期刊文献+
共找到5,593篇文章
< 1 2 250 >
每页显示 20 50 100
基于SSA-RBFNN的钢管混凝土界面粘结强度研究
1
作者 刘文博 杨喜娟 +1 位作者 王力 李子奇 《中国安全生产科学技术》 北大核心 2025年第3期148-155,共8页
为了改善传统径向基神经网络(RBFNN)存在对样本数据依赖性强、参数选择复杂、收敛速度慢等缺陷。将麻雀搜索算法(SSA)应用于RBFNN预测模型,提出基于SSA-RBFNN的CFST界面粘结强度预测模型,收集319组数据建立数据库,选取8种影响因素作为... 为了改善传统径向基神经网络(RBFNN)存在对样本数据依赖性强、参数选择复杂、收敛速度慢等缺陷。将麻雀搜索算法(SSA)应用于RBFNN预测模型,提出基于SSA-RBFNN的CFST界面粘结强度预测模型,收集319组数据建立数据库,选取8种影响因素作为输入层参数和界面粘结强度作为输出层参数,分别建立RBFNN和SSA-RBFNN模型。通过平均绝对百分比误差(MAPE)和决定系数(R 2)等指标,将2种机器学习模型与6种现有公式进行比较,评估它们在预测精度和稳定性方面的表现。研究结果表明:2种机器学习模型比公式精度更高。其中,SSA-RBFNN模型有更好的预测性能,更有助于高效预测CFST的界面粘结强度。研究结果可为CFST结构工程设计提供相应的预测方法和技术支持,可以帮助工程师在设计和施工过程中更好地评估结构的承载能力和安全性。 展开更多
关键词 rbf神经网络 麻雀搜索算法 钢管混凝土 界面粘结强度 机器学习模型
在线阅读 下载PDF
基于RBF网络的四旋翼无人机姿态鲁棒自适应反步滑模控制 被引量:4
2
作者 刘金华 王远 +1 位作者 张智轩 李涛 《江苏大学学报(自然科学版)》 CAS 北大核心 2025年第1期36-42,共7页
针对存在干扰的四旋翼无人机姿态系统,设计了一种RBF网络鲁棒自适应反步滑模控制器.在反步滑模控制的基础上,通过RBF网络逼近和补偿标称控制律,采用神经网络最小参数学习法,取神经网络的权值上界估计作为神经网络的估计值,通过设计参数... 针对存在干扰的四旋翼无人机姿态系统,设计了一种RBF网络鲁棒自适应反步滑模控制器.在反步滑模控制的基础上,通过RBF网络逼近和补偿标称控制律,采用神经网络最小参数学习法,取神经网络的权值上界估计作为神经网络的估计值,通过设计参数估计自适应律来代替神经网络权值的调整,并用Lyapunov理论证明系统的稳定性.仿真结果表明:该方法相比反步滑模控制方法,在有干扰的情况下,有更短的调节时间,更好的跟踪精度,验证了本方法具有更好的抗干扰性和鲁棒性. 展开更多
关键词 四旋翼无人机 姿态控制 反步滑模控制 rbf神经网络 鲁棒自适应控制
在线阅读 下载PDF
车辆主动悬架RBF神经网络的模型预测控制仿真研究 被引量:1
3
作者 顾苏怡 蒋昌华 《中国工程机械学报》 北大核心 2025年第3期410-414,共5页
为了提升车辆行驶的稳定性和乘坐的舒适性,提出一种基于径向基函数(RBF)神经网络的模型预测控制(MPC)系统,通过仿真验证主动悬架控制系统的有效性。创建7自由度车辆主动悬架简图,定义了车辆主动悬架动力学方程式。构建主动悬架MPC系统,... 为了提升车辆行驶的稳定性和乘坐的舒适性,提出一种基于径向基函数(RBF)神经网络的模型预测控制(MPC)系统,通过仿真验证主动悬架控制系统的有效性。创建7自由度车辆主动悬架简图,定义了车辆主动悬架动力学方程式。构建主动悬架MPC系统,利用RBF神经网络结构捕捉车辆主动悬架系统的复杂动态特性,通过对大量数据的学习和训练,能够快速建立主动悬架MPC参数,最终实现对车辆主动悬架系统的精确控制。利用Matlab软件对车辆主动悬架的车身加速度、悬架位移、轮胎位移进行仿真,评估车辆不同控制策略的行驶性能。结果显示:在路面信号激励下采用MPC,车辆主动悬架的车身加速度、悬架位移、轮胎位移变化幅度较大;采用RBF神经网络的MPC,车辆主动悬架的车身加速度、悬架位移、轮胎位移变化幅度较小。所提出的RBF神经网络MPC系统,能够增强车辆主动悬架抗干扰能力,从而保持车辆行驶的稳定性和舒适性。 展开更多
关键词 车辆 主动悬架 rbf神经网络 模型预测控制 仿真
在线阅读 下载PDF
联合改进鸽群优化RBF神经网络PID的自动驾驶机器人车速控制
4
作者 周阿连 于子茵 刘刚 《机械设计与制造》 北大核心 2025年第6期69-74,共6页
为提高自动驾驶机器人车速控制的精度和系统稳定性,提出一种联合改进鸽群优化RBF神经网络PID的自动驾驶机器人车速控制方法。对基本鸽群优化算法(pigeon-inspired optimization,PIO)进行改进,通过增加局部搜索机制,以提升算法全局收敛... 为提高自动驾驶机器人车速控制的精度和系统稳定性,提出一种联合改进鸽群优化RBF神经网络PID的自动驾驶机器人车速控制方法。对基本鸽群优化算法(pigeon-inspired optimization,PIO)进行改进,通过增加局部搜索机制,以提升算法全局收敛精度。设计改进的RBF神经网络,采用改进核FCM聚类算法(improved KFCM,IKFCM)初始化RBF神经网络中心,利用改进的PIO(improved PIO,IPIO)优化RBF神经网络参数配置。最后,利用IPIO和IKFCM优化后的RBF神经网络对PID参数进行自适应调整。与其它车速控制方法相比,所提方法车速控制精度提高了约1.2%,能够精准实现对机器人车速的控制。 展开更多
关键词 机器人 鸽群优化算法 rbf神经网络 PID控制 精度
在线阅读 下载PDF
基于WOA-SA-RBF模型的西北内陆河流域突发水污染安全评价
5
作者 靳春玲 田亮 +2 位作者 贡力 李战江 蔡惠春 《科学技术与工程》 北大核心 2025年第23期10075-10083,共9页
为保障西北内陆河流域生态安全,急需开展西北地区内陆河流域突发水污染安全评价。聚焦于疏勒河流域敦煌区域,通过运用压力-状态-响应(pressure-state-response,PSR)模型框架,基于2017—2022年该流域的历史数据,采用一种融合鲸鱼优化与... 为保障西北内陆河流域生态安全,急需开展西北地区内陆河流域突发水污染安全评价。聚焦于疏勒河流域敦煌区域,通过运用压力-状态-响应(pressure-state-response,PSR)模型框架,基于2017—2022年该流域的历史数据,采用一种融合鲸鱼优化与模拟退火策略的径向基(whale optimization algorithm-simulated annealing-radial basis function,WOA-SA-RBF)神经网络模型,来评估该区域的突发水污染风险等级,并与粒子群优化算法-径向基(particle swarm optimization-radial basis function,PSO-RBF),遗传优化算法-径向基(genetic algorithm-radial basis function,GA-RBF)神经网络模型及传统评价方法优劣解距离法(technique for order preference by similarity to ideal solution,TOPSIS)法的评价结果进行对比分析。分析结果显示:疏勒河敦煌段在2017—2018年突发水污染风险水平被评定为Ⅱ级,而2019—2022年则降为Ⅲ级,显示出风险逐渐下降并趋向稳定的趋势;结果与TOPSIS法分析结果一致,与流域治理情况相符,从而有效验证本文评估模型的精度。研究成果有助于提高疏勒河流域针对突发水污染事件的预防控制能力与紧急应对效率,对西北内陆河流域的水资源管理以及祁连山区域的生态保护工作具有不可忽视的重要意义。 展开更多
关键词 鲸鱼优化算法(WOA) 模拟退火算法(SA) 径向基神经网络模型(rbf) 突发水污染 安全评价 内陆河
在线阅读 下载PDF
基于改进RBF神经网络的人体姿态局部特征识别算法
6
作者 李燕飞 吴加宁 《吉林大学学报(工学版)》 北大核心 2025年第5期1749-1755,共7页
以机器人的人体姿态识别问题为核心,为提高识别精度,提出一种基于改进RBF神经网络的人体姿态局部特征识别算法。利用深度相机得到人体关节点三维方位数据,归一化处理方位数据,组建关节点三维坐标;考虑到不同个体之间的差异,为实现对人... 以机器人的人体姿态识别问题为核心,为提高识别精度,提出一种基于改进RBF神经网络的人体姿态局部特征识别算法。利用深度相机得到人体关节点三维方位数据,归一化处理方位数据,组建关节点三维坐标;考虑到不同个体之间的差异,为实现对人体姿态数据的非线性映射和优化,准确识别不同个体姿态,采用newrbe函数构建RBF神经网络,提取人体姿态数据特征矢量,以为识别提供重要依据;为增强RBF神经网络在处理不同个体姿态差异方面的能力,确保识别的准确性和自适应性,使用粒子群优化算法改进神经网络,并通过特定概率对粒子实施遗传操作,实现网络优化得到人体姿态局部特征识别结果。实验结果表明:本文算法相对误差均较小,可维持在0.8以下,识别精度高,且在迭代次数达到20时损失函数已降至最低,收敛速度较快,可为农业机械化领域的人机交互提供扎实基础。 展开更多
关键词 改进rbf神经网络 人体姿态 局部特征识别 三维坐标 粒子群优化
原文传递
基于RBF神经网络的Ti-6Al-4V钛合金多轴铣削残余应力预测
7
作者 王丽博 王宗园 《机械设计与研究》 北大核心 2025年第3期238-244,共7页
残余应力作为航空发动机薄壁件表面完整性的重要指标,对薄壁件的疲劳性能有重要影响。残余应力对工艺参数存在极大的敏感性且形成机理十分复杂,了解残余应力生成与工艺参数之间的关系,准确地建立工艺参数与残余应力分布之间的映射关系... 残余应力作为航空发动机薄壁件表面完整性的重要指标,对薄壁件的疲劳性能有重要影响。残余应力对工艺参数存在极大的敏感性且形成机理十分复杂,了解残余应力生成与工艺参数之间的关系,准确地建立工艺参数与残余应力分布之间的映射关系是目前亟需解决的难题之一。针对Ti-6Al-4V钛合金多轴铣削过程,建立了基于径向基函数(RBF)神经网络的表面残余应力预测模型。首先,建立了Ti-6Al-4V钛合金多轴铣削表面残余应力三维有限元模型,并通过多轴铣削实验与X射线衍射测量实验验证了模型的有效性。实验结果表明:有限元模型在σ_(x)和σ_(y)方向上表面残余应力的平均预测误差分别为12.75%和18.93%。然后,以实验与仿真数据为样本,引入RBF神经网络建立工艺参数与表面残余应力之间的映射模型,从而实现表面残余应力的快速准确预测。验证结果表明:该模型在σ_(x)和σ_(y)方向上表面残余应力的平均预测误差为13.84%和19.53%,程序平均运行时间为7.83 s,表明文中提出的建模方法可以实现表面残余应力的快速准确预测。同时,所提出的残余应力预测模型可用于复杂弯曲薄壁结构的进一步加工优化。 展开更多
关键词 TI-6AL-4V钛合金 表面残余应力 多轴铣削 rbf神经网络 三维仿真
原文传递
基于AMCDE优化RBF神经网络的PID参数整定研究
8
作者 刘悦婷 孔繁庭 +1 位作者 李西素 王园红 《贵州大学学报(自然科学版)》 2025年第1期42-49,90,共9页
针对工业过程中PID(proportional integral derivative)参数整定难的问题,提出一种带有存储机制的自适应变异交叉策略差分进化算法(adaptive mutation crossover strategy differential evolution algorithm with storage mechanism,AMC... 针对工业过程中PID(proportional integral derivative)参数整定难的问题,提出一种带有存储机制的自适应变异交叉策略差分进化算法(adaptive mutation crossover strategy differential evolution algorithm with storage mechanism,AMCDE)的神经网络算法RBF(radial basis function)整定PID控制器参数。首先,在差分进化算法(differential evolution algorithm,DE)中引入带有存储机制的策略,对种群的个体进行实时排序,充分利用当前种群的方向信息和搜索状态;其次,通过引入自适应变异交叉策略,实现自适应调整变异交叉概率因子,有效地避免种群在迭代后期陷入局部最优解;再次,采用AMCDE算法优化RBF的初始参数,接着由RBF在线辨识得到梯度信息;最后,根据梯度信息对PID的3个参数进行在线调整。仿真实验和某乳制品公司的加热炉温度控制实验表明:与IDE-RBF-PID、GODE-RBF-PID和MCOBDE-RBF-PID相比,AMCDE-RBF-PID控制器的调节时间分别降低了62.6%、55.3%、53.6%,超调量分别降低了79.3%、66.4%、64.7%,抗干扰性能分别提高了42.5%、15.3%、14.8%,控制精度分别提高了35.6%、12.3%、11.2%。由上述结果可知:AMCDE-RBF-PID控制器的动态性能更好,抗干扰性能更强,控制精度更高。 展开更多
关键词 自适应变异交叉策略 差分进化算法 rbf神经网络 PID参数整定
在线阅读 下载PDF
Dynamic modeling and RBF neural network compensation control for space flexible manipulator with an underactuated hand 被引量:3
9
作者 Dongyang SHANG Xiaopeng LI +1 位作者 Meng YIN Fanjie LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第3期417-439,共23页
In space operation,flexible manipulators and gripper mechanisms have been widely used because of light weight and flexibility.However,the vibration caused by slender structures in manipulators and the parameter pertur... In space operation,flexible manipulators and gripper mechanisms have been widely used because of light weight and flexibility.However,the vibration caused by slender structures in manipulators and the parameter perturbation caused by the uncertainty derived from grasping mass variation cannot be ignored.The existence of vibration and parameter perturbation makes the rotation control of flexible manipulators difficult,which seriously affects the operation accuracy of manipulators.What’s more,the complex dynamic coupling brings great challenges to the dynamics modeling and vibration analysis.To solve this problem,this paper takes the space flexible manipulator with an underactuated hand(SFMUH)as the research object.The dynamics model considering flexibility,multiple nonlinear elements and disturbance torque is established by the assumed modal method(AMM)and Hamilton’s principle.A dynamic modeling simplification method is proposed by analyzing the nonlinear terms.What’s more,a sliding mode control(SMC)method combined with the radial basis function(RBF)neural network compensation is proposed.Besides,the control law is designed using a saturation function in the control method to weaken the chatter phenomenon.With the help of neural networks to identify the uncertainty composition in the SFMUH,the tracking accuracy is improved.The results of ground control experiments verify the advantages of the control method for vibration suppression of the SFMUH. 展开更多
关键词 Space flexible manipulator rbf neural network Underactuated hand Dynamic models Model simplification
原文传递
基于LKRBF神经网络-PID的自适应卷绕机张力控制系统
10
作者 王红林 曾饮思 《自动化与仪表》 2025年第6期59-63,69,共6页
常规PID控制器在处理张力控制系统时表现不佳。在动态变化的工况下,其响应速度往往不满足快速变化的需求。基于此,提出一种LKRBF神经网络-PID的自适应卷绕机张力控制策略。利用RBF神经网络在线自学习获得最优PID参数值,使用LK-means算... 常规PID控制器在处理张力控制系统时表现不佳。在动态变化的工况下,其响应速度往往不满足快速变化的需求。基于此,提出一种LKRBF神经网络-PID的自适应卷绕机张力控制策略。利用RBF神经网络在线自学习获得最优PID参数值,使用LK-means算法改进参数初始值,制定自适应调整策略,结合莱维飞行的随机步长,独立优化权重参数,建立卷绕机张力的数学控制模型,利用MATLAB进行系统仿真分析,并在西门子卷绕系统实验平台进行模拟实验验证。实验结果表明,LKRBF神经网络-PID的自适应卷绕机张力控制策略显著提升系统的响应速度、鲁棒性和非线性适应能力,对复杂多变的工业环境下的高精度控制提供了有力的理论实践基础。 展开更多
关键词 PID 张力控制 rbf神经网络 LK-means
在线阅读 下载PDF
基于改进RBF神经网络的台风风速预测研究
11
作者 李红丽 陶洪峰 《自动化仪表》 2025年第12期11-14,19,共5页
针对台风风速预测受复杂因素影响,呈现出高度非线性特征的问题,传统的单一预测模型预测精度较差。对仿射传播(AP)聚类和径向基函数(RBF)神经网络算法进行了研究,构建了一种改进的混合模型。借助AP聚类算法的自适应聚类特性,为RBF神经网... 针对台风风速预测受复杂因素影响,呈现出高度非线性特征的问题,传统的单一预测模型预测精度较差。对仿射传播(AP)聚类和径向基函数(RBF)神经网络算法进行了研究,构建了一种改进的混合模型。借助AP聚类算法的自适应聚类特性,为RBF神经网络提供了精确、稳定的初始化中心向量,显著增强了RBF神经网络的非线性拟合能力和预测精度。经试验对比证明,改进后的混合模型明显优于其他模型,不仅达到了预设的误差指标,还实现了更低的误差水平,避免了传统方法在复杂非线性问题中的局限性。该研究不仅为台风风速预测提供了新的技术,还可为其他涉及非线性预测的领域(如气象、水文、能源等)提供参考。该研究对相关学科的研究方法改进具有重要启示意义。 展开更多
关键词 仿射传播聚类 径向基函数神经网络 风速预测 台风 聚类中心 欧氏距离
在线阅读 下载PDF
面向农业温室环境的ICDO-RBFNN多传感器数据融合算法 被引量:3
12
作者 罗焕芝 王骥 《农业工程学报》 EI CAS CSCD 北大核心 2024年第21期184-191,共8页
为改善农业环境传感器测量数据精度低、可靠性差的问题,该研究提出一种改进的切诺贝利灾难优化器(improved Chernobyl disaster optimizer,ICDO)优化径向基函数神经网络(radial basis function neural network,RBFNN)多传感器数据融合... 为改善农业环境传感器测量数据精度低、可靠性差的问题,该研究提出一种改进的切诺贝利灾难优化器(improved Chernobyl disaster optimizer,ICDO)优化径向基函数神经网络(radial basis function neural network,RBFNN)多传感器数据融合算法。首先引入佳点集、拉普拉斯交叉算子和修改位置更新方程改进切诺贝利灾难优化器(Chernobyl disaster optimizer,CDO),增强算法的寻优能力;再利用ICDO优化RBFNN模型,提升模型的稳定性;最后通过RBFNN模型的非线性映射能力实现多传感器数据融合方法,提高数据融合精度。仿真试验结果表明,大气环境质量预测的拟合优度达到0.999,均方误差低至0.348,平均绝对百分比误差降到0.729%;现场试验结果表明,温室环境等级划分的准确率高达99.21%,精准率为99.91%。研究提出的多传感器数据融合算法精度高,相对误差低,稳健性好。 展开更多
关键词 温室 多传感器 数据融合 ICDO rbf神经网络
在线阅读 下载PDF
基于RBF-PSO算法的浮筏隔振系统性能优化及轻量化设计 被引量:1
13
作者 徐明成 肖邵予 +1 位作者 王汝夯 张冠军 《中国舰船研究》 北大核心 2025年第4期185-193,共9页
[目的]为了解决工程中浮筏隔振系统轻量化设计过程工作量大、迭代周期长的问题,提出一种基于RBF-PSO多目标优化算法的轻量化设计方法。[方法]以板架式浮筏隔振系统为研究对象,基于ANSYS APDL建立有限元模型并分析其隔振性能和抗冲击性... [目的]为了解决工程中浮筏隔振系统轻量化设计过程工作量大、迭代周期长的问题,提出一种基于RBF-PSO多目标优化算法的轻量化设计方法。[方法]以板架式浮筏隔振系统为研究对象,基于ANSYS APDL建立有限元模型并分析其隔振性能和抗冲击性能。通过试验测试浮筏的隔振性能,并与数值仿真结果进行对比,验证数值仿真结果的准确性;采用完全有限差分法,对浮筏隔振系统进行参数灵敏度分析,通过灵敏度分析结果选择设计变量,并基于RBF-PSO多目标优化算法对浮筏进行轻量化设计。[结果]研究结果表明:轻量化设计后,筏架质量为63.03kg,相较原筏架减重31.92%。与此同时,浮筏隔振系统的隔振性能提升了2.48dB,设备的抗冲击性能也有所提升。RBF-PSO多目标优化算法优化值与数值仿真计算值误差小于1%。[结论]RBF-PSO多目标优化算法可有效应用于浮筏隔振系统的轻量化设计中。 展开更多
关键词 浮筏隔振系统 隔振 灵敏度分析 rbf神经网络 粒子群算法 轻量化设计
在线阅读 下载PDF
基于RBF神经网络的4-PPPS并联机构位姿误差补偿 被引量:1
14
作者 金奕扬 李磊 +3 位作者 许家伟 汪建华 王国伟 许润康 《现代制造工程》 北大核心 2025年第4期140-150,共11页
为了解决船舶调姿机构结构误差引起的船舶总段对接精度下降问题,以4-PPPS并联机构为研究对象,首先采用闭环矢量法建立包含32个误差项的动平台位姿误差模型,然后具体分析其中便于测量的16种结构误差参数对动平台位姿精度的影响规律。误... 为了解决船舶调姿机构结构误差引起的船舶总段对接精度下降问题,以4-PPPS并联机构为研究对象,首先采用闭环矢量法建立包含32个误差项的动平台位姿误差模型,然后具体分析其中便于测量的16种结构误差参数对动平台位姿精度的影响规律。误差分析结果表明,沿轨道方向移动副长度误差对4-PPPS并联机构运动精度影响最大,在4条支链均存在误差的情况下,Z轴方向动平台位姿误差达到1.5 mm。同时,为克服传统误差参数辨识难度较大的问题,提出一种基于鲸鱼优化算法(Whale Optimization Algorithm,WOA)优化径向基函数(Radial Basis Function,RBF)神经网络的补偿方法。该方法将位姿误差转化为驱动关节长度误差,通过神经网络建立动平台理论位姿与驱动关节长度误差的预测模型,并采用鲸鱼优化算法优化网络参数,最终获得驱动关节长度补偿量,用来修正动平台的实际位姿并完成误差补偿。经过仿真验证,该方法能够有效提升4-PPPS并联机构的运动精度,动平台在X、Y、Z轴方向的误差均值分别由0.169、0.188、0.159 mm降至0.002、0.001、0.003 mm,误差最大值分别由0.208、0.231、0.195 mm降至0.012、0.001、0.019 mm,平均位姿精度提高了85.07%,补偿效果显著。 展开更多
关键词 并联机构 误差分析 误差补偿 rbf神经网络 鲸鱼优化算法
在线阅读 下载PDF
基于归一化RBFNN的油井动液面测量数据异常辨识 被引量:1
15
作者 贾鹿 赵磊 +1 位作者 凌飞 李广亚 《电子测量技术》 北大核心 2024年第24期188-194,共7页
为解决油井动液面测量数据中存在的缺失值、非线性和非平稳特性导致的数据特征提取准确性不足,以及无法实现油井动液面位置精准测量的问题,提出基于归一化RBF神经网络的油井动液面测量数据异常辨识方法。通过安装在油井上的传感器实时... 为解决油井动液面测量数据中存在的缺失值、非线性和非平稳特性导致的数据特征提取准确性不足,以及无法实现油井动液面位置精准测量的问题,提出基于归一化RBF神经网络的油井动液面测量数据异常辨识方法。通过安装在油井上的传感器实时采集数据,利用基于专家库的多源油归一化处理技术完成数据的校验与整合。采用经验模态分解(EMD)技术将数据分解为趋势项与波动项,去除波动项后,将趋势项数据作为归一化RBF神经网络的输入。实验结果表明,该方法可有效补全不完整数据,并通过趋势项准确辨识异常数据并提供合理替代值,获得的动液面位置曲线与实际动液面位置曲线基本吻合,误差最高不超过2 m,可实现油井动液面位置的精准估计。基于归一化RBF神经网络的油井动液面测量数据异常辨识方法解决了数据缺失、非线性和非平稳性带来的挑战,实现了油井动液面位置的精准估计,为油井动液面的实时监测和数据分析提供了技术支撑。 展开更多
关键词 归一化 rbf神经网络 油井动液面 测量数据 异常辨识
原文传递
基于自适应RBF神经网络的小型铅铋快堆堆芯热工水力参数预测方法研究
16
作者 吴红 赵亚楠 +2 位作者 赵鹏程 曾深权 于涛 《核科学与工程》 北大核心 2025年第5期869-877,共9页
为实现准确、高效预测铅铋快堆关键热工参数,提高铅铋快堆热工安全评价能力,提出了一种基于自适应径向基函数(RBF)神经网络的铅铋快堆燃料元件表面温度预测方法。利用子通道分析程序SUBCHANFLOW建立小型铅铋快堆SPALLER-100堆芯子通道模... 为实现准确、高效预测铅铋快堆关键热工参数,提高铅铋快堆热工安全评价能力,提出了一种基于自适应径向基函数(RBF)神经网络的铅铋快堆燃料元件表面温度预测方法。利用子通道分析程序SUBCHANFLOW建立小型铅铋快堆SPALLER-100堆芯子通道模型,以计算得到的2000组堆芯功率分布和各冷却剂流道质量流量分布数据作为训练样本,对自适应RBF神经网络模型进行训练,实现对铅铋快堆燃料元件表面温度的预测。通过对比,证明了自适应RBF神经网络方法的有效性、优越性和泛化能力。研究表明:自适应RBF神经网络方法预测燃料包壳最高温度相对误差不超过0.5%,可用于铅铋快堆热工水力参数的快速预测。 展开更多
关键词 铅铋快堆 rbf神经网络 自适应算法 燃料包壳最高温度
在线阅读 下载PDF
基于模糊RBF滑模控制的被动式电液负载模拟器力加载策略研究
17
作者 李航 罗小辉 曹树平 《机床与液压》 北大核心 2025年第12期98-105,共8页
针对大负载工作条件以及系统中存在的舵机运动干扰等问题,以300 kN惯性负载被动式电液负载模拟器为研究对象,在扰动频率不低于2 Hz的工况下开展力加载精度提升试验。考虑实际工作过程中非线性因素与不确定性因素的影响,建立系统非线性... 针对大负载工作条件以及系统中存在的舵机运动干扰等问题,以300 kN惯性负载被动式电液负载模拟器为研究对象,在扰动频率不低于2 Hz的工况下开展力加载精度提升试验。考虑实际工作过程中非线性因素与不确定性因素的影响,建立系统非线性数学模型;基于神经网络能够逼近任意非线性函数的优势,结合滑模控制理论与模糊RBF神经网络算法,设计一种模糊RBF滑模控制器,通过模糊RBF神经网络输出值对滑模控制律中的未知项进行估计补偿,使模糊RBF滑模控制器不再依赖系统的准确参数;根据Lyapunov稳定性理论得到神经网络学习率,并证明控制器的稳定性;最后在MATLAB/Simulink环境下搭建数值仿真平台进行仿真试验。结果表明:与PID控制器、RBF神经网络滑模控制器相比,所设计的模糊RBF滑模控制器具有优良的力加载跟踪效果以及良好的抗干扰能力。 展开更多
关键词 电液负载模拟器 非线性模型 滑模控制 模糊rbf神经网络 加载精度
在线阅读 下载PDF
基于RBF神经网络的分数阶虚拟同步机控制策略
18
作者 张赟宁 郭钟仁 张磊 《电力系统及其自动化学报》 北大核心 2025年第9期101-108,共8页
虚拟同步机控制策略在逆变器并网运行中提供了惯量与阻尼,增加了系统的频率和电压的支撑能力。然而,引入的虚拟惯性可能导致逆变器并网有功在扰动情况下出现动态振荡和功率超调,并且虚拟惯性与阻尼会使系统的响应速度变慢。针对这一问题... 虚拟同步机控制策略在逆变器并网运行中提供了惯量与阻尼,增加了系统的频率和电压的支撑能力。然而,引入的虚拟惯性可能导致逆变器并网有功在扰动情况下出现动态振荡和功率超调,并且虚拟惯性与阻尼会使系统的响应速度变慢。针对这一问题,本文首先建立分数阶虚拟同步机数学模型,引入可调参数增加系统的自由度。然后,设计径向基函数神经网络对虚拟同步机的转动惯量和阻尼系数进行在线自适应调节,将调节后的转动惯量、阻尼系数和可调参数应用于分数阶虚拟同步机控制器。最后,通过Matlab/Simulink仿真比较传统策略与所提控制策略的动态响应。仿真结果表明,所提控制策略能够显著抑制系统在发生扰动时输出有功功率和输出频率的振荡和超调,且具有良好的动态响应,验证了所提控制策略的有效性。 展开更多
关键词 虚拟同步发电机 分数阶微积分 径向基函数神经网络 自适应调节
在线阅读 下载PDF
基于RBF神经网络的舰载火炮反演控制
19
作者 陈佳铭 侯远龙 +2 位作者 黄伟 崔庆新 张亮伟 《火力与指挥控制》 北大核心 2025年第8期205-210,共6页
针对舰载火炮在海面上受到海浪扰动影响其射击精准度问题,设计一种RBF神经网络反演控制的控制策略,对舰载火炮的随动系统位置环进行控制。是建立舰炮伺服系统的数学模型,获得的状态空间方程基于Lyapunov函数设计反演控制律,对其中的不... 针对舰载火炮在海面上受到海浪扰动影响其射击精准度问题,设计一种RBF神经网络反演控制的控制策略,对舰载火炮的随动系统位置环进行控制。是建立舰炮伺服系统的数学模型,获得的状态空间方程基于Lyapunov函数设计反演控制律,对其中的不确定项采用神经网络RBF进行逼近。有效地将RBF与反演控制相结合。利用matlab软件仿真,结果表明:该控制方法可以提高伺服系统的响应速度、抗干扰能力和跟踪精度,使其具备更高的稳定性。 展开更多
关键词 舰载火炮 交流伺服系统 反演控制 rbf神经网络
在线阅读 下载PDF
基于自适应小波RBF神经网络的导引头陀螺误差校正方法
20
作者 刘建旭 雷昊 +2 位作者 赵晟 刘会文 李少毅 《中国惯性技术学报》 北大核心 2025年第1期76-81,88,共7页
凝视成像红外导引导弹发射冲击和飞行过程中,导引头MEMS陀螺输出会产生较大误差,造成成像系统稳定性降低,误差过大时会丢失目标。针对这一工程问题,提出一种基于自适应小波RBF神经网络的导引头陀螺误差校正方法。首先运用Allan方差分析... 凝视成像红外导引导弹发射冲击和飞行过程中,导引头MEMS陀螺输出会产生较大误差,造成成像系统稳定性降低,误差过大时会丢失目标。针对这一工程问题,提出一种基于自适应小波RBF神经网络的导引头陀螺误差校正方法。首先运用Allan方差分析导弹飞行全过程中,导引头伺服系统MEMS陀螺主要误差源及误差量级。然后运用小波阈值去噪法滤除高频噪声,作为训练网络输入。最后运用自适应小波RBF神经网络算法进行误差校正。实验结果表明,与传统RBF网络和Kalman滤波算法相比,所提算法均方根误差RMSE要低两个数量级,Allan方差也比传统算法减小一半,数据复杂度低,具备工程应用价值。 展开更多
关键词 红外导引头 陀螺伺服系统 小波阈值去噪 小波rbf网络
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部