作为Microsoft.NET的平台,微软在这个即将面世的新产品中注入了许多新的技术。为体验这一全新的企业计算平台,本刊组织了专家组,对Windows Server 2003进行了有针对性的测试,本文是系列测试文章中的第一篇,体验Microsoft Windows ...作为Microsoft.NET的平台,微软在这个即将面世的新产品中注入了许多新的技术。为体验这一全新的企业计算平台,本刊组织了专家组,对Windows Server 2003进行了有针对性的测试,本文是系列测试文章中的第一篇,体验Microsoft Windows Server 2003 RC2安装。展开更多
随着卫星通信技术的迅速发展,卫星互联网已成为现代通信的重要组成部分。机载卫星通信终端及其核心组件的性能直接决定了通信系统的效率与可靠性。目前,这些关键组件的研发主要由国外企业垄断,限制了技术的发展并且成本高昂。通过对比5G...随着卫星通信技术的迅速发展,卫星互联网已成为现代通信的重要组成部分。机载卫星通信终端及其核心组件的性能直接决定了通信系统的效率与可靠性。目前,这些关键组件的研发主要由国外企业垄断,限制了技术的发展并且成本高昂。通过对比5G NR NTN和DVB-S2X/RCS2两种主流卫星通信体制,总结出卫通终端的功能性能指标,并结合机载环境下的需求,分析了典型卫通终端协议模块的架构和指标。最后,研究总结了基于5G NR和DVB标准的测试指标及方法,以提高测试效能,并实现产品的实时自检应用。展开更多
Glucose metabolism plays a key role in thymocyte development. The mammalian target of rapamycin complex 2 (mT0RC2) is a critical regulator of cell growth and metabolism, but its role in early thymocyte development and...Glucose metabolism plays a key role in thymocyte development. The mammalian target of rapamycin complex 2 (mT0RC2) is a critical regulator of cell growth and metabolism, but its role in early thymocyte development and metabolism has not been fully studied. We show here that genetic ablation of Sinl, an essential component of mTORC2, in T lineage cells results in severely impaired thymocyte development at the CD4^- CD8^- double negative (DN) stages but not at the CD4^+ CD8^+ double positive (DP) or later stages. Notably, Sinl-deficient DN thymocytes show markedly reduced proliferation and glycolysis.Importantly, we discover that the M2 isoform of pyruvate kinase (PKM2) is a novel and crucial Sinl effector in promoting DN thymocyte development and metabolism. At the molecular level, we show that Sinl-mTORC2 controls PKM2 expression through an AKT-dependent PPAR-y nuclear translocation. Together, our study unravels a novel mTORC2-PPAR-γ-PKM2 pathway in immune-metabolic regulation of early thymocyte development.展开更多
This paper will prove Riemann conjecture(RC): All zeros of <span style="white-space:nowrap;"><span style="white-space:nowrap;">ξ(<span style="white-space:nowrap;"><s...This paper will prove Riemann conjecture(RC): All zeros of <span style="white-space:nowrap;"><span style="white-space:nowrap;">ξ(<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">τ) lie on critical line. Denote <img src="Edit_189dc2b2-73ef-4036-9f06-ecf8a47fe58b.png" width="140" height="16" alt="" />, and <img src="Edit_a8ec55cb-e4c4-4156-ba23-ae01a31d1bc8.png" width="110" height="22" alt="" /> on critical line. We have found two mysteries in Riemann’s paper. The first mystery is the equivalence: <img src="Edit_3c075830-3c6c-4a23-9851-5b7d219e8000.png" width="140" height="21" alt="" /> is uniquely determined by its initial value <span style="white-space:nowrap;">u (t). The second mystery is Riemamm conjecture 2 (RC2): Using all zeros <span style="white-space:nowrap;">t<sub>j</sub> of u (t) can uniquely express <img src="Edit_b15d9c18-b55b-49e3-97a1-d2e03ccb6343.png" width="175" height="23" alt="" />. We find that the proof of RC is hidden in it. Our basic idea as follows. Consider functional equation <img src="Edit_f5295ff4-90b2-4465-851a-cad140b181c8.png" width="305" height="20" alt="" />. It is known that on critical line <img src="Edit_b45bff49-6d09-456b-9d1f-4259c66293d3.png" width="310" height="23" alt="" /> and <img src="Edit_4182ba79-0fcb-4f84-b7e7-c7574406596e.png" width="85" height="26" alt="" />, then we have the upper bound of growth <img src="Edit_d3d84d75-cc56-47b8-a9a7-ef8a9a5f07b1.png" width="250" height="33" alt="" /> To prove RC2 (or RC), by contradiction. If <span style="white-space:nowrap;">ξ(τ) has conjugate complex roots t'<span style="white-space:nowrap;">±i<span style="white-space:nowrap;">β'’, <span style="white-space:nowrap;">β'>0, R<sup>2</sup>=t'<sup>2</sup>+<span style="white-space:nowrap;">β'<sup>2</sup>, by symmetry <span style="white-space:nowrap;">ξ(τ)=<span style="white-space:nowrap;">ξ(-τ), then -(t'<span style="white-space:nowrap;">±iβ'') do yet. So ξ must contain four factors. Then u(t) contains a real factor <img src="Edit_ac03c1a5-0480-4efa-aac4-7788852a42a9.png" width="225" height="22" alt="" /> and <span style="white-space:nowrap;">ln|u(t)| contains a term (the lower bound) <img src="Edit_6e94ad71-a310-4717-99ee-90384b0d89ba.png" width="230" height="19" alt="" /> which contradicts to the growth above. So <span style="white-space:nowrap;">ξ can not have the complex roots and u(t) does not have the factor p(t). Therefore both RC2 and RC are proved. We have seen that the two-dimensional problem is reduced to one-dimension and the one-dimensional <span style="white-space:nowrap;">u(t) is reduced to its product expression. Perhaps this is close to the original idea of Riemann. Other results are also discussed by geometric analysis in the last section.展开更多
为了揭示中高度重复序列在同为AA基因组的亚洲栽培稻和非洲栽培稻基因组中的差异以及重复序列在栽培稻种的分化过程中可能起到的作用,利用水稻着丝粒串联重复序列RCS2作为探针分别对籼稻广陆矮4号、粳稻日本晴和非洲栽培稻的体细胞染色...为了揭示中高度重复序列在同为AA基因组的亚洲栽培稻和非洲栽培稻基因组中的差异以及重复序列在栽培稻种的分化过程中可能起到的作用,利用水稻着丝粒串联重复序列RCS2作为探针分别对籼稻广陆矮4号、粳稻日本晴和非洲栽培稻的体细胞染色体进行荧光原位杂交(FISH)实验,并对其核型进行同源性聚类和比较分析,杂交结果显示:RCS2序列位于在3种栽培稻染色体组中,RCS2序列位于每条染色体的着丝粒位置,但有不同的分布特点,表明该3种栽培稻基因组的RCS2序列有不同的进化方向.探讨了RCS2序列结合C0t-1 DNA FISH方法对水稻染色体组进行核型分析的可行性和优势.展开更多
This research aims to study various Symmetrical Algorithms, while the main objective of this study is to find out a suitable algorithm for the encryption of any specific size of text file where the experiment of each ...This research aims to study various Symmetrical Algorithms, while the main objective of this study is to find out a suitable algorithm for the encryption of any specific size of text file where the experiment of each algorithm is based on encryption of different sizes of the text files, which are in “10 KB to 5 MB”, and also to calculate the time duration that each algorithm takes to encrypt or to decrypt the particular size of each text file. There are many types of encryption algorithm, which can be used to encrypt the computerized information in different Organizations, whose all algorithms can encrypt and decrypt any size of text file, but the time duration of each Algorithm during the encryption or decryption process of specific file size is not fixed. Some of the algorithms are suitable for encryption of specific ranges of the file size, or some of algorithms are functional while encryption small size of files, and others algorithms are functional for encryption of big size of text files, based on the time duration disparity among symmetric algorithms during encryption of text files. In this study five symmetrical algorithms are merged in one program using classes and concept of inheritance in the form that if encryption is needed, the program will select the file and it checks the size of the text file. After this process the program automatically will select the suitable encryption algorithm to encrypt the specific text file according to the range of the file size. Knowing that the file size before or after encryption will not change or is stable, in this case of the decryption algorithm will apply the same process of encryption while decrypting files, the program of encryption and decryption code will write using visual Studio 2013. The result will be analyzed with R program (R software), the cipher text will appear in the format of UTF8 which means Unicode Transformation Format, “8” Means “8” bits to represent a character, the size format that will apply in the program will be in format of KB (kilo Byte).展开更多
句中的某一语言成分C在既可能修饰A也可能修饰B的情况下通常都是用来修饰A或B,这种对所修饰对象选择的倾向性即为"附着偏好"(attachment preference)。附着偏好有多种类型,但本文主要关注英语"N1 of N2+RC"结构,从...句中的某一语言成分C在既可能修饰A也可能修饰B的情况下通常都是用来修饰A或B,这种对所修饰对象选择的倾向性即为"附着偏好"(attachment preference)。附着偏好有多种类型,但本文主要关注英语"N1 of N2+RC"结构,从句法结构、释义原则及假设几个方面全面而系统地回顾并分析了前人的相关研究,认为"N1 of N2+RC"结构本身不具有任何的附着倾向性,是语言实际使用过程中的某些特定的因素,如RC的长度、复杂名词短语类型、性及数的一致关系、搭配频率、隐性韵律等,导致了附着偏好的产生。展开更多
文摘作为Microsoft.NET的平台,微软在这个即将面世的新产品中注入了许多新的技术。为体验这一全新的企业计算平台,本刊组织了专家组,对Windows Server 2003进行了有针对性的测试,本文是系列测试文章中的第一篇,体验Microsoft Windows Server 2003 RC2安装。
文摘随着卫星通信技术的迅速发展,卫星互联网已成为现代通信的重要组成部分。机载卫星通信终端及其核心组件的性能直接决定了通信系统的效率与可靠性。目前,这些关键组件的研发主要由国外企业垄断,限制了技术的发展并且成本高昂。通过对比5G NR NTN和DVB-S2X/RCS2两种主流卫星通信体制,总结出卫通终端的功能性能指标,并结合机载环境下的需求,分析了典型卫通终端协议模块的架构和指标。最后,研究总结了基于5G NR和DVB标准的测试指标及方法,以提高测试效能,并实现产品的实时自检应用。
基金the National Natural Science Foundation of China (31470845, 81430033, and 31670896)Shanghai Science and Technology Commission (13JC1404700)Shanghai Rising-Star Program (16QA1403300).
文摘Glucose metabolism plays a key role in thymocyte development. The mammalian target of rapamycin complex 2 (mT0RC2) is a critical regulator of cell growth and metabolism, but its role in early thymocyte development and metabolism has not been fully studied. We show here that genetic ablation of Sinl, an essential component of mTORC2, in T lineage cells results in severely impaired thymocyte development at the CD4^- CD8^- double negative (DN) stages but not at the CD4^+ CD8^+ double positive (DP) or later stages. Notably, Sinl-deficient DN thymocytes show markedly reduced proliferation and glycolysis.Importantly, we discover that the M2 isoform of pyruvate kinase (PKM2) is a novel and crucial Sinl effector in promoting DN thymocyte development and metabolism. At the molecular level, we show that Sinl-mTORC2 controls PKM2 expression through an AKT-dependent PPAR-y nuclear translocation. Together, our study unravels a novel mTORC2-PPAR-γ-PKM2 pathway in immune-metabolic regulation of early thymocyte development.
文摘This paper will prove Riemann conjecture(RC): All zeros of <span style="white-space:nowrap;"><span style="white-space:nowrap;">ξ(<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">τ) lie on critical line. Denote <img src="Edit_189dc2b2-73ef-4036-9f06-ecf8a47fe58b.png" width="140" height="16" alt="" />, and <img src="Edit_a8ec55cb-e4c4-4156-ba23-ae01a31d1bc8.png" width="110" height="22" alt="" /> on critical line. We have found two mysteries in Riemann’s paper. The first mystery is the equivalence: <img src="Edit_3c075830-3c6c-4a23-9851-5b7d219e8000.png" width="140" height="21" alt="" /> is uniquely determined by its initial value <span style="white-space:nowrap;">u (t). The second mystery is Riemamm conjecture 2 (RC2): Using all zeros <span style="white-space:nowrap;">t<sub>j</sub> of u (t) can uniquely express <img src="Edit_b15d9c18-b55b-49e3-97a1-d2e03ccb6343.png" width="175" height="23" alt="" />. We find that the proof of RC is hidden in it. Our basic idea as follows. Consider functional equation <img src="Edit_f5295ff4-90b2-4465-851a-cad140b181c8.png" width="305" height="20" alt="" />. It is known that on critical line <img src="Edit_b45bff49-6d09-456b-9d1f-4259c66293d3.png" width="310" height="23" alt="" /> and <img src="Edit_4182ba79-0fcb-4f84-b7e7-c7574406596e.png" width="85" height="26" alt="" />, then we have the upper bound of growth <img src="Edit_d3d84d75-cc56-47b8-a9a7-ef8a9a5f07b1.png" width="250" height="33" alt="" /> To prove RC2 (or RC), by contradiction. If <span style="white-space:nowrap;">ξ(τ) has conjugate complex roots t'<span style="white-space:nowrap;">±i<span style="white-space:nowrap;">β'’, <span style="white-space:nowrap;">β'>0, R<sup>2</sup>=t'<sup>2</sup>+<span style="white-space:nowrap;">β'<sup>2</sup>, by symmetry <span style="white-space:nowrap;">ξ(τ)=<span style="white-space:nowrap;">ξ(-τ), then -(t'<span style="white-space:nowrap;">±iβ'') do yet. So ξ must contain four factors. Then u(t) contains a real factor <img src="Edit_ac03c1a5-0480-4efa-aac4-7788852a42a9.png" width="225" height="22" alt="" /> and <span style="white-space:nowrap;">ln|u(t)| contains a term (the lower bound) <img src="Edit_6e94ad71-a310-4717-99ee-90384b0d89ba.png" width="230" height="19" alt="" /> which contradicts to the growth above. So <span style="white-space:nowrap;">ξ can not have the complex roots and u(t) does not have the factor p(t). Therefore both RC2 and RC are proved. We have seen that the two-dimensional problem is reduced to one-dimension and the one-dimensional <span style="white-space:nowrap;">u(t) is reduced to its product expression. Perhaps this is close to the original idea of Riemann. Other results are also discussed by geometric analysis in the last section.
文摘为了揭示中高度重复序列在同为AA基因组的亚洲栽培稻和非洲栽培稻基因组中的差异以及重复序列在栽培稻种的分化过程中可能起到的作用,利用水稻着丝粒串联重复序列RCS2作为探针分别对籼稻广陆矮4号、粳稻日本晴和非洲栽培稻的体细胞染色体进行荧光原位杂交(FISH)实验,并对其核型进行同源性聚类和比较分析,杂交结果显示:RCS2序列位于在3种栽培稻染色体组中,RCS2序列位于每条染色体的着丝粒位置,但有不同的分布特点,表明该3种栽培稻基因组的RCS2序列有不同的进化方向.探讨了RCS2序列结合C0t-1 DNA FISH方法对水稻染色体组进行核型分析的可行性和优势.
文摘This research aims to study various Symmetrical Algorithms, while the main objective of this study is to find out a suitable algorithm for the encryption of any specific size of text file where the experiment of each algorithm is based on encryption of different sizes of the text files, which are in “10 KB to 5 MB”, and also to calculate the time duration that each algorithm takes to encrypt or to decrypt the particular size of each text file. There are many types of encryption algorithm, which can be used to encrypt the computerized information in different Organizations, whose all algorithms can encrypt and decrypt any size of text file, but the time duration of each Algorithm during the encryption or decryption process of specific file size is not fixed. Some of the algorithms are suitable for encryption of specific ranges of the file size, or some of algorithms are functional while encryption small size of files, and others algorithms are functional for encryption of big size of text files, based on the time duration disparity among symmetric algorithms during encryption of text files. In this study five symmetrical algorithms are merged in one program using classes and concept of inheritance in the form that if encryption is needed, the program will select the file and it checks the size of the text file. After this process the program automatically will select the suitable encryption algorithm to encrypt the specific text file according to the range of the file size. Knowing that the file size before or after encryption will not change or is stable, in this case of the decryption algorithm will apply the same process of encryption while decrypting files, the program of encryption and decryption code will write using visual Studio 2013. The result will be analyzed with R program (R software), the cipher text will appear in the format of UTF8 which means Unicode Transformation Format, “8” Means “8” bits to represent a character, the size format that will apply in the program will be in format of KB (kilo Byte).
文摘句中的某一语言成分C在既可能修饰A也可能修饰B的情况下通常都是用来修饰A或B,这种对所修饰对象选择的倾向性即为"附着偏好"(attachment preference)。附着偏好有多种类型,但本文主要关注英语"N1 of N2+RC"结构,从句法结构、释义原则及假设几个方面全面而系统地回顾并分析了前人的相关研究,认为"N1 of N2+RC"结构本身不具有任何的附着倾向性,是语言实际使用过程中的某些特定的因素,如RC的长度、复杂名词短语类型、性及数的一致关系、搭配频率、隐性韵律等,导致了附着偏好的产生。