Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectra...Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectral similarity between buildings and backgrounds,sensor variations,and insufficient computational efficiency.To address these challenges,this paper proposes a novel Multi-scale Efficient Wavelet-based Change Detection Network(MewCDNet),which integrates the advantages of Convolutional Neural Networks and Transformers,balances computational costs,and achieves high-performance building change detection.The network employs EfficientNet-B4 as the backbone for hierarchical feature extraction,integrates multi-level feature maps through a multi-scale fusion strategy,and incorporates two key modules:Cross-temporal Difference Detection(CTDD)and Cross-scale Wavelet Refinement(CSWR).CTDD adopts a dual-branch architecture that combines pixel-wise differencing with semanticaware Euclidean distance weighting to enhance the distinction between true changes and background noise.CSWR integrates Haar-based Discrete Wavelet Transform with multi-head cross-attention mechanisms,enabling cross-scale feature fusion while significantly improving edge localization and suppressing spurious changes.Extensive experiments on four benchmark datasets demonstrate MewCDNet’s superiority over comparison methods:achieving F1 scores of 91.54%on LEVIR,93.70%on WHUCD,and 64.96%on S2Looking for building change detection.Furthermore,MewCDNet exhibits optimal performance on the multi-class⋅SYSU dataset(F1:82.71%),highlighting its exceptional generalization capability.展开更多
High-resolution remote sensing images(HRSIs)are now an essential data source for gathering surface information due to advancements in remote sensing data capture technologies.However,their significant scale changes an...High-resolution remote sensing images(HRSIs)are now an essential data source for gathering surface information due to advancements in remote sensing data capture technologies.However,their significant scale changes and wealth of spatial details pose challenges for semantic segmentation.While convolutional neural networks(CNNs)excel at capturing local features,they are limited in modeling long-range dependencies.Conversely,transformers utilize multihead self-attention to integrate global context effectively,but this approach often incurs a high computational cost.This paper proposes a global-local multiscale context network(GLMCNet)to extract both global and local multiscale contextual information from HRSIs.A detail-enhanced filtering module(DEFM)is proposed at the end of the encoder to refine the encoder outputs further,thereby enhancing the key details extracted by the encoder and effectively suppressing redundant information.In addition,a global-local multiscale transformer block(GLMTB)is proposed in the decoding stage to enable the modeling of rich multiscale global and local information.We also design a stair fusion mechanism to transmit deep semantic information from deep to shallow layers progressively.Finally,we propose the semantic awareness enhancement module(SAEM),which further enhances the representation of multiscale semantic features through spatial attention and covariance channel attention.Extensive ablation analyses and comparative experiments were conducted to evaluate the performance of the proposed method.Specifically,our method achieved a mean Intersection over Union(mIoU)of 86.89%on the ISPRS Potsdam dataset and 84.34%on the ISPRS Vaihingen dataset,outperforming existing models such as ABCNet and BANet.展开更多
Remote sensing image super-resolution technology is pivotal for enhancing image quality in critical applications including environmental monitoring,urban planning,and disaster assessment.However,traditional methods ex...Remote sensing image super-resolution technology is pivotal for enhancing image quality in critical applications including environmental monitoring,urban planning,and disaster assessment.However,traditional methods exhibit deficiencies in detail recovery and noise suppression,particularly when processing complex landscapes(e.g.,forests,farmlands),leading to artifacts and spectral distortions that limit practical utility.To address this,we propose an enhanced Super-Resolution Generative Adversarial Network(SRGAN)framework featuring three key innovations:(1)Replacement of L1/L2 loss with a robust Charbonnier loss to suppress noise while preserving edge details via adaptive gradient balancing;(2)A multi-loss joint optimization strategy dynamically weighting Charbonnier loss(β=0.5),Visual Geometry Group(VGG)perceptual loss(α=1),and adversarial loss(γ=0.1)to synergize pixel-level accuracy and perceptual quality;(3)A multi-scale residual network(MSRN)capturing cross-scale texture features(e.g.,forest canopies,mountain contours).Validated on Sentinel-2(10 m)and SPOT-6/7(2.5 m)datasets covering 904 km2 in Motuo County,Xizang,our method outperforms the SRGAN baseline(SR4RS)with Peak Signal-to-Noise Ratio(PSNR)gains of 0.29 dB and Structural Similarity Index(SSIM)improvements of 3.08%on forest imagery.Visual comparisons confirm enhanced texture continuity despite marginal Learned Perceptual Image Patch Similarity(LPIPS)increases.The method significantly improves noise robustness and edge retention in complex geomorphology,demonstrating 18%faster response in forest fire early warning and providing high-resolution support for agricultural/urban monitoring.Future work will integrate spectral constraints and lightweight architectures.展开更多
Spared regions of the damaged central nervous system undergo dynamic remodelling and exhibit a remarkable potential for therapeutic exploitation1.Lesion-remote astrocytes(LRAs),which interact with viable neurons and g...Spared regions of the damaged central nervous system undergo dynamic remodelling and exhibit a remarkable potential for therapeutic exploitation1.Lesion-remote astrocytes(LRAs),which interact with viable neurons and glia,undergo reactive transformations whose molecular and functional properties are poorly understood2.Here,using multiple transcriptional profiling methods,we investigated LRAs from spared regions of mouse spinal cord following traumatic spinal cord injury.展开更多
目前数据中心规模迅速扩大和网络带宽大幅度提升,传统软件网络协议栈的处理器开销较大,并且难以满足众多数据中心应用程序在吞吐、延迟等方面的需求.远程直接内存访问(remote direct memory access,RDMA)技术采用零拷贝、内核旁路和处...目前数据中心规模迅速扩大和网络带宽大幅度提升,传统软件网络协议栈的处理器开销较大,并且难以满足众多数据中心应用程序在吞吐、延迟等方面的需求.远程直接内存访问(remote direct memory access,RDMA)技术采用零拷贝、内核旁路和处理器功能卸载等思想,能够高带宽、低延迟地读写远端主机内存数据.兼容以太网的RDMA技术正在数据中心领域展开应用,以太网RDMA网卡作为主要功能承载设备,对其部署发挥重要作用.综述从架构、优化和实现评估3个方面进行分析:1)对以太网RDMA网卡的通用架构进行了总结,并对其关键功能部件进行了介绍;2)重点阐述了存储资源、可靠传输和应用相关3方面的优化技术,包括面向网卡缓存资源的连接可扩展性和面向主机内存资源的注册访问优化,面向有损以太网实现可靠传输的拥塞控制、流量控制和重传机制优化,面向分布式存储中不同存储类型、数据库系统、云存储系统以及面向数据中心应用的多租户性能隔离、安全性、可编程性等方面的优化工作;3)调研了不同实现方式、评估方式.最后,给出总结和展望.展开更多
Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may...Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may be related to neuroinflammation, cellular immunity, apoptosis, and autophagy, the exact underlying molecular mechanisms are unclear. This review summarizes the current status of different types of remote ischemic conditioning methods in animal and clinical studies and analyzes their commonalities and differences in neuroprotective mechanisms and signaling pathways. Remote ischemic conditioning has emerged as a potential therapeutic approach for improving stroke-induced brain injury owing to its simplicity, non-invasiveness, safety, and patient tolerability. Different forms of remote ischemic conditioning exhibit distinct intervention patterns, timing, and application range. Mechanistically, remote ischemic conditioning can exert neuroprotective effects by activating the Notch1/phosphatidylinositol 3-kinase/Akt signaling pathway, improving cerebral perfusion, suppressing neuroinflammation, inhibiting cell apoptosis, activating autophagy, and promoting neural regeneration. While remote ischemic conditioning has shown potential in improving stroke outcomes, its full clinical translation has not yet been achieved.展开更多
文章研究并解决数据中心的远程内存直接读取(remote direct memory access, RDMA)技术的网络拥塞控制问题。针对主流拥塞控制算法数据中心量化拥塞通知(data center quantized congestion notification, DCQCN)的收敛速度慢和缺乏硬件...文章研究并解决数据中心的远程内存直接读取(remote direct memory access, RDMA)技术的网络拥塞控制问题。针对主流拥塞控制算法数据中心量化拥塞通知(data center quantized congestion notification, DCQCN)的收敛速度慢和缺乏硬件实现方案的不足,提出可参数硬件化的数据中心量化拥塞通知(parameterized DCQCN,DCQCN-p)算法,该算法通过优化拥塞流的速度因子a、g调整速度比例Rc,并通过电路设计减少降速的频次;通过建立算法模型和搭建网络仿真NS-3平台,对比DCQCN-p算法在面临拥塞时单个调度流速度调整的性能以及多个调度流并发情况下的时延和吞吐量。仿真结果表明:在单个流面临拥塞时,DCQCN-p算法的数据传输速率比DCQCN算法的提高了50%;DCQCN-p算法在链路上最小速率为13.28 Gbit/s,相较于DCQCN、TIMELY、数据中心传输控制协议(data center transmission control protocol, DCTCP)算法,分别增长了24%、48%、23%;DCQCN-p算法(方差65%)的带宽分配公平性相较于TIMELY算法(方差216%)和DCTCP算法(方差191%)表现出显著的性能提升。展开更多
An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyram...An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyramid network(FPN)structure of the original YOLOv8 mode is replaced by the generalized-FPN(GFPN)structure in GiraffeDet to realize the"cross-layer"and"cross-scale"adaptive feature fusion,to enrich the semantic information and spatial information on the feature map to improve the target detection ability of the model.Secondly,a pyramid-pool module of multi atrous spatial pyramid pooling(MASPP)is designed by using the idea of atrous convolution and feature pyramid structure to extract multi-scale features,so as to improve the processing ability of the model for multi-scale objects.The experimental results show that the detection accuracy of the improved YOLOv8 model on DIOR dataset is 92%and mean average precision(mAP)is 87.9%,respectively 3.5%and 1.7%higher than those of the original model.It is proved the detection and classification ability of the proposed model on multi-dimensional optical remote sensing target has been improved.展开更多
INTRODUCTION.On May 1st,2024,around 2:10 a.m.,a catastrophic collapse occurred along the Meilong Expressway near Meizhou City,Guangdong Province,China,at coordinates 24°29′24″N and 116°40′25″E.This colla...INTRODUCTION.On May 1st,2024,around 2:10 a.m.,a catastrophic collapse occurred along the Meilong Expressway near Meizhou City,Guangdong Province,China,at coordinates 24°29′24″N and 116°40′25″E.This collapse resulted in a pavement failure of approximately 17.9 m in length and covering an area of about 184.3 m^(2)(Chinanews,2024).展开更多
Accurate fine-grained geospatial scene classification using remote sensing imagery is essential for a wide range of applications.However,existing approaches often rely on manually zooming remote sensing images at diff...Accurate fine-grained geospatial scene classification using remote sensing imagery is essential for a wide range of applications.However,existing approaches often rely on manually zooming remote sensing images at different scales to create typical scene samples.This approach fails to adequately support the fixed-resolution image interpretation requirements in real-world scenarios.To address this limitation,we introduce the million-scale fine-grained geospatial scene classification dataset(MEET),which contains over 1.03 million zoom-free remote sensing scene samples,manually annotated into 80 fine-grained categories.In MEET,each scene sample follows a scene-in-scene layout,where the central scene serves as the reference,and auxiliary scenes provide crucial spatial context for fine-grained classification.Moreover,to tackle the emerging challenge of scene-in-scene classification,we present the context-aware transformer(CAT),a model specifically designed for this task,which adaptively fuses spatial context to accurately classify the scene samples.CAT adaptively fuses spatial context to accurately classify the scene samples by learning attentional features that capture the relationships between the center and auxiliary scenes.Based on MEET,we establish a comprehensive benchmark for fine-grained geospatial scene classification,evaluating CAT against 11 competitive baselines.The results demonstrate that CAT significantly outperforms these baselines,achieving a 1.88%higher balanced accuracy(BA)with the Swin-Large backbone,and a notable 7.87%improvement with the Swin-Huge backbone.Further experiments validate the effectiveness of each module in CAT and show the practical applicability of CAT in the urban functional zone mapping.The source code and dataset will be publicly available at https://jerrywyn.github.io/project/MEET.html.展开更多
Yellow rust(Puccinia striiformis f.sp.Tritici,YR)and fusarium head blight(Fusarium graminearum,FHB)are the two main diseases affecting wheat in the main grain-producing areas of East China,which is common for the two ...Yellow rust(Puccinia striiformis f.sp.Tritici,YR)and fusarium head blight(Fusarium graminearum,FHB)are the two main diseases affecting wheat in the main grain-producing areas of East China,which is common for the two diseases to appear simultaneously in some main production areas.It is necessary to discriminate wheat YR and FHB at the regional scale to accurately locate the disease in space,conduct detailed disease severity monitoring,and scientific control.Four images on different dates were acquired from Sentinel-2,Landsat-8,and Gaofen-1 during the critical period of winter wheat,and 22 remote sensing features that characterize the wheat growth status were then calculated.Meanwhile,6 meteorological parameters that reflect the wheat phenological information were also obtained by combining the site meteorological data and spatial interpolation technology.Then,the principal components(PCs)of comprehensive remote sensing and meteorological features were extracted with principal component analysis(PCA).The PCs-based discrimination models were established to map YR and FHB damage using the random forest(RF)and backpropagation neural network(BPNN).The models’performance was verified based on the disease field truth data(57 plots during the filling period)and 5-fold cross-validation.The results revealed that the PCs obtained after PCA dimensionality reduction outperformed the initial features(IFs)from remote sensing and meteorology in discriminating between the two diseases.Compared to the IFs,the average area under the curve for both micro-average and macro-average ROC curves increased by 0.07 in the PCs-based RF models and increased by 0.16 and 0.13,respectively,in the PCs-based BPNN models.Notably,the PCs-based BPNN discrimination model emerged as the most effective,achieving an overall accuracy of 83.9%.Our proposed discrimination model for wheat YR and FHB,coupled with multi-source remote sensing images and meteorological data,overcomes the limitations of a single-sensor and single-phase remote sensing information in multiple stress discrimination in cloudy and rainy areas.It performs well in revealing the damage spatial distribution of the two diseases at a regional scale,providing a basis for detailed disease severity monitoring,and scientific prevention and control.展开更多
Cloud detection is a critical preprocessing step in remote sensing image processing, as the presence of clouds significantly affects the accuracy of remote sensing data and limits its applicability across various doma...Cloud detection is a critical preprocessing step in remote sensing image processing, as the presence of clouds significantly affects the accuracy of remote sensing data and limits its applicability across various domains. This study presents an enhanced cloud detection method based on the U-Net architecture, designed to address the challenges of multi-scale cloud features and long-range dependencies inherent in remote sensing imagery. A Multi-Scale Dilated Attention (MSDA) module is introduced to effectively integrate multi-scale information and model long-range dependencies across different scales, enhancing the model’s ability to detect clouds of varying sizes. Additionally, a Multi-Head Self-Attention (MHSA) mechanism is incorporated to improve the model’s capacity for capturing finer details, particularly in distinguishing thin clouds from surface features. A multi-path supervision mechanism is also devised to ensure the model learns cloud features at multiple scales, further boosting the accuracy and robustness of cloud mask generation. Experimental results demonstrate that the enhanced model achieves superior performance compared to other benchmarked methods in complex scenarios. It significantly improves cloud detection accuracy, highlighting its strong potential for practical applications in cloud detection tasks.展开更多
Remote sensing and web-based platforms have emerged as vital tools in the effective monitoring of mangrove ecosystems, which are crucial for coastal protection, biodiversity, and carbon sequestration. Utilizing satell...Remote sensing and web-based platforms have emerged as vital tools in the effective monitoring of mangrove ecosystems, which are crucial for coastal protection, biodiversity, and carbon sequestration. Utilizing satellite imagery and aerial data, remote sensing allows researchers to assess the health and extent of mangrove forests over large areas and time periods, providing insights into changes due to environmental stressors like climate change, urbanization, and deforestation. Coupled with web-based platforms, this technology facilitates real-time data sharing and collaborative research efforts among scientists, policymakers, and conservationists. Thus, there is a need to grow this research interest among experts working in this kind of ecosystem. The aim of this paper is to provide a comprehensive literature review on the effective role of remote sensing and web-based platform in monitoring mangrove ecosystem. The research paper utilized the thematic approach to extract specific information to use in the discussion which helped realize the efficiency of digital monitoring for the environment. Web-based platforms and remote sensing represent a powerful tool for environmental monitoring, particularly in the context of forest ecosystems. They facilitate the accessibility of vital data, promote collaboration among stakeholders, support evidence-based policymaking, and engage communities in conservation efforts. As experts confront the urgent challenges posed by climate change and environmental degradation, leveraging technology through web-based platforms is essential for fostering a sustainable future for the forests of the world.展开更多
Asymmetric allylic C—H functionalization is a valuable and challenging research area. Different from the conventional direct allylic C—H cleavage strategy, transition metal-catalyzed migratory allylic substitution o...Asymmetric allylic C—H functionalization is a valuable and challenging research area. Different from the conventional direct allylic C—H cleavage strategy, transition metal-catalyzed migratory allylic substitution of remote dienes has emerged as a new route to achieve allylic C—H functionalization enantioselectively. This review provides a detailed summary of the development and advance of this strategy, introduces the related mechanistic processes, and discusses the area based on the types of catalysts and products.展开更多
This study investigates the effects of AI-mediated communication (AMC) on trust-building and negotiation outcomes in professional remote collaboration settings. Through a mixed-methods approach combining experimental ...This study investigates the effects of AI-mediated communication (AMC) on trust-building and negotiation outcomes in professional remote collaboration settings. Through a mixed-methods approach combining experimental design and qualitative analysis (N = 120), we examine how AI intermediaries influence communication dynamics, relationship building, and decision-making processes. Results indicate that while AMC initially creates barriers to trust formation, it ultimately leads to enhanced communication outcomes and stronger professional relationships when implemented with appropriate transparency and support. The study revealed a 31% improvement in cross-cultural understanding and a 24% increase in negotiation satisfaction rates when using AI-mediated channels with proper transparency measures. These findings contribute to the theoretical understanding of technology-mediated communication and practical applications for organizations implementing AI communication tools.展开更多
This study presents an AI-driven Spatial Decision Support System (SDSS) aimed at transforming groundwater suitability assessments for domestic and irrigation uses in Visakhapatnam District, Andhra Pradesh, India. By e...This study presents an AI-driven Spatial Decision Support System (SDSS) aimed at transforming groundwater suitability assessments for domestic and irrigation uses in Visakhapatnam District, Andhra Pradesh, India. By employing advanced remote sensing, GIS, and machine learning techniques, groundwater quality data from 50 monitoring wells, sourced from the Central Ground Water Board (CGWB), was meticulously analysed. Key parameters, including pH, electrical conductivity, total dissolved solids, and major ion concentrations, were evaluated against World Health Organization (WHO) standards to determine domestic suitability. For irrigation, advanced metrics such as Sodium Adsorption Ratio (SAR), Kelly’s Ratio, Residual Sodium Carbonate (RSC), and percentage sodium (% Na) were utilized to assess water quality. The integration of GIS for spatial mapping and AI models for predictive analytics allows for a comprehensive visualization of groundwater quality distribution across the district. Additionally, the irrigation water quality was evaluated using the USA Salinity Laboratory diagram, providing essential insights for effective agricultural water management. This innovative SDSS framework promises to significantly enhance groundwater resource management, fostering sustainable practices for both domestic use and agriculture in the region.展开更多
Multifarious regions around the world are exposed to natural hazards and disasters,each with unique characteristics.A higher frequency of extreme hydro-meteorological events,most probably related to climate change,and...Multifarious regions around the world are exposed to natural hazards and disasters,each with unique characteristics.A higher frequency of extreme hydro-meteorological events,most probably related to climate change,and an increase in vulnerable population have been addressed as potential causes of such disasters.To mitigate the consequences of these disasters,Disaster Risk Management,including hazard assessment,elements-at-risk mapping,vulnerability and risk assessment of spatial components as well as Earth Observation(EO)products and Geographic Information Systems(GIS),should be considered.Multihazard assessment entails the evaluation of relationships between various hazards,including interconnected or cascading events,as well as focusing on various levels from global to local community levels,as each level manifests particular objectives and spatial data.This paper presents an overview of the diverse types of spatial data and explores the methods applied in hazard and risk assessments,with volcanic eruptions serving as a specific example.The rapid development of scientific research and the advancement of Earth Observation satellites in recent years have revolutionized the concepts of geologists and researchers.These satellites now play an indispensable role in supporting first responders during major disasters.The coordination of satellite deployment ensures a swift response along with allowing for the timely delivery of critical images.In tandem,remote sensing technologies and geographic information systems(GIS)have emerged as essential tools for geospatial analysis.The application of remote sensing and GIS for the detection of natural disasters was examined through a review of academic papers,offering an analysis of how remote sensing is utilized to assess natural hazards and their link to climate change.展开更多
Background Evidence on the effects of different exercise interventions on cognitive function is insufficient.Aims To evaluate the feasibility and effects of remotely supervised aerobic exercise(AE)and resistance exerc...Background Evidence on the effects of different exercise interventions on cognitive function is insufficient.Aims To evaluate the feasibility and effects of remotely supervised aerobic exercise(AE)and resistance exercise(RE)interventions in older adults with mild cognitive impairment(MCI).Methods This study is a 6-month pilot three-arm randomised controlled trial.Eligible participants(n=108)were recruited and randomised to the AE group,RE group or control(CON)group with a 1:1:1 ratio.Interventions were delivered at home with remote supervision.We evaluated participants’global cognition,memory,executive function,attention,physical activity levels,physical performance and muscle strength of limbs at baseline,3 months(T1)and 6 months(T2)after randomisation.A linear mixed-effects model was adopted for data analyses after controlling for covariates.Tukey’s method was used for adjusting for multiple comparisons.Sensitivity analyses were performed after excluding individuals with low compliance rates.Results 15(13.89%)participants dropped out.The median compliance rates in the AE group and RE group were 67.31%and 93.27%,respectively.After adjusting for covariates,the scores of the Alzheimer’s Disease Assessment Scale-Cognitive subscale in the AE group decreased by 2.04(95%confidence interval(CI)−3.41 to−0.67,t=−2.94,p=0.004)and 1.53(95%CI−2.88 to−0.17,t=−2.22,p=0.028)points more than those in the CON group at T1 and T2,respectively.The effects of AE were still significant at T1(estimate=−1.70,95%CI−3.20 to−0.21,t=−2.69,p=0.021),but lost statistical significance at T2 after adjusting for multiple comparisons.As for executive function,the Stroop time interference in the RE group decreased by 11.76 s(95%CI−21.62 to−1.90,t=−2.81,p=0.015)more than that in the AE group at T2 after Tukey’s adjustment.No other significant effects on cognitive functions were found.Conclusions Both remotely supervised AE and RE programmes are feasible in older adults with MCI.AE has positive effects on global cognition,and RE improves executive function.展开更多
基金supported by the Henan Province Key R&D Project under Grant 241111210400the Henan Provincial Science and Technology Research Project under Grants 252102211047,252102211062,252102211055 and 232102210069+2 种基金the Jiangsu Provincial Scheme Double Initiative Plan JSS-CBS20230474,the XJTLU RDF-21-02-008the Science and Technology Innovation Project of Zhengzhou University of Light Industry under Grant 23XNKJTD0205the Higher Education Teaching Reform Research and Practice Project of Henan Province under Grant 2024SJGLX0126。
文摘Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectral similarity between buildings and backgrounds,sensor variations,and insufficient computational efficiency.To address these challenges,this paper proposes a novel Multi-scale Efficient Wavelet-based Change Detection Network(MewCDNet),which integrates the advantages of Convolutional Neural Networks and Transformers,balances computational costs,and achieves high-performance building change detection.The network employs EfficientNet-B4 as the backbone for hierarchical feature extraction,integrates multi-level feature maps through a multi-scale fusion strategy,and incorporates two key modules:Cross-temporal Difference Detection(CTDD)and Cross-scale Wavelet Refinement(CSWR).CTDD adopts a dual-branch architecture that combines pixel-wise differencing with semanticaware Euclidean distance weighting to enhance the distinction between true changes and background noise.CSWR integrates Haar-based Discrete Wavelet Transform with multi-head cross-attention mechanisms,enabling cross-scale feature fusion while significantly improving edge localization and suppressing spurious changes.Extensive experiments on four benchmark datasets demonstrate MewCDNet’s superiority over comparison methods:achieving F1 scores of 91.54%on LEVIR,93.70%on WHUCD,and 64.96%on S2Looking for building change detection.Furthermore,MewCDNet exhibits optimal performance on the multi-class⋅SYSU dataset(F1:82.71%),highlighting its exceptional generalization capability.
基金provided by the Science Research Project of Hebei Education Department under grant No.BJK2024115.
文摘High-resolution remote sensing images(HRSIs)are now an essential data source for gathering surface information due to advancements in remote sensing data capture technologies.However,their significant scale changes and wealth of spatial details pose challenges for semantic segmentation.While convolutional neural networks(CNNs)excel at capturing local features,they are limited in modeling long-range dependencies.Conversely,transformers utilize multihead self-attention to integrate global context effectively,but this approach often incurs a high computational cost.This paper proposes a global-local multiscale context network(GLMCNet)to extract both global and local multiscale contextual information from HRSIs.A detail-enhanced filtering module(DEFM)is proposed at the end of the encoder to refine the encoder outputs further,thereby enhancing the key details extracted by the encoder and effectively suppressing redundant information.In addition,a global-local multiscale transformer block(GLMTB)is proposed in the decoding stage to enable the modeling of rich multiscale global and local information.We also design a stair fusion mechanism to transmit deep semantic information from deep to shallow layers progressively.Finally,we propose the semantic awareness enhancement module(SAEM),which further enhances the representation of multiscale semantic features through spatial attention and covariance channel attention.Extensive ablation analyses and comparative experiments were conducted to evaluate the performance of the proposed method.Specifically,our method achieved a mean Intersection over Union(mIoU)of 86.89%on the ISPRS Potsdam dataset and 84.34%on the ISPRS Vaihingen dataset,outperforming existing models such as ABCNet and BANet.
基金This study was supported by:Inner Mongolia Academy of Forestry Sciences Open Research Project(Grant No.KF2024MS03)The Project to Improve the Scientific Research Capacity of the Inner Mongolia Academy of Forestry Sciences(Grant No.2024NLTS04)The Innovation and Entrepreneurship Training Program for Undergraduates of Beijing Forestry University(Grant No.X202410022268).
文摘Remote sensing image super-resolution technology is pivotal for enhancing image quality in critical applications including environmental monitoring,urban planning,and disaster assessment.However,traditional methods exhibit deficiencies in detail recovery and noise suppression,particularly when processing complex landscapes(e.g.,forests,farmlands),leading to artifacts and spectral distortions that limit practical utility.To address this,we propose an enhanced Super-Resolution Generative Adversarial Network(SRGAN)framework featuring three key innovations:(1)Replacement of L1/L2 loss with a robust Charbonnier loss to suppress noise while preserving edge details via adaptive gradient balancing;(2)A multi-loss joint optimization strategy dynamically weighting Charbonnier loss(β=0.5),Visual Geometry Group(VGG)perceptual loss(α=1),and adversarial loss(γ=0.1)to synergize pixel-level accuracy and perceptual quality;(3)A multi-scale residual network(MSRN)capturing cross-scale texture features(e.g.,forest canopies,mountain contours).Validated on Sentinel-2(10 m)and SPOT-6/7(2.5 m)datasets covering 904 km2 in Motuo County,Xizang,our method outperforms the SRGAN baseline(SR4RS)with Peak Signal-to-Noise Ratio(PSNR)gains of 0.29 dB and Structural Similarity Index(SSIM)improvements of 3.08%on forest imagery.Visual comparisons confirm enhanced texture continuity despite marginal Learned Perceptual Image Patch Similarity(LPIPS)increases.The method significantly improves noise robustness and edge retention in complex geomorphology,demonstrating 18%faster response in forest fire early warning and providing high-resolution support for agricultural/urban monitoring.Future work will integrate spectral constraints and lightweight architectures.
文摘Spared regions of the damaged central nervous system undergo dynamic remodelling and exhibit a remarkable potential for therapeutic exploitation1.Lesion-remote astrocytes(LRAs),which interact with viable neurons and glia,undergo reactive transformations whose molecular and functional properties are poorly understood2.Here,using multiple transcriptional profiling methods,we investigated LRAs from spared regions of mouse spinal cord following traumatic spinal cord injury.
文摘目前数据中心规模迅速扩大和网络带宽大幅度提升,传统软件网络协议栈的处理器开销较大,并且难以满足众多数据中心应用程序在吞吐、延迟等方面的需求.远程直接内存访问(remote direct memory access,RDMA)技术采用零拷贝、内核旁路和处理器功能卸载等思想,能够高带宽、低延迟地读写远端主机内存数据.兼容以太网的RDMA技术正在数据中心领域展开应用,以太网RDMA网卡作为主要功能承载设备,对其部署发挥重要作用.综述从架构、优化和实现评估3个方面进行分析:1)对以太网RDMA网卡的通用架构进行了总结,并对其关键功能部件进行了介绍;2)重点阐述了存储资源、可靠传输和应用相关3方面的优化技术,包括面向网卡缓存资源的连接可扩展性和面向主机内存资源的注册访问优化,面向有损以太网实现可靠传输的拥塞控制、流量控制和重传机制优化,面向分布式存储中不同存储类型、数据库系统、云存储系统以及面向数据中心应用的多租户性能隔离、安全性、可编程性等方面的优化工作;3)调研了不同实现方式、评估方式.最后,给出总结和展望.
基金supported partly by the National Natural Science Foundation of China,No.82071332the Chongqing Natural Science Foundation Joint Fund for Innovation and Development,No.CSTB2023NSCQ-LZX0041 (both to ZG)。
文摘Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may be related to neuroinflammation, cellular immunity, apoptosis, and autophagy, the exact underlying molecular mechanisms are unclear. This review summarizes the current status of different types of remote ischemic conditioning methods in animal and clinical studies and analyzes their commonalities and differences in neuroprotective mechanisms and signaling pathways. Remote ischemic conditioning has emerged as a potential therapeutic approach for improving stroke-induced brain injury owing to its simplicity, non-invasiveness, safety, and patient tolerability. Different forms of remote ischemic conditioning exhibit distinct intervention patterns, timing, and application range. Mechanistically, remote ischemic conditioning can exert neuroprotective effects by activating the Notch1/phosphatidylinositol 3-kinase/Akt signaling pathway, improving cerebral perfusion, suppressing neuroinflammation, inhibiting cell apoptosis, activating autophagy, and promoting neural regeneration. While remote ischemic conditioning has shown potential in improving stroke outcomes, its full clinical translation has not yet been achieved.
文摘文章研究并解决数据中心的远程内存直接读取(remote direct memory access, RDMA)技术的网络拥塞控制问题。针对主流拥塞控制算法数据中心量化拥塞通知(data center quantized congestion notification, DCQCN)的收敛速度慢和缺乏硬件实现方案的不足,提出可参数硬件化的数据中心量化拥塞通知(parameterized DCQCN,DCQCN-p)算法,该算法通过优化拥塞流的速度因子a、g调整速度比例Rc,并通过电路设计减少降速的频次;通过建立算法模型和搭建网络仿真NS-3平台,对比DCQCN-p算法在面临拥塞时单个调度流速度调整的性能以及多个调度流并发情况下的时延和吞吐量。仿真结果表明:在单个流面临拥塞时,DCQCN-p算法的数据传输速率比DCQCN算法的提高了50%;DCQCN-p算法在链路上最小速率为13.28 Gbit/s,相较于DCQCN、TIMELY、数据中心传输控制协议(data center transmission control protocol, DCTCP)算法,分别增长了24%、48%、23%;DCQCN-p算法(方差65%)的带宽分配公平性相较于TIMELY算法(方差216%)和DCTCP算法(方差191%)表现出显著的性能提升。
基金supported by the National Natural Science Foundation of China(No.62241109)the Tianjin Science and Technology Commissioner Project(No.20YDTPJC01110)。
文摘An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyramid network(FPN)structure of the original YOLOv8 mode is replaced by the generalized-FPN(GFPN)structure in GiraffeDet to realize the"cross-layer"and"cross-scale"adaptive feature fusion,to enrich the semantic information and spatial information on the feature map to improve the target detection ability of the model.Secondly,a pyramid-pool module of multi atrous spatial pyramid pooling(MASPP)is designed by using the idea of atrous convolution and feature pyramid structure to extract multi-scale features,so as to improve the processing ability of the model for multi-scale objects.The experimental results show that the detection accuracy of the improved YOLOv8 model on DIOR dataset is 92%and mean average precision(mAP)is 87.9%,respectively 3.5%and 1.7%higher than those of the original model.It is proved the detection and classification ability of the proposed model on multi-dimensional optical remote sensing target has been improved.
基金supported by the National Natural Science Foundation of China(Nos.42371094,41907253)partially supported by the Interdisciplinary Cultivation Program of Xidian University(No.21103240005)the Postdoctoral Fellowship Program of CPSF(No.GZB20240589)。
文摘INTRODUCTION.On May 1st,2024,around 2:10 a.m.,a catastrophic collapse occurred along the Meilong Expressway near Meizhou City,Guangdong Province,China,at coordinates 24°29′24″N and 116°40′25″E.This collapse resulted in a pavement failure of approximately 17.9 m in length and covering an area of about 184.3 m^(2)(Chinanews,2024).
基金supported by the National Natural Science Foundation of China(42030102,42371321).
文摘Accurate fine-grained geospatial scene classification using remote sensing imagery is essential for a wide range of applications.However,existing approaches often rely on manually zooming remote sensing images at different scales to create typical scene samples.This approach fails to adequately support the fixed-resolution image interpretation requirements in real-world scenarios.To address this limitation,we introduce the million-scale fine-grained geospatial scene classification dataset(MEET),which contains over 1.03 million zoom-free remote sensing scene samples,manually annotated into 80 fine-grained categories.In MEET,each scene sample follows a scene-in-scene layout,where the central scene serves as the reference,and auxiliary scenes provide crucial spatial context for fine-grained classification.Moreover,to tackle the emerging challenge of scene-in-scene classification,we present the context-aware transformer(CAT),a model specifically designed for this task,which adaptively fuses spatial context to accurately classify the scene samples.CAT adaptively fuses spatial context to accurately classify the scene samples by learning attentional features that capture the relationships between the center and auxiliary scenes.Based on MEET,we establish a comprehensive benchmark for fine-grained geospatial scene classification,evaluating CAT against 11 competitive baselines.The results demonstrate that CAT significantly outperforms these baselines,achieving a 1.88%higher balanced accuracy(BA)with the Swin-Large backbone,and a notable 7.87%improvement with the Swin-Huge backbone.Further experiments validate the effectiveness of each module in CAT and show the practical applicability of CAT in the urban functional zone mapping.The source code and dataset will be publicly available at https://jerrywyn.github.io/project/MEET.html.
基金supported by National Key R&D Program of China(2022YFD2000100)National Natural Science Foundation of China(42401400)Zhejiang Provincial Key Research and Development Program(2023C02018).
文摘Yellow rust(Puccinia striiformis f.sp.Tritici,YR)and fusarium head blight(Fusarium graminearum,FHB)are the two main diseases affecting wheat in the main grain-producing areas of East China,which is common for the two diseases to appear simultaneously in some main production areas.It is necessary to discriminate wheat YR and FHB at the regional scale to accurately locate the disease in space,conduct detailed disease severity monitoring,and scientific control.Four images on different dates were acquired from Sentinel-2,Landsat-8,and Gaofen-1 during the critical period of winter wheat,and 22 remote sensing features that characterize the wheat growth status were then calculated.Meanwhile,6 meteorological parameters that reflect the wheat phenological information were also obtained by combining the site meteorological data and spatial interpolation technology.Then,the principal components(PCs)of comprehensive remote sensing and meteorological features were extracted with principal component analysis(PCA).The PCs-based discrimination models were established to map YR and FHB damage using the random forest(RF)and backpropagation neural network(BPNN).The models’performance was verified based on the disease field truth data(57 plots during the filling period)and 5-fold cross-validation.The results revealed that the PCs obtained after PCA dimensionality reduction outperformed the initial features(IFs)from remote sensing and meteorology in discriminating between the two diseases.Compared to the IFs,the average area under the curve for both micro-average and macro-average ROC curves increased by 0.07 in the PCs-based RF models and increased by 0.16 and 0.13,respectively,in the PCs-based BPNN models.Notably,the PCs-based BPNN discrimination model emerged as the most effective,achieving an overall accuracy of 83.9%.Our proposed discrimination model for wheat YR and FHB,coupled with multi-source remote sensing images and meteorological data,overcomes the limitations of a single-sensor and single-phase remote sensing information in multiple stress discrimination in cloudy and rainy areas.It performs well in revealing the damage spatial distribution of the two diseases at a regional scale,providing a basis for detailed disease severity monitoring,and scientific prevention and control.
文摘Cloud detection is a critical preprocessing step in remote sensing image processing, as the presence of clouds significantly affects the accuracy of remote sensing data and limits its applicability across various domains. This study presents an enhanced cloud detection method based on the U-Net architecture, designed to address the challenges of multi-scale cloud features and long-range dependencies inherent in remote sensing imagery. A Multi-Scale Dilated Attention (MSDA) module is introduced to effectively integrate multi-scale information and model long-range dependencies across different scales, enhancing the model’s ability to detect clouds of varying sizes. Additionally, a Multi-Head Self-Attention (MHSA) mechanism is incorporated to improve the model’s capacity for capturing finer details, particularly in distinguishing thin clouds from surface features. A multi-path supervision mechanism is also devised to ensure the model learns cloud features at multiple scales, further boosting the accuracy and robustness of cloud mask generation. Experimental results demonstrate that the enhanced model achieves superior performance compared to other benchmarked methods in complex scenarios. It significantly improves cloud detection accuracy, highlighting its strong potential for practical applications in cloud detection tasks.
文摘Remote sensing and web-based platforms have emerged as vital tools in the effective monitoring of mangrove ecosystems, which are crucial for coastal protection, biodiversity, and carbon sequestration. Utilizing satellite imagery and aerial data, remote sensing allows researchers to assess the health and extent of mangrove forests over large areas and time periods, providing insights into changes due to environmental stressors like climate change, urbanization, and deforestation. Coupled with web-based platforms, this technology facilitates real-time data sharing and collaborative research efforts among scientists, policymakers, and conservationists. Thus, there is a need to grow this research interest among experts working in this kind of ecosystem. The aim of this paper is to provide a comprehensive literature review on the effective role of remote sensing and web-based platform in monitoring mangrove ecosystem. The research paper utilized the thematic approach to extract specific information to use in the discussion which helped realize the efficiency of digital monitoring for the environment. Web-based platforms and remote sensing represent a powerful tool for environmental monitoring, particularly in the context of forest ecosystems. They facilitate the accessibility of vital data, promote collaboration among stakeholders, support evidence-based policymaking, and engage communities in conservation efforts. As experts confront the urgent challenges posed by climate change and environmental degradation, leveraging technology through web-based platforms is essential for fostering a sustainable future for the forests of the world.
文摘Asymmetric allylic C—H functionalization is a valuable and challenging research area. Different from the conventional direct allylic C—H cleavage strategy, transition metal-catalyzed migratory allylic substitution of remote dienes has emerged as a new route to achieve allylic C—H functionalization enantioselectively. This review provides a detailed summary of the development and advance of this strategy, introduces the related mechanistic processes, and discusses the area based on the types of catalysts and products.
文摘This study investigates the effects of AI-mediated communication (AMC) on trust-building and negotiation outcomes in professional remote collaboration settings. Through a mixed-methods approach combining experimental design and qualitative analysis (N = 120), we examine how AI intermediaries influence communication dynamics, relationship building, and decision-making processes. Results indicate that while AMC initially creates barriers to trust formation, it ultimately leads to enhanced communication outcomes and stronger professional relationships when implemented with appropriate transparency and support. The study revealed a 31% improvement in cross-cultural understanding and a 24% increase in negotiation satisfaction rates when using AI-mediated channels with proper transparency measures. These findings contribute to the theoretical understanding of technology-mediated communication and practical applications for organizations implementing AI communication tools.
文摘This study presents an AI-driven Spatial Decision Support System (SDSS) aimed at transforming groundwater suitability assessments for domestic and irrigation uses in Visakhapatnam District, Andhra Pradesh, India. By employing advanced remote sensing, GIS, and machine learning techniques, groundwater quality data from 50 monitoring wells, sourced from the Central Ground Water Board (CGWB), was meticulously analysed. Key parameters, including pH, electrical conductivity, total dissolved solids, and major ion concentrations, were evaluated against World Health Organization (WHO) standards to determine domestic suitability. For irrigation, advanced metrics such as Sodium Adsorption Ratio (SAR), Kelly’s Ratio, Residual Sodium Carbonate (RSC), and percentage sodium (% Na) were utilized to assess water quality. The integration of GIS for spatial mapping and AI models for predictive analytics allows for a comprehensive visualization of groundwater quality distribution across the district. Additionally, the irrigation water quality was evaluated using the USA Salinity Laboratory diagram, providing essential insights for effective agricultural water management. This innovative SDSS framework promises to significantly enhance groundwater resource management, fostering sustainable practices for both domestic use and agriculture in the region.
文摘Multifarious regions around the world are exposed to natural hazards and disasters,each with unique characteristics.A higher frequency of extreme hydro-meteorological events,most probably related to climate change,and an increase in vulnerable population have been addressed as potential causes of such disasters.To mitigate the consequences of these disasters,Disaster Risk Management,including hazard assessment,elements-at-risk mapping,vulnerability and risk assessment of spatial components as well as Earth Observation(EO)products and Geographic Information Systems(GIS),should be considered.Multihazard assessment entails the evaluation of relationships between various hazards,including interconnected or cascading events,as well as focusing on various levels from global to local community levels,as each level manifests particular objectives and spatial data.This paper presents an overview of the diverse types of spatial data and explores the methods applied in hazard and risk assessments,with volcanic eruptions serving as a specific example.The rapid development of scientific research and the advancement of Earth Observation satellites in recent years have revolutionized the concepts of geologists and researchers.These satellites now play an indispensable role in supporting first responders during major disasters.The coordination of satellite deployment ensures a swift response along with allowing for the timely delivery of critical images.In tandem,remote sensing technologies and geographic information systems(GIS)have emerged as essential tools for geospatial analysis.The application of remote sensing and GIS for the detection of natural disasters was examined through a review of academic papers,offering an analysis of how remote sensing is utilized to assess natural hazards and their link to climate change.
基金funded by the National Natural Science Foundation of China(81871854,72374014)the National Key R&D Program of China(2020YFC2008804)+1 种基金the Shanghai Jiao Tong University Young Talent Cultivation Program in Liberal Arts(2024QN041)the Shanghai Jiao Tong University School of Medicine:Nursing Development Program(SJTUHLXK2024).
文摘Background Evidence on the effects of different exercise interventions on cognitive function is insufficient.Aims To evaluate the feasibility and effects of remotely supervised aerobic exercise(AE)and resistance exercise(RE)interventions in older adults with mild cognitive impairment(MCI).Methods This study is a 6-month pilot three-arm randomised controlled trial.Eligible participants(n=108)were recruited and randomised to the AE group,RE group or control(CON)group with a 1:1:1 ratio.Interventions were delivered at home with remote supervision.We evaluated participants’global cognition,memory,executive function,attention,physical activity levels,physical performance and muscle strength of limbs at baseline,3 months(T1)and 6 months(T2)after randomisation.A linear mixed-effects model was adopted for data analyses after controlling for covariates.Tukey’s method was used for adjusting for multiple comparisons.Sensitivity analyses were performed after excluding individuals with low compliance rates.Results 15(13.89%)participants dropped out.The median compliance rates in the AE group and RE group were 67.31%and 93.27%,respectively.After adjusting for covariates,the scores of the Alzheimer’s Disease Assessment Scale-Cognitive subscale in the AE group decreased by 2.04(95%confidence interval(CI)−3.41 to−0.67,t=−2.94,p=0.004)and 1.53(95%CI−2.88 to−0.17,t=−2.22,p=0.028)points more than those in the CON group at T1 and T2,respectively.The effects of AE were still significant at T1(estimate=−1.70,95%CI−3.20 to−0.21,t=−2.69,p=0.021),but lost statistical significance at T2 after adjusting for multiple comparisons.As for executive function,the Stroop time interference in the RE group decreased by 11.76 s(95%CI−21.62 to−1.90,t=−2.81,p=0.015)more than that in the AE group at T2 after Tukey’s adjustment.No other significant effects on cognitive functions were found.Conclusions Both remotely supervised AE and RE programmes are feasible in older adults with MCI.AE has positive effects on global cognition,and RE improves executive function.