期刊文献+
共找到5,543篇文章
< 1 2 250 >
每页显示 20 50 100
Improved RBF network application in analog circuit fault isolation 被引量:1
1
作者 禹航 肖明清 赵鑫 《Journal of Measurement Science and Instrumentation》 CAS 2012年第1期70-74,共5页
One kind of steepest descent incremental projection learning algorithm for improving the training of radial basis function(RBF)neural network is proposed,which is applied to analog circuit fault isolation.This algorit... One kind of steepest descent incremental projection learning algorithm for improving the training of radial basis function(RBF)neural network is proposed,which is applied to analog circuit fault isolation.This algorithm simplified the structure of network through optimum output layer coefficient with incremental projection learning(IPL)algorithm,and adjusted the parameters of the neural activation function to control the network scale and improve the network approximation ability.Compared to the traditional algorithm,the improved algorithm has quicker convergence rate and higher isolation precision.Simulation results show that this improved RBF network has much better performance,which can be used in analog circuit fault isolation field. 展开更多
关键词 analog circuit fault isolation rbf network IPL algorithm steepest descent algorithm
在线阅读 下载PDF
Prediction of coal ash fusion temperature using constructive-pruning hybrid method for RBF networks
2
作者 丁维明 吴小丽 魏海坤 《Journal of Southeast University(English Edition)》 EI CAS 2011年第2期159-163,共5页
A constructive-pruning hybrid method (CPHM) for radial basis function (RBF) networks is proposed to improve the prediction accuracy of ash fusion temperatures (AFT). The CPHM incorporates the advantages of the c... A constructive-pruning hybrid method (CPHM) for radial basis function (RBF) networks is proposed to improve the prediction accuracy of ash fusion temperatures (AFT). The CPHM incorporates the advantages of the construction algorithm and the pruning algorithm of neural networks, and the training process of the CPHM is divided into two stages: rough tuning and fine tuning. In rough tuning, new hidden units are added to the current network until some performance index is satisfied. In fine tuning, the network structure and the model parameters are further adjusted. And, based on components of coal ash, a model using the CPHM is established to predict the AFT. The results show that the CPHM prediction model is characterized by its high precision, compact network structure, as well as strong generalization ability and robustness. 展开更多
关键词 radial basis function rbf networks functionapproximation ash fusion temperature
在线阅读 下载PDF
CLASSIFICATIONS OF EEG SIGNALS FOR MENTAL TASKS USING ADAPTIVE RBF NETWORK
3
作者 薛建中 郑崇勋 闫相国 《Journal of Pharmaceutical Analysis》 SCIE CAS 2004年第2期97-100,109,共5页
Objective This paper presents classifications of m ental tasks based on EEG signals using an adaptive Radial Basis Function (RBF) n etwork with optimal centers and widths for the Brain-Computer Interface (BCI) s che... Objective This paper presents classifications of m ental tasks based on EEG signals using an adaptive Radial Basis Function (RBF) n etwork with optimal centers and widths for the Brain-Computer Interface (BCI) s chemes. Methods Initial centers and widths of the network are s elected by a cluster estimation method based on the distribution of the training set. Using a conjugate gradient descent method, they are optimized during train ing phase according to a regularized error function considering the influence of their changes to output values. Results The optimizing process improves the performance of RBF network, and its best cognition rate of three t ask pairs over four subjects achieves 87.0%. Moreover, this network runs fast du e to the fewer hidden layer neurons. Conclusion The adaptive RB F network with optimal centers and widths has high recognition rate and runs fas t. It may be a promising classifier for on-line BCI scheme. 展开更多
关键词 adaptive rbf network EEG mental task
暂未订购
ERBF network with immune clustering
4
作者 宫新保 臧小刚 周希朗 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2004年第3期315-318,共4页
Based on immune clustering and evolutionary programming(EP), a hybrid algorithm to train the RBF network is proposed. An immune fuzzy C-means clustering algorithm (IFCM) is used to adaptively specify the amount and in... Based on immune clustering and evolutionary programming(EP), a hybrid algorithm to train the RBF network is proposed. An immune fuzzy C-means clustering algorithm (IFCM) is used to adaptively specify the amount and initial positions of the RBF centers according to input data set; then the RBF network is trained with EP that tends to global optima. The application of the hybrid algorithm in multiuser detection problem demonstrates that the RBF network trained with the algorithm has simple network structure with good generalization ability. 展开更多
关键词 immune clustering algorithm evolutionary programming rbf network.
在线阅读 下载PDF
Evaluation of the Occurrence Possibility of SNP in Brassica napus with Sliding Window Features by Using RBF Networks 被引量:3
5
作者 HU Xuehai LI Ruiyuan +3 位作者 2ENG Jinling XIONG Huijuan XIA Jingbo LI Zhi 《Wuhan University Journal of Natural Sciences》 CAS 2011年第1期73-78,共6页
We extract some physical and chemical features re-lated to the occurrence of single nucleotide polymorphism (SNP) from three groups of sliding windows around SNP site,and then make the predictions about accuracy by ... We extract some physical and chemical features re-lated to the occurrence of single nucleotide polymorphism (SNP) from three groups of sliding windows around SNP site,and then make the predictions about accuracy by using radial basis function (RBF) networks. The result of the forward sliding windows sug-gests that the accuracies and Matthews correlation coefficient (MCC values) ascend with the increasing of length of sliding windows. The accuracies range from 73.27 % to 80.69 %,and MCC values range from 0.465 to 0.614. The backward sliding windows and the sliding windows with fixed length three are de-signed to find the crucial sites related to SNP. The results imply that the occurrence possibility of SNP relies heavily on the above physical and chemical features of sites which are at a distance around 20 bases from the SNP site. Compared with the support vector machine (SVM),our RBF network approach has achieved more satisfactory results. 展开更多
关键词 single nucleotide polymorphism (SNP) radial basis function rbf network Brassica napus sliding windows
原文传递
Applying RBF network to predict location in mobile network
6
作者 ZHANG Qiong LEI Ming 《通讯和计算机(中英文版)》 2008年第2期28-32,共5页
关键词 rbf网络 移动网络技术 移动节点 通信网络
在线阅读 下载PDF
Performance prediction for Grid workflow activities based on features-ranked RBF network
7
作者 王洁 Duan Rubing Farrukh Nadeem 《High Technology Letters》 EI CAS 2009年第2期203-207,共5页
Accurate performance prediction of Grid workflow activities can help Grid schedulers map activitiesto appropriate Grid sites.This paper describes an approach based on features-ranked RBF neural networkto predict the p... Accurate performance prediction of Grid workflow activities can help Grid schedulers map activitiesto appropriate Grid sites.This paper describes an approach based on features-ranked RBF neural networkto predict the performance of Grid workflow activities.Experimental results for two kinds of real worldGrid workflow activities are presented to show effectiveness of our approach. 展开更多
关键词 performance prediction radial basis function rbf neural network features rank Grid workflow activities
在线阅读 下载PDF
Application of Nonlinear Predictive Control Based on RBF Network Predictive Model in MCFC Plant
8
作者 陈跃华 曹广益 朱新坚 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第1期42-46,52,共6页
This paper described a nonlinear model predictive controller for regulating a molten carbonate fuel cell (MCFC). A detailed mechanism model of output voltage of a MCFC was presented at first. However, this model was t... This paper described a nonlinear model predictive controller for regulating a molten carbonate fuel cell (MCFC). A detailed mechanism model of output voltage of a MCFC was presented at first. However, this model was too complicated to be used in a control system. Consequently, an off line radial basis function (RBF) network was introduced to build a nonlinear predictive model. And then, the optimal control sequences were obtained by applying golden mean method. The models and controller have been realized in the MATLAB environment. Simulation results indicate the proposed algorithm exhibits satisfying control effect even when the current densities vary largely. 展开更多
关键词 molten carbonate fuel cell (MCFC) radial basis function rbf)neural network model nonlinear model predictive control (NMPC) golden mean method
在线阅读 下载PDF
基于IWOA-RBF神经网络预测的拖拉机线控液压转向系统传递函数参数辨识
9
作者 吕华伟 邓晓亭 +2 位作者 黄薛凯 孙晓旭 鲁植雄 《南京农业大学学报》 北大核心 2026年第1期197-213,共17页
[目的]拖拉机线控液压转向系统具有强非线性、时变等特性,为分析该系统运动学特性,需要建立线控液压转向系统动态模型。本文针对该问题,搭建了线控液压转向试验台架,提出利用系统参数辨识的方法作为线控液压转向系统建模方法。[方法]使... [目的]拖拉机线控液压转向系统具有强非线性、时变等特性,为分析该系统运动学特性,需要建立线控液压转向系统动态模型。本文针对该问题,搭建了线控液压转向试验台架,提出利用系统参数辨识的方法作为线控液压转向系统建模方法。[方法]使用鲸鱼优化算法(WOA)对线控液压转向系统的试验数据进行参数辨识,从而获得系统传递函数参数。为补全线控液压转向系统适用工况,采用RBF神经网络预测法对辨识得到的传递函数进行工况预测,得到线控液压转向系统动态传递函数。[结果]对辨识结果进行了试验对比验证,通过改进的鲸鱼优化算法优化得到的线控液压转向系统传递函数,在右转时与试验数据的均方根误差平均值为0.001334,在左转时与试验数据的均方根误差平均值为0.013440,通过RBF神经网络预测得到的线控液压转向系统全工况动态传递函数与试验数据的均方根误差在0.1左右。[结论]本文提出的动态模型可以精确描述线控液压转向模型的运动学特性,建模方法可行,对提高线控液压转向系统控制稳定性有重要的指导意义。 展开更多
关键词 拖拉机 线控液压转向 鲸鱼优化算法(WOA) 参数辨识 rbf神经网络 工况预测
在线阅读 下载PDF
APPROXIMATE IMPLICITIZATION BASED ON RBF NETWORKS AND MQ QUASI-INTERPOLATION 被引量:1
10
作者 Renhong Wang Jinming Wu 《Journal of Computational Mathematics》 SCIE EI CSCD 2007年第1期97-103,共7页
In this paper, we propose a new approach to solve the approximate implicitization problem based on RBF networks and MQ quasi-interpolation. This approach possesses the advantages of shape preserving, better smoothness... In this paper, we propose a new approach to solve the approximate implicitization problem based on RBF networks and MQ quasi-interpolation. This approach possesses the advantages of shape preserving, better smoothness, good approximation behavior and relatively less data etc. Several numerical examples are provided to demonstrate the effectiveness and flexibility of the proposed method. 展开更多
关键词 rbf networks MQ quasi-interpolation Approximate implicitization Rationalcurves
原文传递
基于RBF网络的四旋翼无人机姿态鲁棒自适应反步滑模控制 被引量:4
11
作者 刘金华 王远 +1 位作者 张智轩 李涛 《江苏大学学报(自然科学版)》 CAS 北大核心 2025年第1期36-42,共7页
针对存在干扰的四旋翼无人机姿态系统,设计了一种RBF网络鲁棒自适应反步滑模控制器.在反步滑模控制的基础上,通过RBF网络逼近和补偿标称控制律,采用神经网络最小参数学习法,取神经网络的权值上界估计作为神经网络的估计值,通过设计参数... 针对存在干扰的四旋翼无人机姿态系统,设计了一种RBF网络鲁棒自适应反步滑模控制器.在反步滑模控制的基础上,通过RBF网络逼近和补偿标称控制律,采用神经网络最小参数学习法,取神经网络的权值上界估计作为神经网络的估计值,通过设计参数估计自适应律来代替神经网络权值的调整,并用Lyapunov理论证明系统的稳定性.仿真结果表明:该方法相比反步滑模控制方法,在有干扰的情况下,有更短的调节时间,更好的跟踪精度,验证了本方法具有更好的抗干扰性和鲁棒性. 展开更多
关键词 四旋翼无人机 姿态控制 反步滑模控制 rbf神经网络 鲁棒自适应控制
在线阅读 下载PDF
Model Identification of Water Purification Systems Using RBF Neural Network
12
作者 徐立新 《Journal of Beijing Institute of Technology》 EI CAS 1998年第3期293-395,296-298,共6页
Aim The RFB (radial hats function) netal network was studied for the model indentificaiton of an ozonation/BAC system. Methods The optimal ozone's dosage and the remain time in carbon tower were analyzed to build... Aim The RFB (radial hats function) netal network was studied for the model indentificaiton of an ozonation/BAC system. Methods The optimal ozone's dosage and the remain time in carbon tower were analyzed to build the neural network model by which the expected outflow CODM can be acquired under the inflow CODM condition. Results The improved self-organized learning algorithm can assign the centers into appropriate places , and the RBF network's outputs at the sample points fit the experimental data very well. Conclusion The model of ozonation /BAC system based on the RBF network am describe the relationshipamong various factors correctly, a new prouding approach tO the wate purification process is provided. 展开更多
关键词 rbf neural network: identification OZONE biological activated carbon
在线阅读 下载PDF
Generating high-resolution climate maps from sparse and irregular observations using a novel hybrid RBF network
13
作者 Yue Han Zhihua Zhang M.James C.Crabbe 《Big Earth Data》 EI CSCD 2023年第4期1120-1145,共26页
Sparse and irregular climate observations in many developing countries are not enough to satisfy the need of assessing climate change risks and planning suitable mitigation strategies.The wideused statistical downscal... Sparse and irregular climate observations in many developing countries are not enough to satisfy the need of assessing climate change risks and planning suitable mitigation strategies.The wideused statistical downscaling model(SDSM)software tools use multi-linear regression to extract linear relations between largescale and local climate variables and then produce high-resolution climate maps from sparse climate observations.The latest machine learning techniques(e.g.SRCNN,SRGAN)can extract nonlinear links,but they are only suitable for downscaling low-resolution grid data and cannot utilize the link to other climate variables to improve the downscaling performance.In this study,we proposed a novel hybrid RBF(Radial Basis Function)network by embedding several RBF networks into new RBF networks.Our model can well incorporate climate and topographical variables with different resolutions and extract their nonlinear relations for spatial downscaling.To test the performance of our model,we generated high-resolution precipitation,air temperature and humidity maps from 34 meteorological stations in Bangladesh.In terms of three statistical indicators,the accuracy of high-resolution climate maps generated by our hybrid RBF network clearly outperformed those using a multi-linear regression(MLR),Kriging interpolation or a pure RBF network. 展开更多
关键词 Hybrid rbf network climate map sparse observed climate data high resolution
原文传递
联合改进鸽群优化RBF神经网络PID的自动驾驶机器人车速控制 被引量:1
14
作者 周阿连 于子茵 刘刚 《机械设计与制造》 北大核心 2025年第6期69-74,共6页
为提高自动驾驶机器人车速控制的精度和系统稳定性,提出一种联合改进鸽群优化RBF神经网络PID的自动驾驶机器人车速控制方法。对基本鸽群优化算法(pigeon-inspired optimization,PIO)进行改进,通过增加局部搜索机制,以提升算法全局收敛... 为提高自动驾驶机器人车速控制的精度和系统稳定性,提出一种联合改进鸽群优化RBF神经网络PID的自动驾驶机器人车速控制方法。对基本鸽群优化算法(pigeon-inspired optimization,PIO)进行改进,通过增加局部搜索机制,以提升算法全局收敛精度。设计改进的RBF神经网络,采用改进核FCM聚类算法(improved KFCM,IKFCM)初始化RBF神经网络中心,利用改进的PIO(improved PIO,IPIO)优化RBF神经网络参数配置。最后,利用IPIO和IKFCM优化后的RBF神经网络对PID参数进行自适应调整。与其它车速控制方法相比,所提方法车速控制精度提高了约1.2%,能够精准实现对机器人车速的控制。 展开更多
关键词 机器人 鸽群优化算法 rbf神经网络 PID控制 精度
在线阅读 下载PDF
Calibration Method Based on RBF Neural Networks for Soil Moisture Content Sensor 被引量:9
15
作者 杨敬锋 李亭 +1 位作者 卢启福 陈志民 《Agricultural Science & Technology》 CAS 2010年第2期140-142,共3页
Temporal and spatial variation of soil moisture content is significant for crop growth,climate change and the other fields.In order to overcome shortage of non-linear output voltage of TDR3 soil moisture content senso... Temporal and spatial variation of soil moisture content is significant for crop growth,climate change and the other fields.In order to overcome shortage of non-linear output voltage of TDR3 soil moisture content sensor and increase soil moisture content data collection and computational efficiency,this paper presents a RBF neural network calibration method of soil moisture content based on TDR3 soil moisture sensor and wireless sensor networks.Experiment results show that the calibration method is effective... 展开更多
关键词 Calibration Model Soil Moisture Sensor Wireless Sensor networks rbf Neural networks
在线阅读 下载PDF
车辆主动悬架RBF神经网络的模型预测控制仿真研究 被引量:1
16
作者 顾苏怡 蒋昌华 《中国工程机械学报》 北大核心 2025年第3期410-414,共5页
为了提升车辆行驶的稳定性和乘坐的舒适性,提出一种基于径向基函数(RBF)神经网络的模型预测控制(MPC)系统,通过仿真验证主动悬架控制系统的有效性。创建7自由度车辆主动悬架简图,定义了车辆主动悬架动力学方程式。构建主动悬架MPC系统,... 为了提升车辆行驶的稳定性和乘坐的舒适性,提出一种基于径向基函数(RBF)神经网络的模型预测控制(MPC)系统,通过仿真验证主动悬架控制系统的有效性。创建7自由度车辆主动悬架简图,定义了车辆主动悬架动力学方程式。构建主动悬架MPC系统,利用RBF神经网络结构捕捉车辆主动悬架系统的复杂动态特性,通过对大量数据的学习和训练,能够快速建立主动悬架MPC参数,最终实现对车辆主动悬架系统的精确控制。利用Matlab软件对车辆主动悬架的车身加速度、悬架位移、轮胎位移进行仿真,评估车辆不同控制策略的行驶性能。结果显示:在路面信号激励下采用MPC,车辆主动悬架的车身加速度、悬架位移、轮胎位移变化幅度较大;采用RBF神经网络的MPC,车辆主动悬架的车身加速度、悬架位移、轮胎位移变化幅度较小。所提出的RBF神经网络MPC系统,能够增强车辆主动悬架抗干扰能力,从而保持车辆行驶的稳定性和舒适性。 展开更多
关键词 车辆 主动悬架 rbf神经网络 模型预测控制 仿真
在线阅读 下载PDF
基于改进RBF神经网络的人体姿态局部特征识别算法
17
作者 李燕飞 吴加宁 《吉林大学学报(工学版)》 北大核心 2025年第5期1749-1755,共7页
以机器人的人体姿态识别问题为核心,为提高识别精度,提出一种基于改进RBF神经网络的人体姿态局部特征识别算法。利用深度相机得到人体关节点三维方位数据,归一化处理方位数据,组建关节点三维坐标;考虑到不同个体之间的差异,为实现对人... 以机器人的人体姿态识别问题为核心,为提高识别精度,提出一种基于改进RBF神经网络的人体姿态局部特征识别算法。利用深度相机得到人体关节点三维方位数据,归一化处理方位数据,组建关节点三维坐标;考虑到不同个体之间的差异,为实现对人体姿态数据的非线性映射和优化,准确识别不同个体姿态,采用newrbe函数构建RBF神经网络,提取人体姿态数据特征矢量,以为识别提供重要依据;为增强RBF神经网络在处理不同个体姿态差异方面的能力,确保识别的准确性和自适应性,使用粒子群优化算法改进神经网络,并通过特定概率对粒子实施遗传操作,实现网络优化得到人体姿态局部特征识别结果。实验结果表明:本文算法相对误差均较小,可维持在0.8以下,识别精度高,且在迭代次数达到20时损失函数已降至最低,收敛速度较快,可为农业机械化领域的人机交互提供扎实基础。 展开更多
关键词 改进rbf神经网络 人体姿态 局部特征识别 三维坐标 粒子群优化
原文传递
基于RBF神经网络的Ti-6Al-4V钛合金多轴铣削残余应力预测
18
作者 王丽博 王宗园 《机械设计与研究》 北大核心 2025年第3期238-244,共7页
残余应力作为航空发动机薄壁件表面完整性的重要指标,对薄壁件的疲劳性能有重要影响。残余应力对工艺参数存在极大的敏感性且形成机理十分复杂,了解残余应力生成与工艺参数之间的关系,准确地建立工艺参数与残余应力分布之间的映射关系... 残余应力作为航空发动机薄壁件表面完整性的重要指标,对薄壁件的疲劳性能有重要影响。残余应力对工艺参数存在极大的敏感性且形成机理十分复杂,了解残余应力生成与工艺参数之间的关系,准确地建立工艺参数与残余应力分布之间的映射关系是目前亟需解决的难题之一。针对Ti-6Al-4V钛合金多轴铣削过程,建立了基于径向基函数(RBF)神经网络的表面残余应力预测模型。首先,建立了Ti-6Al-4V钛合金多轴铣削表面残余应力三维有限元模型,并通过多轴铣削实验与X射线衍射测量实验验证了模型的有效性。实验结果表明:有限元模型在σ_(x)和σ_(y)方向上表面残余应力的平均预测误差分别为12.75%和18.93%。然后,以实验与仿真数据为样本,引入RBF神经网络建立工艺参数与表面残余应力之间的映射模型,从而实现表面残余应力的快速准确预测。验证结果表明:该模型在σ_(x)和σ_(y)方向上表面残余应力的平均预测误差为13.84%和19.53%,程序平均运行时间为7.83 s,表明文中提出的建模方法可以实现表面残余应力的快速准确预测。同时,所提出的残余应力预测模型可用于复杂弯曲薄壁结构的进一步加工优化。 展开更多
关键词 TI-6AL-4V钛合金 表面残余应力 多轴铣削 rbf神经网络 三维仿真
原文传递
基于AMCDE优化RBF神经网络的PID参数整定研究
19
作者 刘悦婷 孔繁庭 +1 位作者 李西素 王园红 《贵州大学学报(自然科学版)》 2025年第1期42-49,90,共9页
针对工业过程中PID(proportional integral derivative)参数整定难的问题,提出一种带有存储机制的自适应变异交叉策略差分进化算法(adaptive mutation crossover strategy differential evolution algorithm with storage mechanism,AMC... 针对工业过程中PID(proportional integral derivative)参数整定难的问题,提出一种带有存储机制的自适应变异交叉策略差分进化算法(adaptive mutation crossover strategy differential evolution algorithm with storage mechanism,AMCDE)的神经网络算法RBF(radial basis function)整定PID控制器参数。首先,在差分进化算法(differential evolution algorithm,DE)中引入带有存储机制的策略,对种群的个体进行实时排序,充分利用当前种群的方向信息和搜索状态;其次,通过引入自适应变异交叉策略,实现自适应调整变异交叉概率因子,有效地避免种群在迭代后期陷入局部最优解;再次,采用AMCDE算法优化RBF的初始参数,接着由RBF在线辨识得到梯度信息;最后,根据梯度信息对PID的3个参数进行在线调整。仿真实验和某乳制品公司的加热炉温度控制实验表明:与IDE-RBF-PID、GODE-RBF-PID和MCOBDE-RBF-PID相比,AMCDE-RBF-PID控制器的调节时间分别降低了62.6%、55.3%、53.6%,超调量分别降低了79.3%、66.4%、64.7%,抗干扰性能分别提高了42.5%、15.3%、14.8%,控制精度分别提高了35.6%、12.3%、11.2%。由上述结果可知:AMCDE-RBF-PID控制器的动态性能更好,抗干扰性能更强,控制精度更高。 展开更多
关键词 自适应变异交叉策略 差分进化算法 rbf神经网络 PID参数整定
在线阅读 下载PDF
Adaptive RBF neural network control of robot with actuator nonlinearities 被引量:6
20
作者 Jinkun LIU, Yu LU (School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China) 《控制理论与应用(英文版)》 EI 2010年第2期249-256,共8页
In this paper, an adaptive neural network control scheme for robot manipulators with actuator nonlinearities is presented. The control scheme consists of an adaptive neural network controller and an actuator nonlinear... In this paper, an adaptive neural network control scheme for robot manipulators with actuator nonlinearities is presented. The control scheme consists of an adaptive neural network controller and an actuator nonlinearities compensator. Since the actuator nonlinearities are usually included in the robot driving motor, a compensator using radial basis function (RBF) network is proposed to estimate the actuator nonlinearities and eliminate their effects. Subsequently, an adaptive neural network controller that neither requires the evaluation of inverse dynamical model nor the time-consuming training process is given. In addition, GL matrix and its product operator are introduced to help prove the stability of the closed control system. Considering the adaptive neural network controller and the RBF network compensator as the whole control scheme, the closed-loop system is proved to be uniformly ultimately bounded (UUB). The whole scheme provides a general procedure to control the robot manipulators with actuator nonlinearities. Simulation results verify the effectiveness of the designed scheme and the theoretical discussion. 展开更多
关键词 Adaptive control rbf neural network Actuator nonlinearity Robot manipulator DEADZONE
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部