representative approaches include modulating the interface electric field,constructing a local alkaline environment,and regulating competing adsorption sites.Finally,we also review the technical challenges and future perspectives of acidic CO_(2)RR coupled with membrane electrode assemblies(MEAs).
文摘Three efficient methods for the synthesis of a series of Cu(Ⅱ) and Cu(Ⅰ) complexes based on imidazo[1,5-a]pyridine derivatives were developed.These methods include the following:(ⅰ)Cu(Ⅱ) salts were used as metal sources and N,N-dimethylformamide was employed as a solvent as well as a reductant to produce Cu(Ⅰ) complexes.(ⅱ) An iodide-containing compound was utilized as a ligand and iodide source to prepare complexes.An in situ metalligand reaction occurred and an iodide-bridged copper complex was generated.(ⅲ) A series of aldehydes were added to the reaction systems to induce in situ metal-ligand reactions between the aldehydes and the imidazo[1,5-a]pyridine derivatives,producing polydentate ligand scaffolds.Eight complexes were prepared and characterized.The catalytic activities of these complexes toward the ketalization of ketones by ethylene glycol were investigated.With the exception of complex4,the remaining seven complexes all showed high catalytic activity.The lower activity of 4 may be due to the larger radius of bridging iodide ions and the shorter Cu(Ⅰ)…Cu(Ⅰ) distance.CCDC:2357696,1·2CH_(2)Cl_(2);2357697,2;2018292,3;2092192,4;2092190,5;2155557,6;2406155,7;2406156,8·EtOH.
基金financially supported by the National Natural Science Foundation of China(NSFC,No.82073692)CAMS Innovation Fund for Medical Sciences(CIFMS,No.2021-I2M-1-028)。
文摘Chemical reactions,which transform one set of substances to another,drive research in chemistry and biology.Recently,computer-aided chemical reaction prediction has spurred rapidly growing interest,and various deep learning-based algorithms have been proposed.However,current efforts primarily focus on developing models that support specific applications,with less emphasis on building unified frameworks that predict chemical reactions.Here,we developed Bidirectional Chemical Intelligent Net(Bi CINet),a prediction framework based on Bidirectional and Auto-Regressive Transformers(BARTs),for predicting chemical reactions in various tasks,including the bidirectional prediction of organic synthesis and enzyme-mediated chemical reactions.This versatile framework was trained using general chemical reactions and achieved top-1 forward and backward accuracies of 80.7%and 48.6%,respectively,for the public benchmark dataset USPTO_50K.By multitask transfer learning and integrating various task prompts into the model,Bi CINet enables retrosynthetic planning and metabolic prediction for small molecules,as well as retrosynthetic analysis and enzyme-catalyzed product prediction for natural products.These results demonstrate the superiority of our multifunctional framework for comprehensively understanding chemical reactions.
基金funded by the National Natural Science Foundation of China(22478632)Key Scientific and Technological Project of Henan Province(242102321032).
文摘Continuous-flow upgrading of pentaerythritol synthesis technology via base-catalyzed aldol and Cannizzaro reactions of formaldehyde and acetaldehyde faces the challenge of effectively controlling the critical side reaction of hydroxymethyl acetaldehyde(HA)to the acrolein intermediate.Here,we first identified the forms of industrial formaldehyde as methane diol that easily converts to the alkaline formaldehyde under alkaline(NaOH)environment.The carbonyl group of alkaline formaldehyde induces deprotonation of acetaldehyde instead of the recognized base-hydroxyl group-induced deprotonation,and it needs to overcome only 18.31 kcal·mol^(-1)(1 kcal=4.186 kJ)energy barrier to form key intermediates of HA.The sodium solvation cage formed by NaOH hexa-coordinated formaldehyde effectively inhibits the alkalinity,thus contributing to a high energy barrier(46.21 kcal·mol^(-1))to unwanted acrolein formation.In addition,the solvation cage gradually opens to increase the alkalinity with the consumption of formaldehyde,thus facilitating the subsequent Cannizzaro reaction(to overcome 11.77 kcal·mol^(-1)).In comparison,strong alkalinity promotes the formation of acrolein(36.65 kcal·mol^(-1))to initiate the acetal side reaction,while weak alkalinity reduces the possibility of the Cannizzaro reaction(to overcome 20.44 kcal·mol^(-1)).This theoretically reveals the importance of the segmented feeding of weak and strong bases to successively control the aldol reaction and Cannizzaro reaction,and the combination of Na_(2)CO_(3) or HCOONa with NaOH improves the pentaerythritol yield by 7%to 13%compared to that of NaOH alone(70%yield)within 1 min at a throughput of 155.7 ml·min^(-1).
基金supported by the National Key Research and Development Program of China(No.2020YFA0607800)the National Natural Science Foundation of China(Nos.42022039 and 42130606)Beijing National Laboratory for Molecular Sciences(No.BNLMS-CXXM-202011),the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.Y2021013).
文摘Unsaturated alcohols are a class of Biogenic volatile organic compounds(BVOCs)emitted in large quantities by plants when damaged or under adverse environmental conditions,and studies on their atmospheric degradation at night are still lacking.We used chamber experiments to study the gas-phase reactions of three unsaturated alcohols,E-2-penten-1-ol,Z-2-hexen-1-ol and Z-3-hepten-1-ol,with NO_(3)radicals(NO_(3)•)during the night.The rate constants of these reactions were(11.7±1.76)×10^(−13),(8.55±1.33)×10^(−13)and(6.08±0.47)×10^(−13)cm^(3)/(molecule·s)at 298K and 760 Torr,respectively.In contrast,the reaction rate of similar substances with ozone was about 10^(−18)cm^(3)/(molecule·s),which indicates that the reaction with NO_(3)•is themain oxidation pathway for unsaturated alcohols at night.Small molecule aldehydes and ketones were the main gas-phase organic products of the reaction of three aldehydes and ketones with NO_(3)•,and the total small molecule aldehydes and ketones yields can reach between 45%-60%.They mainly originate from the breakage of alkoxy radicals,and different breakage sites determine different product distributions.In addition,the SOA yields of the three unsaturated alcohols with NO_(3)•were 7.1%±1.0%,12.5%±1.9%and 30.0%±4.5%,respectively,whichweremuch higher than those of similarly structured substances with O_(3)or OH radicals(•OH).The results of high-resolution mass spectrometry shows that the main components of Secondary organic aerosol(SOA)of the three unsaturated alcohols are dimeric compounds containing several nitrate groups,which are formed through the polymerization of oxyalkyl radicals.
基金supported by the National Natural Science Foundation of China(62404063)the Natural Science Foundation of Heilongjiang Province(YQ2022B008,LH2023A011)+1 种基金the Basic research support plan project for outstanding young teachers in undergraduate universities of Heilongjiang Province(YQJH2023160)the Basic scientific research business expense project of Heilongjiang Provincial Department of Education(2022-KYYWF-0170).
文摘An in-depth understanding of the catalyst surface evolution is crucial for precise control of active sites,yet this aspect has often been overlooked.This study reveals the spontaneous anion regulation mechanism of Br-doped CoP electrocatalysts in the alkaline hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).The introduction of Br modulates the electronic structure of the Co site,endowing Br-CoP with a more metallic character.In addition,P ion leaching promotes the in situ reconstruction of Br-CoOOH,which is the real active site for the OER reaction.Meanwhile,the HER situation is different.On the basis of P ion leaching,the leaching of Br ions promotes the formation of CoP-Co(OH)_(2) active species.In addition,Br doping enhances the adsorption of^(*)H,showing excellent H adsorption free energy,thereby greatly improving the HER activity.Simultaneously,it also enhances the adsorption of OOH^(*),effectively facilitating the occurrence of OER reactions.Br-CoP only needs 261 and 76 mV overpotential to drive the current density of 20 mA cm^(-2) and 10 mA^(-2),which can be maintained unchanged for 100 h.This study provides new insights into anion doping strategies and catalyst reconstruction mechanisms.
基金supported by the National Key Research and Development Program of China,China(2023YFB4006202)the National Natural Science Foundation of China,China(22272206)the Natural Science Foundation of Hunan Province,China(2023JJ10061).
文摘Storing hydrogen in green methanol is a well-known and cost-effective way for long-term energy storage.However,using green methanol in fuel cell technologies requires electrocatalysts with superior resistance to poisoning induced by intermediate species.This study introduces a new class of palladium-based rare earth(RE)alloys with exceptional resistance to methanol for the oxygen reduction reaction(ORR)and outstanding resistance to carbon monoxide poisoning for the hydrogen oxidation reaction(HOR).The PdEr catalyst achieved unparalleled ORR activity amongst the Pd-based rare earth alloys and demonstrated remarkable resistance to methanol poisoning,which is two orders of magnitude higher than commercial Pt/C catalysts.Furthermore,the PdEr catalyst shows high hydrogen oxidation activity under 100 ppm CO.Comprehensive analysis demonstrates that the RE element-enriched sublayer tuning of the Pd-skin's surface strain is responsible for the enhanced ORR and HOR capabilities.This modification allows for precise control over the adsorption strength of critical intermediates while concurrently diminishing the adsorption energy of methanol and CO on the PdEr surface.