期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种基于RCGAN的水声通信信号降噪方法 被引量:7
1
作者 李勇斌 王彬 +1 位作者 邵高平 邵帅 《电子学报》 EI CAS CSCD 北大核心 2022年第1期54-62,共9页
针对复杂海洋环境噪声中水声通信信号数据稀缺条件下的水声通信信号降噪问题,提出一种基于相对条件生成对抗网络(Relativistic Conditional Generative Adversarial Networks,RCGAN)的水声通信信号降噪方法.该方法利用相对条件生成对抗... 针对复杂海洋环境噪声中水声通信信号数据稀缺条件下的水声通信信号降噪问题,提出一种基于相对条件生成对抗网络(Relativistic Conditional Generative Adversarial Networks,RCGAN)的水声通信信号降噪方法.该方法利用相对条件生成对抗网络具有降噪能力的特点,通过引入扩张卷积结构,构造了适用于水声通信信号的降噪模型,提升了对不同海洋环境噪声的降噪能力;为了解决样本数据稀缺条件下的网络训练问题,根据生成对抗网络特点设计了两步迁移学习策略,并构造了基于数据模型迁移的迁移数据训练集.仿真实验和实际信号测试结果表明,该方法对不同分布特性的海洋环境噪声具有稳健性,能够大幅度降低对目标信号训练数据数量的要求,降噪效果优于现有算法. 展开更多
关键词 水声通信信号 降噪 rcgan 扩张卷积 迁移学习
在线阅读 下载PDF
Synthetic demand data generation for individual electricity consumers :Generative Adversarial Networks (GANs) 被引量:3
2
作者 Bilgi Yilmaz Ralf Korn 《Energy and AI》 2022年第3期37-50,共14页
Load modeling is one of the crucial tasks for improving smart grids’ energy efficiency. Among manyalternatives, machine learning-based load models have become popular in applications and have shownoutstanding perform... Load modeling is one of the crucial tasks for improving smart grids’ energy efficiency. Among manyalternatives, machine learning-based load models have become popular in applications and have shownoutstanding performance in recent years. The performance of these models highly relies on data quality andquantity available for training. However, gathering a sufficient amount of high-quality data is time-consumingand extremely expensive. In the last decade, Generative Adversarial Networks (GANs) have demonstrated theirpotential to solve the data shortage problem by generating synthetic data by learning from recorded/empiricaldata. Educated synthetic datasets can reduce prediction error of electricity consumption when combined withempirical data. Further, they can be used to enhance risk management calculations. Therefore, we proposeRCGAN, TimeGAN, CWGAN, and RCWGAN which take individual electricity consumption data as input toprovide synthetic data in this study. Our work focuses on one dimensional times series, and numericalexperiments on an empirical dataset show that GANs are indeed able to generate synthetic data with realisticappearance. 展开更多
关键词 Electricity consumption Generative adversarial networks Synthetic data generation Unsupervised learning rcgan TimeGAN CWGAN RCWGAN
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部